EM540

Analyseur d'énergie pour systèmes bi et triphasés

Description

EM540 is a direct connection energy analyser, for two- and three-phase systems up to 415 V L-L and current up to 65 A. En plus d'une entrée numérique, l'appareil peut être équipé, selon le modèle, d'une sortie statique (impulsion ou alarme), d'un port de communication Modbus RTU ou d'un port de communication M-Bus.

Avantages

- Lisibilité améliorée L'écran rétroéclairé assure une visibilité parfaite même en cas de faible luminosité. La taille différente des chiffres précédant et suivant le point facilite la lecture des valeurs affichées, tandis que le style essentiel des unités de mesure vous permet de comprendre facilement les variables disponibles.
- Navigation simplifiée. La configuration des pages et la navigation sont très intuitives, grâce à l'interface utilisateur à 3 touches mécaniques. La fonction diaporama affiche automatiquement les mesures souhaitées en séquence, sans avoir à utiliser le clavier; le filtre de page permet de masquer les informations inutiles.
- Configuration rapide. L'assistant de configuration qui s'exécute lors du premier démarrage du système vous permet de mettre en service l'appareil sans erreur, et ce en quelques secondes. Le logiciel de configuration de l'UCS peut être téléchargé gratuitement.
- Mesure précise. L'EM540 est conforme à la norme internationale de précision CEI/EN62053-21, et aux exigences de performance (puissance et éenergie active) défines par la norme IEC/EN61557-12.
- Métrologie fiscale. Les cache-bornes coulissants (demande de brevet en instance en UE, US, CA et AU) peuvent être scellés pour empêcher toute altération des connexions, ce qui permet à l'appareil, grâce à la certification MID, d'effectuer des mesures à des fins fiscales et procure une protection renforcée vers les bornes de puissance.
- Installation flexible. Il peut être installé dans des systèmes de basse tension biphasés, triphasés avec neutre, triphasés sans neutre, et triphasés en triangle, avec une température de service jusqu'à 70 °C/158 °F.
- Une intégration efficace. En combinaison avec l'UWP (une passerelle de surveillance et de contrôle de l'énergie conçue par Carlo Gavazzi), il permet de construire un système évolutif et flexible pour surveiller l'efficacité énergétique des bâtiments et des équipements.

Applications

L'EM540 peut être installé dans tout tableau de distribution basse tension avec un courant nominal allant jusqu'à 65 A, pour surveiller la consommation d'énergie, les principales variables électriques et la distorsion harmonique.

S'il est utilisé pour surveiller une seule machine, il fournit toutes les principales variables électriques pour identifier tout dysfonctionnement éventuel à un stade précoce et peut corréler la consommation d'énergie avec les heures de fonctionnement, pour planifier la maintenance et prévenir les pannes. La fonction de réinitialisation partielle du compteur, facilement réalisable grâce à une entrée numérique, permet de surveiller chaque cycle individuel de la machine.

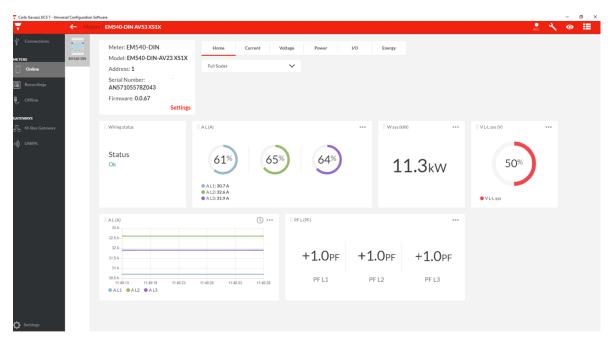
La version certifiée MID peut être utilisée pour la métrologie fiscale et peut être installée dans des bâtiments résidentiels ou commerciaux pour répartir les coûts entre les différentes unités, ou comme composant de machines ou d'équipements nécessitant une certification de mesure.

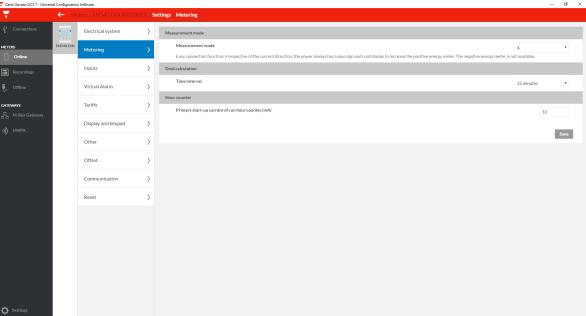
Les versions dédiées, capables de fonctionner jusqu'à 70°C/158°F (modèles PFx70), sont la meilleure solution pour l'installation dans les chargeurs EV placés à l'extérieur et exposés à des températures élevées ou au rayonnement solaire direct.

Grâce au temps de mise à jour des mesures et à la haute résolution des variables disponibles via un module de communication Modbus RTU, il peut également être utilisé comme source de données pour des actions de contrôle, comme par exemple éviter d'alimenter le réseau électrique dans une installation photovoltaïque commune avec stockage d'énergie.

Fonctions principales

- · Mesurer l'énergie active, réactive et apparente
- Mesurer les principales variables électriques
- Mesurer les heures de fonctionnement de la charge et de l'analyseur
- Mesurer la distorsion harmonique totale (THD) du courant et des tensions
- Transmettre des données à d'autres systèmes via Modbus RTU ou M-Bus
- Gérer une sortie numérique pour la transmission d'impulsions ou d'une alarme
- Visualiser les variables mesurées sur l'afficheur


Principales caractéristiques


- Variables de système et de phase (V L-L, V L-N, A, W/var, VA, PF, Hz)
- Affichage de l'énergie active consommée avec une résolution de 0,001 kWh
- La valeur de la fréquence est disponible via Modbus, avec une résolution de 0,001 Hz
- Calcul de la valeur moyenne (dmd) pour le courant et la puissance (kW / kVA)
- Interface utilisateur simplifiée avec 3 boutons mécaniques
- Modbus RTU RS485 (mise à jour des données toutes les 100 ms)
- · Échantillonnage continu de chaque tension et courant
- Afficheur ACL rétroéclairé
- Version certifiée MID
- Résolution du compteur certifiée MID 0,001 kWh
- Agréé cULus (UL 61010)
- Conformité aux exigences de performance définies par la norme CEI/EN61557-12 (puissance et énergie active)
- Température de fonctionnement jusqu'à 70 °C/158 °F (modèles PFx70)

Logiciel UCS

- Téléchargement gratuit du site Internet de Carlo Gavazzi
- Configuration par RS485 depuis un PC ou par UWP via un réseau local ou le web (fonction UWP Secure Bridge)
- Les configurations peuvent être sauvegardées hors ligne pour la programmation en série avec une seule commande
- · Affichage en temps réel des données pour les tests et les diagnostics
- Notification des éventuelles erreurs de câblage et affichage des étapes de correction, réaffectation de l'association correcte des phases ou du sens des courants via un contrôle logiciel.

Structure

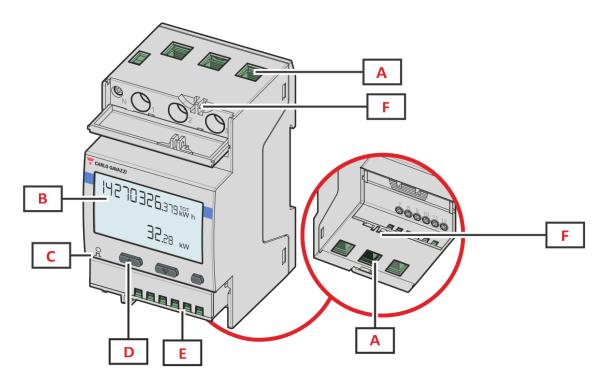


Fig. 1 Devant

Zone	Description
Α	Entrées de tension/Entrées de courant
В	Affichage
С	DEL
D	Boutons de navigation et de configuration
E	Entrée numérique, sortie numérique et connexions de communication
F	Boîtiers d'étanchéité MID

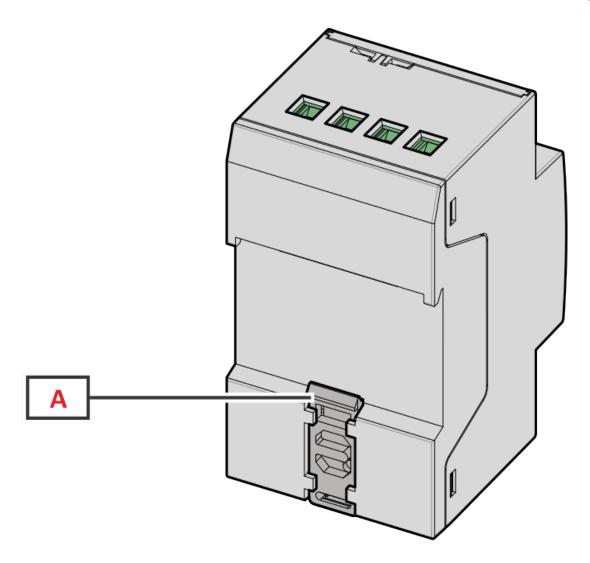


Fig. 2 Dos

Zone	Description	
Α	Support de montage sur rail DIN	

Fonctionnalités

Généralités

Matériau	Boîtier : PBT		
	Couvercle transparent: polycarbonate		
Degré de Protection	Façade : IP40		
Degre de Protection	Bornes: IP20		
	Entrées de mesure (Phase 1, 2, 3) : 2,5 à 16 mm ² / 8 à 13 AWG, 2,5 Nm/22.12 lb-in max		
Bornes	Neutre : 0,06 à 2,5 mm ² /8 à 29 AWG, 0,5 Nm/4.43 lb-in max		
	Entrées, sorties et communication : 0,2 à 1,5 mm²/15 à 24 AWG, 0,4 Nm/3,54 lb-in max		
Catégorie de sur-	Cat. III		
tension			
Degré de pollution	2		
Montage	Rail DIN		
Poids	370 g/0.82 lb (emballage inclus)		
Dimensions 3 modules DIN			

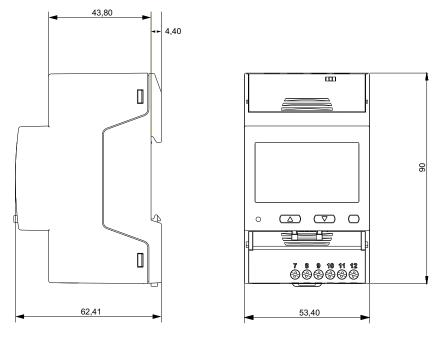


Fig. 3

Spécifications environnementales

Température de service	De -25 à +55 °C / de -13 à +131 °F (Modèles X, PFx) De -25 à +70 °C / de -13 à +158 °F (Modèles PFx70)
Température de stockage	De -25 à +70 °C / de -13 à +158 °F
Condition environnementale électromécanique	E2
Condition d'environnement mécanique	M2

Remarque: H.R. < 90 % sans condensation à 40 °C / 104 °F.

Isolation d'entrée et de sortie

Туре	Entrées de mesure	Entrée numérique	Sorties numé- riques	Port série RS485	Port sériel M-bus
Entrées de mesure	-	Double/Renforcée	Double/Renforcée	Double/Renforcée	Double/Renforcée
Entrée numé- rique	Double/Renforcée	-	aucune	aucune	aucune
Sorties numé- riques	Double/Renforcée	aucune	-	-	-
Port série RS485	Double/Renforcée	aucune	-	-	-
Port sériel M-bus	Double/Renforcée	aucune	-	-	-

Selon : EN 61010-1, EN IEC 62052-31 (MID). Catégorie surtension III. Degré de pollution 2.

Compatibilité et conformité

Directives	2014/32/EU (MID) 2014/35/UE (Basse Tension) 2014/30/UE (EMC - Compatibilité électromagnétique) 2011/65/UE, 2015/863/UE (Substances dangereuses dans les équipements électriques et électroniques)
Normes	Compatibilité Électromagnétique (CEM) - émissions et immunité: EN IEC 62052-11:2021/A11:2022 (Emissions according to CISPR 32:2015, class B) Sécurité électrique: EN IEC 61010-1, EN IEC 62052-31:2016, EN IEC 61010-2-030 Métrologie: EN IEC 62053-21, EN IEC 62053-23, EN 50470-3:2022 (MID), EN IEC 61557-12 (puissance active et énergie active, modèles MID uniquement) Durabilité: EN IEC 62059-32-1:2012
Homologations	C E CULUSTED UK CA

Spécifications électriques

Système électrique			
	Biphasé (3 fils)		
Svotèmo électrique géré	Triphasé avec neutre (4 fils)		
Système électrique géré	Triphasé sans neutre (3 fils)		
	Système wild leg (delta triphasé à quatre fils)		
Svotème électrique géré MID	Triphasé avec neutre (4 fils)		
Système électrique géré MID	Triphasé sans neutre (3 fils)		

Entrées de tension - DIM				
Connexion de tension	Directe			
Tension nominale L-N	120 à 230			
Tension nominale L-L	208 à 400 V			
Tolérance de tension	De 0,8 à 1,15 Un			
Surcharge	Continu : 1,5 Un max			
0,5 Ω	Voir "Alimentation"			
Fréquence	50 Hz			
Entrées de tension Modèles non MID				
Connexion de tension	Directe			
Tension nominale L-N (de Un min à Un max)	120 à 240 V			
Tension nominale L-N (de Un min. à Un max.)	208 à 415 V			
Tolérance de tension	De 0,8 à 1,15 Un			
Surcharge	Continu : 1,5 Un max			
0,5 Ω	Voir "Alimentation"			
Fréquence	De 45 à 65 kHz			

Remarque : pour les versions MID, la plage de tension est limitée à 3x120 (208)...3x230 (400) V, la fréquence à 50 Hz.

Remarque : il est possible d'installer l'EM530 même dans un système wild leg (trois phases, quatre fils delta), où l'une des tensions phase-neutre est supérieure aux deux autres.

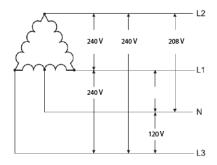


Fig. 4 Système biphasé avec neutre (3 fils)

Entrées de courant			
Connexion de courant	Directe		
Courant de base (lb)	5 A		
Courant minimal (Imin)	0.25 A		
Courant maximal (Imax)	65 A		
Courant de démarrage (Ist)	20 mA		
Surcharge	Pour 10 ms : 30 Imax (1950 A)		
0,5 Ω	< 3.4 VA		
Facteur de crête	Facteur de crête : 4 (crête Imax 92 A)		

Alimentation

Туре	Auto-alimentation
Consommation	< 1,3 W/2,6 VA
Fréquence	50/60 Hz

Mesures

Méthode	Mesures TRMS de formes d'ondes déformées

Mesures disponibles

Énergie active	Unité	System	Phase
Importée (+) Total	kWh+	•	•
Importée (+) partielle	kWh+	•	-
Exportée (-) Total	kWh-	•	-
Exportée (-) partielle	kWh-	•	-
Importée (+) Total par tarif (t1, t2)	kWh+	•	-

Énergie réactive	Unité	System	Phase
Importée (+) Total	kvarh+	•	-
Importée (+) partielle	kvarh+	•	-
Exportée (-) Total	kvarh-	•	-
Exportée (-) partielle	kvarh-	•	-

Énergie apparente	Unité	System	Phase
Total	kVAh	•	-
Partial	kVAh	•	-

Compte-heures	Unité	System	Phase
Total (kWh+)	hh:mm	•	-
Partielle (kWh+)	hh:mm	•	-
Total (kWh-)	hh:mm -	•	-
Partielle (kWh-)	hh:mm -	•	-
Total ON time	hh:mm	•	-

Variable électrique	Unité	System	Phase
Tension L-N	V	•	•
Tension L-L	V	•	•
Courant	А	•	•
DMD	А	-	•
DMD MAX	А	-	•
Courant neutre	A	•	-
Puissance active	W	•	•
DMD	W	•	-
DMD MAX	W	•	-
Puissance apparente	VA	•	•
DMD	VA	•	-
DMD MAX	VA	•	-
Puissance réactive	Var	•	•
Facteur de puissance	PF	•	•
Fréquence	Hz	•	-
THD Courant*	THD A %	-	•
THD Tension L-N*	THD L-N %	-	•
THD Tension L-L*	THD L-L %	-	•

^{*} Jusqu'à la 15^e harmonique

Remarque : les variables disponibles dépendent du type de système paramétré.

Modèles PFA, PFB et PFC: l'énergie active totale importée (kWh TOT) est le seul compteur MID certifié. L'énergie apparente, l'énergie réactive et l'énergie active exportée ne sont pas certifiées MID. Les compteurs partiels ne sont pas certifiés MID.

Modèles PFD et PFE: l'énergie active totale importée (kWh+ TOT) et l'énergie active totale exportée (kWh- TOT) sont les seuls compteurs certifiés MID. L'énergie apparente et l'énergie réactive ne sont pas certifiées MID. Les compteurs partiels ne sont pas certifiés MID.

toutes les variables calculées par le compteur font référence au courant primaire du transformateur de courant.

Comptage d'énergie

La mesure de l'énergie dépend du type de mesure que vous avez choisi (sélectionnable dans les modèles non MID, selon le modèle pour les éléments certifiés MID).

Mesure A (Easy connection)

Modèles: MID PFA

Fonction de branchement facile : quelle que soit la direction du courant, la puissance a toujours un signe plus et contribue à augmenter le compteur d'énergie positive. Le compteur d'énergie négative n'est pas disponible.

Mesure B (Bidirectionnel)

Modèles: MID PFB et PFD

Pour chaque intervalle de temps de mesure, les énergies des différentes phases avec un signe plus sont additionnées pour augmenter le compteur d'énergie positive (kWh+), tandis que les autres augmentent le compteur d'énergie négative (kWh-).

Exemple:

P L1= +2 kW, P L2= +2 kW, P L3= -3 kW Temps d'intégration = 1 heure kWh+ = (2+2) x1 h = 4 kWhkWh- = 3 x 1 h = 3 kWh

Mesure C (Net bidirectionnel)

Modèles: MID PFC et PFE

Pour chaque temps d'intervalle de mesure, les énergies de chaque phase avec le signe + sont additionnées ; selon le signe du résultat, le total consommé (kWh+) ou produit (kWh-) est augmenté.

Exemple:

PL1= +2 kW, PL2= +2 kW, PL3= -3 kW Temps d'intégration = 1 heure kWh+=(+2+2-3)x1h=(+1)x1h=1 kWh kWh- =0 kWh

Précision des mesures

Courant	
De 2 A à 65 A	± 0.5% rdg
De 0,5 A à 2 A	± 1% rdg

Tension phase-phase	
De Un min -20 % à Un max +15 %	± 0.5% rdg

Tension phase-neutre	
De Un min -20 % à Un max +15 %	± 0.5% rdg

Puissance active et apparente	
De 1,0 A à 65,0 A (PF=0,5L - 1 - 0,8C)	± 1% rdg
De 0,5 A à 1,0 A (PF=1)	± 1.5% rdg

Puissance réactive	
De 1,0 A à 2,0 A (sinφ- φ=0,5L - 0,5C)	± 2% rdg
De 0,5 A à 1,0 A (sinφ=1)	
De 2,0 A à 65,0 A (sinφ- φ=0,5L - 0,5C)	± 2.5% rdg
De 1,0 A à 65,0 A (PF=1)	
Énergie active	Classe 1 EN62053-21, Classe B EN50470-3 (MID)
Énergie réactive	Classe 2 (EN62053-23)

Fréquence	
De 45 à 65 kHz	± 0.1% rdg

Résolution de mesure

Variable	Résolution sur l'afficheur	Résolution par communication en série
Énergie	0.001 kWh/kvarh	n/kVAh
Énergie monophasée	0,01 kWh	0.001 kWh
Puissance	0.01 kW/kvar/kVA	0.1 W/var/VA
Courant	0,01 A	0.001 A
Tension	0.1 V	
Fréquence	0.01 Hz	0.001 Hz
THD	0.01 %	
Facteur de puissance	0.01 0.001	

Affichage

Туре	Segments
Temps de rafraî- chissement	500 ms
Description	ACL rétroéclairé
	Instantané : 5+1 car. ou 5+2 car.
Indication variables	Facteur de puissance : 1+2 car.
	Energie : 8+3 car.

DEL

Devant	Rouge. Poids de l'impulsion : proportionnel à la consommation d'énergie : 0,001 kWh par
	impulsion

Entrées/Sorties logiques

Entrées numériques

Type de connexion	Bornes à vis
Nombre de sorties	1
Туре	Contact libre
	État à distance
Eunotion	Gestion tarifaire
Function	Départ/pause du compteur partiel
	Remise à zéro partielle du compteur
	Tension de contact ouvert : 5 V cc +/- 5 %
	Tension du contact fermé : 5 mA max
Fonctionnalités	Impédance d'entrée : 11,6 kΩ
ronctionnantes	Résistance de contact ouvert : ≥ 25 kΩ
	Résistance de contact fermé : ≤ 840 Ω
	Tension maximale applicable sans dommage : 30 V ca
Rapport de trans- formateur courant	Fonction d'entrée
Via clavier ou UCS	Via clavier ou logiciel UCS

Remarque : type S0, classe B conformément à la norme EN62053-31

Sorties numériques

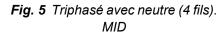
Sortie numérique

Type de connexion	Bornes à vis	
Nombre maximum de sorties	1	
Туре	Opto-mosfet	
Function	Sortie à impulsions ou sortie d'alarme	
F	V _{ON} 2,5 V ca/cc, max 100 mA	
Fonctionnalités	V _{OFF} 42 V ca/cc	
	Fonction de sortie (impulsion / alarme)	
Rapport de trans-	Poids de l'impulsion (de 0,001 à 10 kWh par impulsion)	
formateur courant	Durée de l'impulsion (30 ou 100 ms)	
	Sortie état normal (NO ou NC)	
Via clavier ou UCS	Via clavier	

Ports de communication

Modbus RTU

Protocoles	Modbus RTU
Dispositifs sur le même bus	Max 247 (1/8 charge d'unité)
Type de com- munication	Multipoint, bidirectionnelle
Type de connexion	2 fils
	Adresse Modbus (de 1 à 247)
Rapport de trans-	Vitesse de transmission (9,6/19,2/38,4/57,6/115.2 kbps)
formateur courant	Parité (Aucun/ Pair)
	Stop bit (1 et 2)
Temps de rafraî- chissement	≤ 100 ms
Via clavier ou UCS	Via clavier ou logiciel UCS


M-Bus

Protocoles	M-Bus selon EN13757-3:2013
Dispositifs sur le même bus	Max. 250 (1 charge d'unité)
Type de connexion	2 fils
Rapport de trans- formateur courant	Adresse primaire (1 à 250) Débit Baud (0,3/ 2,4 / 9,6 kbps)
Temps de rafraî- chissement	≤ 100 ms
Via clavier ou UCS	Via clavier

Schémas de câblage

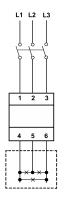


Fig. 6 Triphasé sans neutre (3 fils). MID

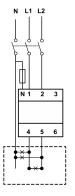


Fig. 7 Biphasé (3 fils)

Entrées/Sorties logiques

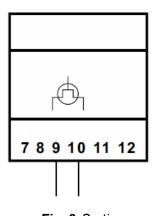


Fig. 8 Sortie

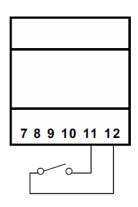


Fig. 9 Entrée

Fig. 12 Dernier appareil sur RS485

Communication

Fig. 10 M-Bus

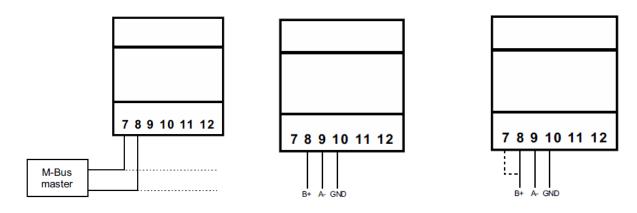


Fig. 11 Port RS485

Références

References								
	Code de commande							
	EM540 DIN AV2 3X							
	Température jusqu'à +55 °C/ +131 °F avec possibilité de sélectionner différents ports de communication Saisir le code relatif à l'option correspondante à la place de							
	Code	Options	Description					
	EM540 DIN AV2 3X	-	-					
		01	Sortie numérique					
		S1	RS485 Modbus RTU					
		M1	M-Bus					

Modèles non MID

Modèles MID (3P, 3P.n)

PEM540 DIN AV5 3X S1 ☐ 70

X

PFA

PFB

PFC

PFD

PFE

Température jusqu'à +70 °C/ +138 °F avec port RS485 Modbus RTU

Saisir le code relatif à l'option correspondante à la place de

Code	Options	Description
EM540 DIN AV5 3X		-
S1		RS485 Modbus RTU
	PFA	Modèles MID (3P, 3P.n)
_	PFB	Modèles MID (3P, 3P.n)
	PFC	Modèles MID (3P, 3P.n)
_	PFD	Modèles MID (3P, 3P.n)
	PFE	Modèles MID (3P, 3P.n)
70		Température de fonctionnement maximale

- PFA : Branchement facile, le totalisateur d'énergie totale (kWh+) est certifié selon MID ;
- PFB : seul le totalisateur positif total (kWh+) est certifié selon MID. Le totalisateur d'énergie négative est disponible mais pas certifié selon MID.

Note: pour chaque intervalle de temps de mesure, les énergies des différentes phases avec un signe plus sont additionnées pour augmenter le compteur d'énergie positive (kWh+), tandis que les autres augmentent le compteur d'énergie négative (kWh-).

 PFC : seul le totalisateur positif (kWh+) est certifié MID. Le totalisateur d'énergie négative est disponible mais n'est pas certifié MID.

Remarque : pour chaque intervalle de temps de mesure, les énergies des différentes phases sont additionnées ; selon le signe du résultat, le système augmente le totalisateur positif (kWh+) ou le négatif (kWh-).

 PFD: Bidirectionnelle, l'énergie active totale importée (kWh+ TOT) et l'énergie active totale exportée (kWh-TOT) sont les seuls compteurs certifiés MID.

Note: pour chaque intervalle de temps de mesure, les énergies des différentes phases avec un signe plus sont additionnées pour augmenter le compteur d'énergie positive (kWh+), tandis que les autres augmentent le compteur d'énergie négative (kWh-).

 PFE: Bidirectionnelle, l'énergie active totale importée (kWh+ TOT) et l'énergie active totale exportée (kWh-TOT) sont les seuls compteurs certifiés MID.

Remarque : pour chaque intervalle de temps de mesure, les énergies des différentes phases sont additionnées ; selon le signe du résultat, le système augmente le totalisateur positif (kWh+) ou le négatif (kWh-).

COPYRIGHT ©2023

Sous réserve de modifications. Télécharger le PDF : www.gavazziautomation.com