UAB Carlo Gavazzi Industri Kaunas Raudondvario pl. 101 LT-47184 – Kaunas Lithuania

http://www.gavazziautomation.com



# **CFP STUDY REPORT: MOFT20-5**

# Issued according to ISO 14067:2018 Result verified ref to ICMQ certification nr. CFPSA281 – 27/03/2024

#### 1. FOREWORD

This report is part of the procedures and documents of the LCA tool and, in particular, reports the data relating to the CFP of the specific product being analyzed.

The information contained in this specific product CFP study report must therefore always be read together with the "GAV\_LCA Tool General Study Report\_2022 data\_rev2". They are therefore very concise on a discursive level and are focused above all on the quantification of the CFP of the product under analysis.

### 2. GOAL AND SCOPE

The objective of the study is the quantification of the product Carbon Footprint (CFP) related to the

MOFT20-5

device, of the

**Photoelectric Sensor** 

category, with a power of

0,15 W

and a lifespan of 10 years.

#### 3. INVENTORY ANALYSIS

The device under study is the

**MOFT20-5** 

model with a total weight of

0,354

kg, including packaging.

Reference tool for the calculation: LCA tool\_data 2022\_GAV Kaunas\_rev1 dated 16/02/2024.

#### 4. IMPACT ASSESSMENT

As per to chapter 4.1 of the "GAV\_LCA Tool General Study Report 2022 data rev2".

#### 4.1 Total CFP

Below is the overall quantitative impact of the CFP of the product

MOFT20-5

device.

| CFP (kg CO <sub>2</sub> e/device)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Production UPSTREAM    | Production CORE        | Distribution DOWNSTREAM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-------------------------|
| and the state of t | (kg CO <sub>2</sub> e) | (kg CO <sub>2</sub> e) | (kg CO <sub>2</sub> e)  |
| TOTAL 18,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,84                   | 7,35                   | 8,18                    |

## 4.2 Other GHG emission and removals constituting CFP

| GHG VALUES CONSTITUTING THE CFP                                 | UNIT OF MEASURE | DEVICE<br>MOFT20-5 |
|-----------------------------------------------------------------|-----------------|--------------------|
| GHG emissions and removals from fossil carbon sources and sinks | kg CO ₂ e/U.F.  | 18,26              |
| GHG emissions from biogenic carbon sources                      | kg CO ₂ e/U.F.  | 0,05               |
| GHG emissions and removals resulting from dLUC                  | kg CO ₂ e/U.F.  | 0,06               |
| GHG emissions from aviation                                     | kg CO ₂ e/U.F.  | 1,95               |

Responsible party:

UAB Carlo Gavazzi Industri Kaunas

CARLO GAVAZZI

Ernestas Greicius Sourcing Company Manager

CFP/LCA study performed by:

Pquilibria P.

AEQUILIBRIA S.r.l. - SB

P. le della Stazione, 8 35131 – Padova (PD)

www.aequilibria.com