EM580

CARLO GAVAZZI

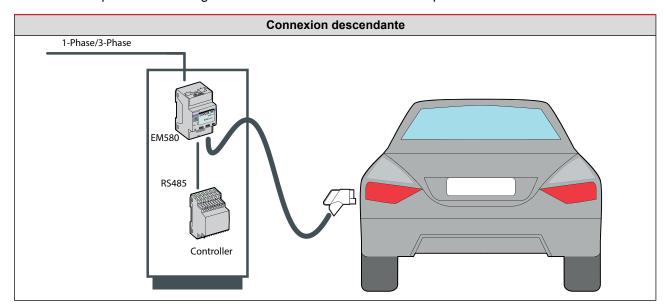
Analyseur d'énergie pour systèmes bi et triphasés

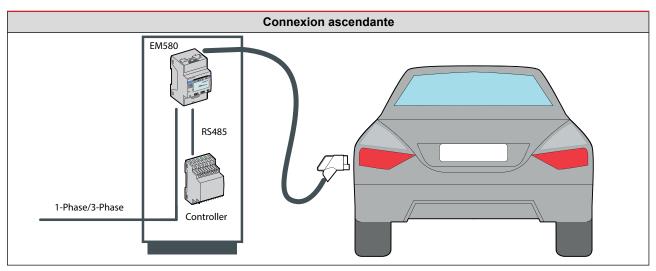
Description

EM580 est un compteur d'énergie à connexion directe, pour les systèmes monophasés et triphasés jusqu'à 400 V L-L et un courant jusqu'à 65 A. Il est équipé d'un port de communication Modbus RS485 et d'un écran LCD matriciel 128x96.

Avantages

- Interface conviviale. L'écran LCD à matrice 128x96 avec rétro-éclairage offre une excellente visibilité et la lisibilité des informations. Dotée de trois touches mécaniques, l'interface utilisateur rend la configuration des pages et la navigation particulièrement intuitives. En outre, le filtre de page permet de masquer les informations inutiles.
- Transmission des données sécurisée et signée. EM580 est conçu pour être sûr et sécurisé : des cachebornes scellables empêchent toute intervention extérieure et toute falsification, tandis que l'authenticité des données est assurée par la signature numérique et le fichier OCMF.
- Configuration rapide. L'assistant de configuration qui s'exécute lors du premier démarrage du système vous permet de mettre en service l'appareil sans erreur, et ce en quelques secondes. Le logiciel de configuration de l'UCS peut être téléchargé gratuitement.
- Métrologie fiscale. EM580 est la solution parfaite pour la métrologie fiscale; le produit est conforme aux principales normes européennes en matière de la métrologie fiscale pour les chargeurs de VE, en particulier la loi allemande sur l'étalonnage et la réglementation MID.
- Installation flexible II peut être installé dans des systèmes monophasés et triphasés avec neutre: grâce à son boîtier compact et au dessin intelligent, il peut être connecté par le bas et par le haut, et il est donc facile à installer dans le chargeur de VES et permet une intégration efficace avec le contrôleur.
- Moniteur avantageux et informatif. EM580 permet une personnalisation des nombreux contenus affichés, y compris la visualisation du tarif, ce qui garantit la conformité aux exigences A.F.I.R (Alternative Fuels Infrastructure Regulation). Lorsque EM580 est installé, tout autre affichage est superflu.


Applications

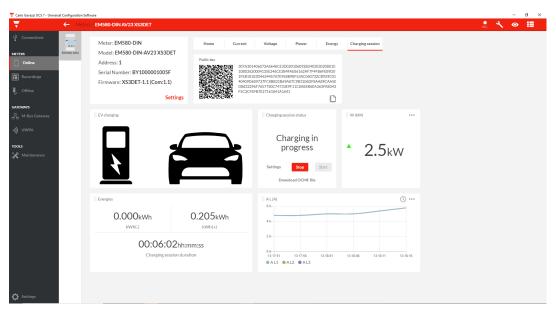

EM580 peut entre implémenté dans les chargeurs de VES pour les installations dans les systèmes. Grâce à l'intégration facile avec le contrôleur via Modbus RTU, à sa large plage de température jusqu'à 70 °C / 185 °F et à sa certification MID bidirectionnelle, c'est la solution optimale pour fournir des mesures fiables et précises pour la facturation fiscale dans les chargeurs de VE. EM580 est également conforme à la législation d'étalonnage allemande (Eichrecht) et aux exigences A.F.I.R (Alternative Fuels Infrastructure Regulation).

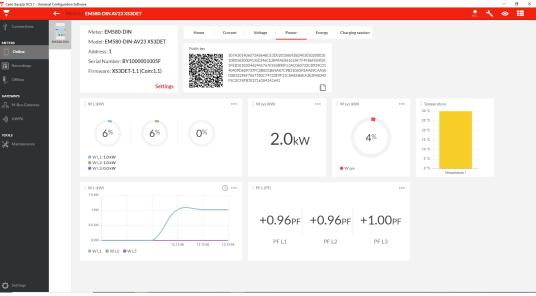
Architecture

EM580 est conçu pour répondre aux besoins d'installation dictés par la configuration interne du chargeur de VE ; les entrées de tension et de courant sont placées sur le dessus et le dessous du produit, ce qui permet différentes adaptations. Les images ci-dessous affichent deux solutions possibles:

Fonctions principales

- · Mesurer l'énergie active, réactive et apparente
- · Mesurer les principales variables électriques
- Transmettre des données à d'autres systèmes via Modbus RTU ou M-Bus
- · Visualiser les variables mesurées sur l'afficheur
- Gestion des sessions de recharge et mise à jour automatique de l'affichage
- · Contenu de l'afficheur totalement personnalisable
- Affichage du tarif selon les exigences A.F.I.R (Alternative Fuels Infrastructure Regulation Réglementation des infrastructures des carburants de substitution)
- Compensation de l'affaiblissement du câble
- Transmission de données signées à l'aide du fichier OCMF (selon la norme S.A.F.E et du logiciel Transparency)


Principales caractéristiques


- Variables en temps réel (V, A, W)
- Résolution 0,001 kWh via la communication Modbus
- La valeur de la fréquence est disponible via Modbus, avec une résolution de 0,001 Hz
- Interface utilisateur simplifiée avec 3 boutons mécaniques
- Modbus RTU RS485 (mise à jour des données toutes les 100 ms)
- Échantillonnage continu de chaque tension et courant
- Écran LCD matrice 128x96 avec rétro-éclairage
- Fonctionne jusqu'à une température de 70 °C / 185 °F
- Assistant d'installation rapide
- · Certifiés MID et Eichrecht

Logiciel UCS

- Téléchargement gratuit du site Internet de Carlo Gavazzi
- Configuration par RS485 depuis un PC ou par UWP3.0/UWP4.0 via un réseau local ou le web (fonction UWP Secure Bridge)
- Les configurations peuvent être sauvegardées hors ligne pour la programmation en série avec une seule commande
- · Affichage en temps réel des données pour les tests et les diagnostics
- Notification des éventuelles erreurs de câblage et affichage des étapes de correction, réaffectation de l'association correcte des phases ou du sens des courants via un contrôle logiciel.

Structure

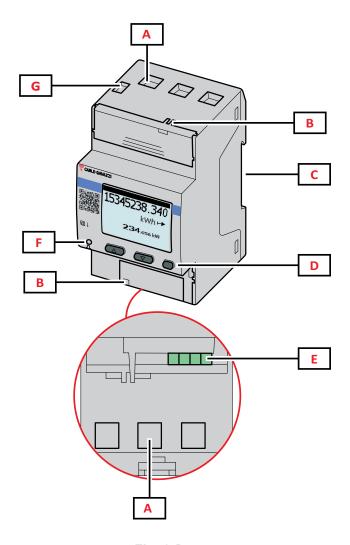
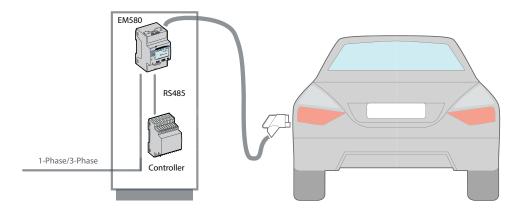
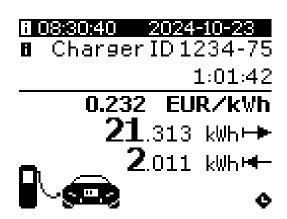



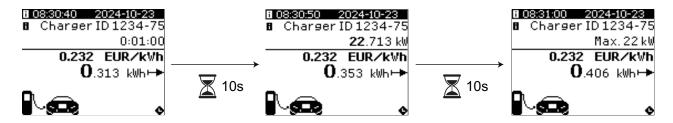
Fig. 1 Devant

Zone	Description		
Α	Entrées de tension / Entrées de courant		
В	Boîtiers d'étanchéité MID		
С	Support de montage sur rail DIN		
D	Boutons de navigation et de configuration		
E	port RS485 Modbus RTU		
F	DEL		
G	Courant neutre		

EM580 et session de recharge


EM580 assure la connexion avec le contrôleur via une communication Modbus. Toutes les informations pertinentes sur la session de recharge sont affichées à l'écran et enregistrées dans le fichier OCMF. EM580 est donc la solution idéale pour l'installation dans des chargeurs de VE. Le produit est conforme aux normes MID, Eichrecht et A.F.I.R. (pour plus d'informations sur la session de recharge, consulter le manuel de l'utilisateur).

Gestion des sessions de recharge


EM580 est doté d'une fonction de gestion de la session de recharge qui organise le processus de recharge en trois phases distinctes : le début de la session de recharge, le mode de recharge et la fin du mode de recharge. Pendant ce processus, les utilisateurs voient s'afficher :

- la date et l'heure précises grâce à la fonction de synchronisation de l'horloge implémentée dans le produit ;
- La mesure précise de l'énergie importée et/ou exportée.
- Des informations générales sur la transaction et le chargeur de VE, y compris le début et la fin du processus, l'identifiant de la transaction et celui du chargeur de VE.
- Des données activées et désactivées par l'utilisateur, comme la puissance du système, la durée réelle de la session de recharge et des informations sur le tarif.
- Un contenu totalement personnalisable, permettant aux utilisateurs d'écrire des chaînes de 250 caractères tout au plus.

Fig. 2 un exemple d'écran pendant l'état mode de recharge, avec une longue chaîne spécifiant l'identifiant du chargeur, le tarif, la durée d'activation, les données sur la date et l'heure en temps réel ainsi que l'énergie importée et exportée.

Fig. 3 La session de recharge en cours, avec le champ TT, l'alimentation du système, les chaînes personnalisées 1 et 2 actives. Le déclencheur de temps est réglé sur 10 secondes.

Fichier OCMF

Le Open Charge Metering Format est un format de données indépendant et généralement utilisable pour enregistrer les relevés de compteurs des stations de recharge qui sont pertinents en vertu de la loi sur l'étalonnage. En outre, il permet la mise en œuvre de l'évaluation et de la vérification de la signature du format par le logiciel Transparency. Le fichier, écrit au format JSON, est compilé et sauvegardé sur le cloud ou le serveur local, une fois la session de recharge terminée.

Lectures complémentaires

Informations	Où le trouver		
Format OCMF	https://github.com/SAFE-eV/OCMF-Open-Charge-Metering-Format/blob/master/OCMF-en.md		
Logiciel Transparency	https://safe-ev.org/en/transparency-software/e-mobilists/		

Fonctionnalités

Généralités

	Boîtier : PBT		
Matériau	Couvercle: polycarbonate		
	Classe d'inflammabilité UL: UL-94 V0		
Degré de Pretection	Façade : IP40		
Degré de Protection	Bornes: IP20		
Classe de protection	Classe II		
	Entrées de mesure (Phase 1, 3): 2,5 à 16 mm ² / 5 à 13 AWG, 2,5 Nm / 22,12 Ibin max		
Bornes	Neutre: 0,06 à 2,5 mm ² / 13 à 29 AWG, 0,5 Nm / 4,43 lbin max		
	Communication; 0,08 à 0,82 mm ² / 18 à 28 AWG, 0,2 Nm / 1,77 Ibin max		
Catégorie de sur- tension	Cat. III		
Tension nominale de choc	4 kV		
Catégorie d'utilisation	UC2		
Degré de pollution	2		
Montage	Rail DIN		
Poids	370 g / 0,82 lb (emballage inclus)		
Dimensions	3 modules DIN		

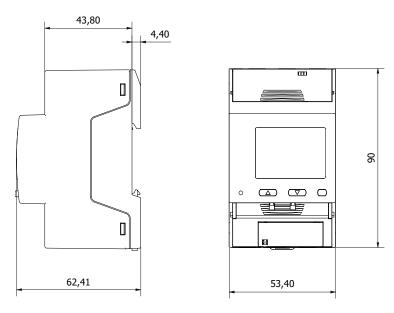


Fig. 4

Spécifications environnementales

Température de service	De -25 à +70 °C / de -13 à +158 °F	
Température de sto- ckage	De -40 à +85 °C / de -40 à 185 °F	
Condition envi- ronnementale élec- tromécanique	E2	
Condition d'environnement méca- nique	M2	

Remarque: H.R. < 90 % sans condensation à 40 °C / 104 °F.

Isolation d'entrée et de sortie

Туре	Entrées de mesure	Port série RS485	
Entrées de mesure	-	Double/Renforcée	
Port série RS485 Double/Renforcée		-	

Conformément à EN 61010-1. Catégorie surtension III. Degré de pollution 2.

Compatibilité et conformité

Directives	2014/32/EU (MID) 2014/35/UE (LVD - Basse Tension) 2014/30/UE (EMC - Compatibilité électromagnétique)
	2011/65/UE, 2015/863/UE (Substances dangereuses dans les équipements électriques et électroniques)
	CEM - Compatibilité électromagnétique: EN IEC 61000-6-3, EN IEC 61000-6-2, EN IEC 62052-11
Norman	Sécurité électrique : EN IEC 61010-1, EN IEC 62052-31
Normes	Métrologie : EN 50470-3 (Classe B), REA 6A+PTB 50.7 (versions Eichrecht), EN IEC 62053-21 (Classe 1)
	Sécurité SW: WELMEC 7.2
Homologations	CE

Spécifications électriques

Système électrique	
Système électrique	Triphasé avec neutre (4 fils)
géré	Monophasé avec neutre (2 fils).

Entrées de tension		
Connexion de tension	Directe	
Tension nominale L-N	De 120 à 230 V	
Tension nominale L-L	De 208 à 400 V	
Tolérance de tension	De 0,8 à 1,15 Un	
Surcharge	Continu : 1,5 Un max	
Fréquence	50 Hz	

Entrées de courant		
Connexion de courant	Directe	
Courant de base (I _b)	5 A	
Courant minimal (I _{min})	0,25 A	
Courant maximal (I _{max})	65 A	
Courant de démarrage (I _{st})	20 mA	
Surcharge	Pour 10 ms : 30 Imax (1950 A)	
Impédance d'entrée	< 1,13 VA	
Facteur de crête	4 (Pic Imax 92A)	

Alimentation

Туре	Auto-alimentation
Consommation	< 1,5 W / 2,8 VA
Fréquence	50 Hz

Mesures

Méthode	Mesures TRMS de formes d'ondes déformées	
Taux de mis à jour de l'énergie	100 ms	

Mesures disponibles

Énergie active	Unité	System	Phase
Importée (+) Total	kWh+	•	-
Exportée (-) Total	kWh-	•	-

Énergie réactive	Unité	System	Phase
Importée (+) Total	kvarh+	•	•
Exportée (-) Total	kvarh-	•	•

Énergie apparente	Unité	System	Phase
Total	kVAh	•	•

Variable électrique	Unité	System	Phase
Tension L-N	V	•	•
Tension L-L	V	•	•
Courant	A	-	•
Puissance active	W	•	•
Puissance apparente	VA	•	•
Puissance réactive	Var	•	•
Facteur de puissance	PF	•	•
Fréquence	Hz	•	-

Mesures des sessions de recharge

Énergie active	Unité
Importée (+) Total	kWh+
Exportée (-) Total	kWh-
Durée	hh:mm:ss

Remarque : les variables disponibles dépendent du type de système paramétré.

Modèles DEA : l'énergie active totale importée (kWh TOT) est le seul compteur MID certifié. L'énergie apparente, l'énergie réactive et l'énergie active exportée ne sont pas certifiées MID.

Modèles DEB et DET: l'énergie active totale importée (kWh+ TOT) et l'énergie active totale exportée (kWh-TOT) sont les seuls compteurs certifiés MID. L'énergie apparente et l'énergie réactive ne sont pas certifiées MID.

Le calcul de l'énergie n'est pas affecté par le système sélectionné.

Comptage d'énergie

Le comptage de l'énergie dépend du type de mesure (selon le modèle choisi)

Mesure DEA

Fonction de branchement facile : quelle que soit la direction du courant, la puissance a toujours un signe plus et contribue à augmenter le compteur d'énergie positive. Le compteur d'énergie négative n'est pas disponible.

Mesure DEB/DET

Pour chaque intervalle de temps de mesure, les énergies des différentes phases avec un signe plus sont additionnées pour augmenter le compteur d'énergie positive (kWh+), tandis que les autres augmentent le compteur d'énergie négative (kWh-).

Exemple:

P L1= +2 kW, P L2= +2 kW, P L3= -3 kW Temps d'intégration = 1 heure $kWh+ = (2+2) \times 1 h = 4 kWh$ $kWh- = 3 \times 1 h = 3 kWh$

Précision des mesures

Courant	
De I _{tr} à I _{max} A	± 0,5% rdg
De I _{min} à I _{tr} A	± 1% rdg

Tension phase-phase	
De Un min -20 % à Un max +15 %	± 0,5% rdg

Tension phase-neutre	
De Un min -20 % à Un max +15 %	± 0,5% rdg

Puissance active et apparente	
De I _{tr} A à I _{max} A (PF=0,5L - 1 - 0,8C)	± 1% rdg
De I _{min} A à I _{tr} A (FP=1)	± 1,5% rdg

Puissance réactive		
De 1,0 A à 2,0 A (sinφ- φ=0,5L - 0,5C) De 0,5 A à 1,0 A (sinφ=1)	± 2% rdg	
De 2,0 A à 65,0 A (sinφ- φ=0,5L - 0,5C) De 1,0 A à 65,0 A (PF=1)	± 2,5% rdg	
Énergie active	Classe B EN50470-3 (MID)	
Énergie réactive	Classe 1 (EN62053-23)	

Fréquence	
50 Hz	± 0,1% rdg

Affichage

Туре	Afficheur LCD de matrice rétroéclairé
Temps de rafraî- chissement	500 ms
Description	LCD rétro-éclairé 128x96 pixels
Indication variables	Instantané : 5+1 car. ou 5+3 car. Energie : 7+3 car.

Description des icônes de l'afficheur

Le tableau rapporte les icônes qui peuvent apparaître sur l'écran et explique leur signification.

Icône	Description
A +	Dépassement de la plage de courant, la valeur mesurée reste affichée
VŤ	Dépassement de la tension, la valeur mesurée reste affichée
_	Communication : la commande de lecture ou d'écriture est destinée à EM580
Ф	Horloge synchronisée
	Défaillance interne
*	Erreur ou déconnexion du module de communication

Résolution de mesure

Variable	Résolution sur l'afficheur	Résolution par communication en série	
Énergie	0,001 kWh/kvarh/kVAh		
Énergie monophasée	- 0,001 kWh		
Puissance	0,001 kW/kvar/kVA	0,1 W/var/VA	
Courant	0,001 A		
Tension	0,1 V		
Fréquence	0,001 Hz		
Facteur de puissance	0,01 0,001		

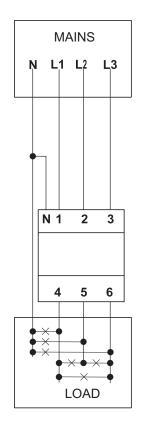
DEL

Fonction	Rouge. Poids de l'impulsion: proportionnel à la consommation d'énergie	
Constante	1000 impulsions/kWh	

Symboles

Le tableau décrit tous les symboles que vous pouvez retrouver dans les documents et sur le produit.

Symbole	Description
A	Tension dangereuse
	Danger, pièces sous tension
A	Avertissement
•	Fournit des informations essentielles sur l'achèvement de la tâche, qui ne doivent pas être négligées
i	Symbole manuel
0	Panneau de sécurité
	Le produit ne doit pas être jeté avec les ordures ménagères
	Monophasé
	Trois phases
	Double isolation


Ports de communication

Modbus RTU

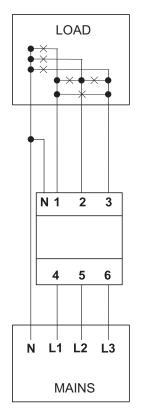
Protocoles	Modbus RTU	
Dispositifs sur le même bus	Max 247 (1/8 charge d'unité)	
Type de com- munication	Multipoint, bidirectionnelle	
Type de connexion	2 fils	
Rapport de trans- formateur courant	Adresse Modbus (de 1 à 247) Vitesse de transmission (9.6/19.2/38.4/57.6/115.2 kbps) Parité (Aucun/ Pair)	
Temps de rafraî- chissement	≤ 100 ms	
Via clavier ou UCS	Via clavier ou logiciel UCS	

Schémas de câblage

N L1 L2 L3

N 1 2 3

4 5 6


LOAD

MAINS

Fig. 5 Modèles DET: Triphasé avec neutre (4 fils).

Fig. 6 Modèles DET: monophasé avec neutre (4 fils).

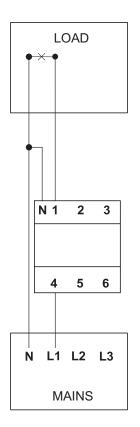


Fig. 7 Modèles DEA et DEB: Triphasé avec neutre (4 fils)

Fig. 8 Modèles DEA et DEB: monophaséavec neutre (2 fils).

Communication

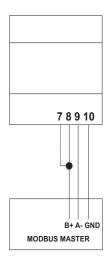


Fig. 9 Dernier dispositif sur RS485

Références

Code de commande	
₹ EM580 DIN AV2 3X	
Saisir le code relatif à l'option correspondante à la place de	

Code	Options	Description	
EM580	-	Modèle	
DIN	-	Montage Rail DIN	
AV2	-	400 V L-L, 5(65) A	
3	-	Système triphasé et monophasé	
X	-	Auto-alimentation	
	\$2	Modbus RTU RS485, signature à 256 bits	
	S3	Modbus RTU RS485, signature à 384 bits	
	DEA	MID + Eichrecht	
	DEB	MID + Eichrecht, bidirectionnel, connexion ascendante	
	DET	MID + Eichrecht, bidirectionnel, connexion descendante	

- DEA: Branchement facile, le totalisateur d'énergie totale (kWh+) est certifié selon MID;
- DEB et DET: Bidirectionnelle, l'énergie active totale importée (kWh+ TOT) et l'énergie active totale exportée (kWh- TOT) sont les seuls compteurs certifiés MID.

Note : pour chaque intervalle de temps de mesure, les énergies des différentes phases avec un signe plus sont additionnées pour augmenter le compteur d'énergie positive (kWh+), tandis que les autres augmentent le compteur d'énergie négative (kWh-).

Composants compatibles CARLO GAVAZZI

Objectif	Nom composant/clé de code	Notes
Configurer les compteurs via une application sur le bureau	Logiciel UCS	Téléchargeable gratuitement sur : www.gavazziautomation.com
Agréger, stocker et transmettre des données à d'autres systèmes	UWP 3.0, UWP 4.0	Voir fiches techniques pertinentes: www.gavazziautomation.com

COPYRIGHT ©2025

Sous réserve de modifications. Télécharger le PDF : www.gavazziautomation.com