

### Générateur maître d'adresses Dupline®





### **Avantages**

- Il génère le signal de la porteuse du réseau Dupline®
- GS33900000800A doit être utilisé avec GS33910060800. on peut connecter en réseau jusqu'à 7 générateurs GS33900000800A à une passerelle GS33910060800.
- Il supporte les modes E/S Numérique, E/S Analink, E/S Mux BCD, E/S 8 bits et Dupline® safe en
- Sortie courant fort Dupline®(450mA)
- · Boitier à 2 modules DIN



### Description

Le générateur maitre d'adresses GS33900000800A fournit le circuit de sortie du générateur d'adresses pour un réseau Dupline®.

On peut connecter jusqu'à 7 générateurs d'adresses à une passerelle Profinet GS33910060800.

Les DIP-switch en face avant servent à sélectionner les adresses ID et à activer différents modes (vois descriptions suivantes).

Le GS33900000800A supporte les adresses standard Dupline®. Il opère en mode Analink, Mux Analogique BCD, Dupline® Safe et 8 bits ainsi qu'en mode sortie numérique étendue pour le réseau Profinet.



### **Applications**

Générateur maître d'adresses pour applications standard Dupline®, Dupline® Safe et Profinet



### Fonctions principales

- Module capable de générer 128 adresses Dupline® et d'alimenter les modules bus
- · Mode de sortie numérique étendue pour réseau Profinet



# Caractéristiques

### Alimentation

| Alimentation 24 VCC ±20% Maxi. Alimentation du système III (IEC 60664) |       |
|------------------------------------------------------------------------|-------|
| Consommation (Puissance)                                               | 6,5 W |
| Protection à l'inversion de polarité                                   | Oui   |
| Délai de mise sous tension                                             | 4 s   |
| Temps de mise hors tension                                             | 1 s   |

### Caractéristiques Dupline®

| Tension nominale Dupline®   | 8,2 V         |
|-----------------------------|---------------|
| Tension maximal Dupline®    | 10 V          |
| Mini Tension crête Dupline® | 4,5 V         |
| Courant maximal Dupline®    | 450 mA à 25°C |
|                             | 350 mA à 40°C |
| Borne                       | D+ et D-      |

Nota : Le bus Dupline® est localisé sur le connecteur supérieur et également, sur le connecteur bus local, côté droit du module.



### LED d'indication d'état

| LED verte | État de l'alimentation | ALLUMÉE : alimentation ACTIVE<br>ÉTEINTE : Alimentation INACTIVE                                                                                                  |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED jaune | LED Dupline®           | ALLUMÉE : réseau Dupline® opérationnel<br>ALLUMÉE : réseau Dupline® opérationnel<br>ÉTEINTE : réseau Dupline® hors service ou dé-<br>connecté.                    |
|           | LED BUS                | ÉTEINTE : pas de communication sur le bus GV<br>ALLUMÉE : communication opérationnelle sur<br>le bus GV<br>Clignotante : erreur de communication sur le bus<br>GV |



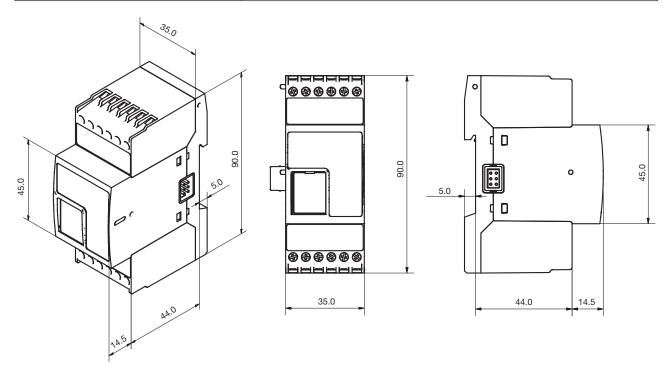
### **Environnement**

| Température de l'environnement | -20° +50°C (-4° +122°F)  | Fonctionnement          |
|--------------------------------|--------------------------|-------------------------|
|                                | -50° +85°C (-58° +185°F) | Stockage                |
| In die o de monte ette o       | Face avant               | IP50                    |
| Indice de protection           | Borne à vis              | IP20                    |
| Degré de pollution             | 2                        | IEC 60664-1, par. 4.6.2 |
| Catégorie d'installation       | III                      |                         |
| Humidité (pas de condensation) | 20 80% RH                |                         |

17/02/2021 GS33900000800A FRA






| Immunité | EN61000-6-2 |
|----------|-------------|
| Émission | EN61000-6-3 |

# Données mécaniques



### Boîtier

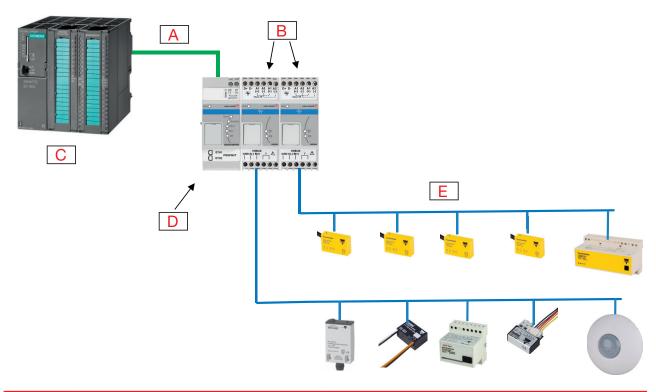
| Dimensions (h x l x p) | 90 x 35 x 58,5 mm |  |
|------------------------|-------------------|--|
| Matériau               | Noryl             |  |
| Couleur                | Gris clair        |  |
| Poids                  | 150 g             |  |





### Câblage




| Α | Alimentation pour autres modules | D | Ces deux bornes doivent être en court-circuit sur le dernier module du réseau. |
|---|----------------------------------|---|--------------------------------------------------------------------------------|
| В | Bus GV                           | E | DIP-switch                                                                     |
| С | Bus Dupline®                     |   |                                                                                |

### Connexion

| Borne            | 11-version à vis         |
|------------------|--------------------------|
| Section de câble | Max. 1,5 mm <sup>2</sup> |
| Force de serrage | 0.4 Nm / 0.8 Nm          |



## Exemple d'installation avec deux réseaux générateurs maîtres d'adresses



| Α | Profinet                                               | D | Passerelle Profinet (module Ethernet ) |
|---|--------------------------------------------------------|---|----------------------------------------|
| В | MCG1+2 (jusqu'à 7 connectés à une passerelle Profinet) | E | Dupline® & Dupline®Safe                |
| С | Automate Siemens S7                                    |   |                                        |



# Compatibilité et conformité



Notas UL:

Température ambiante maximale 40°C Utiliser obligatoirement une alimentation séparée (LPS) certifiée NEC class 2



### Mode de fonctionnement



### Mode de fonctionnement

Le générateur maitre d'adresses GS3390000800A fournit le circuit de sortie du générateur d'adresses pour un réseau Dupline<sup>®</sup>.

La connexion s'effectue soit côté plus (+) des connecteurs sous réserve que tous les périphériques soient localisés dans la même armoire, soit par bornes à vis en cas de localisation dans des armoires différentes. Le GS3390000800A fonctionne en générateur d'adresses standard mais permet en option d'exploiter différents modes : Analink, Mux BCD, Dupline® safe ainsi qu'un mode de sortie numérique étendue pour le réseau Profinet.

6 x DIP-switch: Les DIP-switch 1-3 définissent un numéro de périphérique (de 1 à 7). En d'autres termes, on peut connecter jusqu'à sept modules GS3390000800A à la passerelle Profinet GS33910060800. Les DIP-switch 4 et 5 gèrent les modes Monostable et Mux BCD, respectivement.

Le DIP-switch 6 gère le mode de sortie numérique étendue. Une fois activé, les sorties Analink M1 à P8 commutent en simples adresses de sortie numérique.

### Données d'entrée et de sortie Dupline®

Utiliser le fichier GSDML-V2.31-xxx.xml pour simplifier la configuration du Master Profinet. Ce fichier décrit au Master Profinet les données d'entrée/sortie supportées par la passerelle. La sélection de toutes les données d'E/S s'effectuant par modules, le fichier décrit chaque module avec sa fonction particulière.

Entrée numérique, sortie numérique, Analink, Mux BCD, entrée sécuritaire, etc. Il suffit de sélectionner les modules d'E/S à utiliser, ce qui simplifie grandement la configuration individuelle de la passerelle. L'utilisateur peut sélectionner dans n'importe quel ordre les modules pris en charge et les combiner à sa guise.

La passerelle passive du GS33910060800 correspond à 128 adresses d'entrée et 96 adresses de sortie. De plus, 32 adresses Analink, 32 adresses d'entrée Mux et 32 adresses de sortie analogique Mux. Le GS33910060800 supportent la lecture des signaux Dupline®–safe. Pour utiliser le GS33900000800A et le Dupline® Safe, il faut sélectionner le canal de synchronisation «A5» sur le GS38300143230. Cette prise en charge requiert 2 bits d'information par signal sécuritaire. Les informations doivent donc être lues comme suit :

| 00  | Sécurité validée          | Fermé              |
|-----|---------------------------|--------------------|
| 10  | Sécurité non vali-<br>dée | Ouvert             |
| *11 | Non sécuritaire           | Condition invalide |

<sup>\* 11 -</sup> dans cette situation, le système est en mode non sécuritaire (unsafe) : perte du signal de synchronisation, déconnexion du signal réseau ou court-circuit, etc.

On peut connectre au maximum 61 dispositifs Dupline® Safe à un GS3390000800A.

Tous les modules sont constitués de 16 octets de données. Les tableaux suivants décrivent le contenu et leurs relations avec les données Dupline<sup>®</sup>.

17/02/2021 GS3390000800A FRA Carlo Gavazzi Controls S.p.A.



Octets 0.. 0Fh Module d'entrées analogiques, multiplexées

| Adresse d'octet | Groupes Dupline® | Adresse de multiplexage |
|-----------------|------------------|-------------------------|
| 0 - 1 (Hi,Lo)   | CD               | 0                       |
| 2 - 3           | CD               | 1                       |
| 4 - 5           | CD               | 2                       |
| 6 - 7           | -                | -                       |
| A - B           | -                | -                       |
| C - D           | CD               | 6                       |
| 1E - 1F         | CD               | A                       |

Les valeurs analogiques multiplexées sont représentées sur 16 bits signés : (soit sur 2 octets avec 0 [positif] ou 1 [négatif] sur le bit le plus à gauche)

Le bit de poids fort définit le signe (0:+, 1:-). Les 15 bits restant définissent la magnitude (0..32768).

Octet 0.. 0Fh Module de sorties analogiques, multiplexées sélectionnées

| Adresse d'octet | GroupesDupline® | Adresse de multiplexage |
|-----------------|-----------------|-------------------------|
| 0 - 1 (Hi,Lo)   | IJ KL           | 0                       |
| 2 - 3           | IJ KL           | 1                       |
| 4 - 5           | IJ KL           | 2                       |
| 6 - 7           | -               | -                       |
| A - B           | -               | -                       |
| C - D           | IJ KL           | 6                       |
| E-F             | IJ KL           | 7                       |

Les valeurs analogiques multiplexées sont représentées sur 16 bits signés : (soit sur 2 octets avec 0 [positif] ou 1 [négatif] sur le bit le plus à gauche)

Le bit de poids fort définit le signe (0:+, 1:-). Les 15 bits restant définissent la magnitude (0..32768).

Octet 0.. 0Fh Module d'entrées analogiques, Analink sélectionnées

| Adresse d'octet | Adresses Dupline® |
|-----------------|-------------------|
| 0               | M1                |
| 1               | M2                |
| 2               | M3                |
| -               | -                 |
| -               | -                 |
| 16              | 07                |
| 1F              | P8                |

Les valeurs analogiques AnaLink sont représentés sous la forme d'une valeur binaire sur 8 bits de 0 à 255.



### Octet 0.. 0Fh Module d'entrées numériques

| Adresse d'octet | Groupes Dupline® | Bit | Numéro d'adresse |
|-----------------|------------------|-----|------------------|
| 0               | Α                | 7   | A1               |
| 0               | Α                | 6   | A2               |
| 0               | Α                | 5   | A3               |
| 0               | -                | _   | -                |
| 0               | A                | 0   | A8               |
| 1               | В                | 7   | B1               |
| 2               | С                | 6   | C2               |
| -               | -                | -   | -                |
| E               | 0                | 1   | 07               |
| F               | Р                | 0   | P8               |

### Octet 0.. 0Fh Module de sortie numérique

| Adresse d'octet | Groupes Dupline® | Bit | Numéro d'adresse |
|-----------------|------------------|-----|------------------|
| 1               | В                | 7   | B1               |
| 1               | В                | 6   | B2               |
| 1               | В                | 5   | B3               |
| 1               | В                | -   | -                |
| 1               | В                | 0   | B8               |
| 2               | С                | 7   | C1               |
| 3               | D                | 6   | D2               |
| -               | -                |     |                  |
| А               | K                | 1   | K7               |
| В               | L                | 0   | L8               |

### Octet 0.. 0Fh Module d'entrée sécuritaire

| Adresse d'octet | Adresses Dupline® | Bits de sécurité |
|-----------------|-------------------|------------------|
| 00              | х                 | 7 - 6            |
|                 | X                 | 5 - 4            |
|                 | A5 - 6            | 3 - 2            |
|                 | A7 - 8            | 1 - 0            |
| 01              | B1 - 2            | 7 - 6            |
|                 | B3 - 4            | 5 - 4            |
|                 | B5 - 6            | 3 - 2            |
|                 | B7 - 8            | 1 - 0            |
|                 | -                 | -                |
|                 | -                 | -                |
| 0F              | P1 - 2            | 7 - 6            |
|                 | P3 - 4            | 5 - 4            |
|                 | P5 - 6            | 3 - 2            |
|                 | P7 - 8            | 1 - 0            |

Chaque entrée sécuritaire est constituée de 2 bits de sécurité. Ces 2 bits doivent être interprétés comme suit :

00 : Sécurité validée - fermé

10 : Sécurité non validée - ouvert

11 : non sécuritaire - Conditions invalides



Les 2 bits de sécurité peuvent être lus comme suit :

Exemple:

Bits de sécurité : 7.6.5.4.3.2.1.0 Exemple binaire : 0 0 1 1 0 1 1 0

Lecture de l'adresse de l'octet "01" et de l'adresse Dupline® B7-8

Puis, lecture des bits de sécurité à l'emplacement 1.0 sur exemple binaire 1 0£Ceci correspond à l'adresse

Dupline® suivante : SAFE OFF (ARRÊT SÉCURITÉ)



### Réglages du DIP-switch

| DIP-Switch 1-2-3 | Numéro de périphérique                      |  |  |
|------------------|---------------------------------------------|--|--|
| DIP-Switch 4     | Monostable / Mode E/S partagé               |  |  |
| DIP-Switch 5     | Mode Mux Analogique                         |  |  |
| DIP-Switch 6     | Mode sortie numérique étendue <sup>1)</sup> |  |  |

<sup>&</sup>lt;sup>1)</sup>Le DIP-switch active/désactive la possibilité d'utiliser les adresses de sortie Analink sous forme de sorties numériques

### Réglages des DIP-switch 1-3

| Adresse      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | Invalide |
|--------------|--------|--------|--------|--------|--------|--------|--------|----------|
| DIP-Switch 1 | Éteint | Éteint | Éteint | Allumé | Allumé | Allumé | Allumé | Éteint   |
| DIP-Switch 2 | Éteint | Allumé | Allumé | Éteint | Éteint | Allumé | Allumé | Éteint   |
| DIP-Switch 3 | Allumé | Éteint | Allumé | Éteint | Allumé | Éteint | Allumé | Éteint   |

17/02/2021 GS3390000800A FRA Carlo Gavazzi Controls S.p.A. **10** 



## Réglage des DIP-switch 4-6

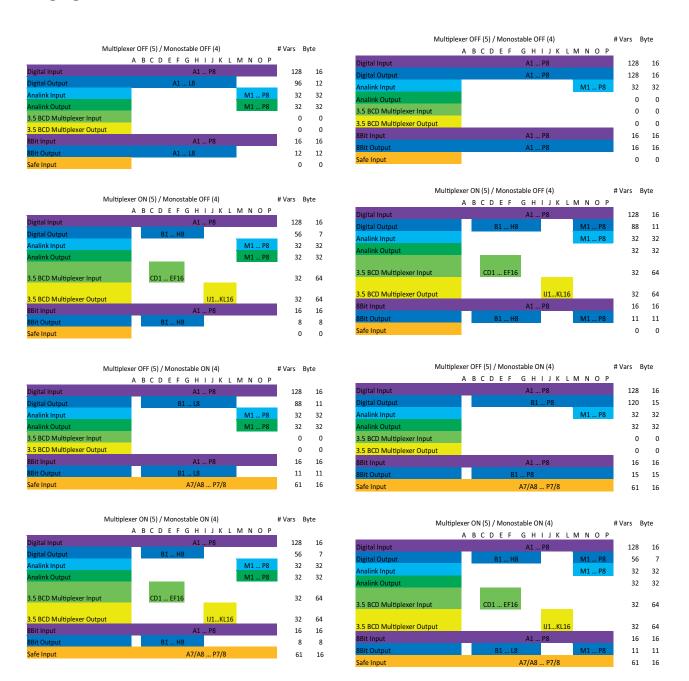



Fig. 1 DIP-switch 6 DÉSACTIVÉ

Fig. 2 DIP-switch 6 ACTIVÉ



# Références



### **Code produuit**



### GS33900000800A



### COPYRIGHT ©2021

Contenu susceptible d'être modifié. Télécharger le PDF : www.productselection.net

17/02/2021 GS33900000800A FRA