PROCESSUS DE SÉLECTION - Etape 1 : Calculez la puissance requise pour le serpentin, déterminez ses paramètres, puis sélectionnez les détendeurs et les unités extérieures - **Application de recyclage de l'air**

Calculez la puissance requise pour le serpentin, déterminez ses paramètres, puis sélectionnez les détendeurs et les unités extérieures :

- > le processus est identique au processus de sélection d'une unité intérieure VRV
- après avoir calculé la puissance frigorifique/calorifique nécessaire dans les conditions de la température en amont du serpentin, consultez les tableaux des puissances frigorifiques et calorifiques ci-après (disponibles dans le manuel EKEXV)
- > choisissez la classe EKEXV pouvant fournir la puissance requise dans les conditions de température en amont du serpentin
- > Le serpentin AHU DX à utiliser doit respecter **strictement** les limites de volume du serpentin (selon le tableau des diapositives précédentes)
- > sélectionnez l'unité extérieure de la même puissance et dans les mêmes conditions de temp. ambiante de votre application.
- > pour des raisons de redondance, vous pouvez aussi choisir plusieurs EXV de la même puissance plutôt qu'une seule EXV. P. ex. 2 x EKEXV100 au lieu de 1 x EKEXV200. La même logique s'applique, le cas échéant, si la puissance requise dépasse les puissances de l'EKEXV500.

AA: Indice de puissance

AB: Température de l'air en amont du serpentin

Tableau des puissances d'évaporateur											
	AB										
	14WB	16WB	18WB	19WB	20WB	22WB	24WB				
AA	20DB	23DB	26DB	27DB	28DB	30DB	32DB				
	TC										
50	3,8	4,5	5,2	5,6	5,9	6,0	6,2				
63	4,8	5,7	6,6	7,1	7,5	7,7	7,8				
80	6,1	7,2	8,4	9,0	9,5	9,7	9,9				
100	7,6	9,0	10,5	11,2	11,8	12,1	12,3				
125	9,5	11,3	13,1	14,0	14,8	15,1	15,4				
140	10,8	12,9	15,0	16,0	16,9	17,3	17,6				
200	15,1	18,0	21,0	22,4	23,6	24,2	24,6				
250	18,9	22,5	26,2	28,0	29,5	30,2	30,8				
400	30,4	36,2	42,1	45,0	47,4	48,5	49,5				
500	37,8	45,0	52,4	56,0	59,0	60,4	61,6				

AA : Classe de l'unité

AB: Température de l'air en amont du serpentin [°C DB]

	АВ								
AA	10,0	16,0	18,0	20,0	21,0	22,0	24,0		
	kW								
50	6,6	6,6	6,6	6,3	6,1	5,9	5,5		
63	8,4	8,4	8,4	8,0	7,7	7,5	7,0		
80	10,5	10,5	10,5	10,0	9,7	9,4	8,7		
100	13,1	13,1	13,1	12,5	12,1	11,7	10,9		
125	16,8	16,8	16,8	16,0	15,5	15,0	13,9		
140	18,9	18,9	18,9	18,0	17,4	16,8	15,7		
200	26,2	26,2	26,2	25,0	24,2	23,4	21,8		
250	33,1	33,1	33,0	31,5	30,5	29,5	27,5		
400	52,4	52,4	52,4	50,0	48,4	46,8	43,6		
500	66,0	66,0	66,0	63,0	61,0	59,0	54,9		