Amplificateur de cellules photélectriques Type \$142A..

- Contrôlé par microprocesseur
- · Relais amplificateur pour cellules photo électriques
- Régulation automatique ou manuelle de la puissance de l'émetteur
- Fonctions d'auto diagnostic
- Fonction d'aide à l'alignement
- Option minuterie, S142B..
- Tension nominale de fonctionnement: 24 VCA/CC, 24 VCA, 115 VCA ou 230 VCA
- Relais de sortie 8 A/250 VCA 1 inverseur et transistor 100 mA NPN
- LED de signalisation: gain automatique, sortie, niveau ou défaut émetteur ou récepteur

Description du produit

Amplificateur contrôlé par microprocesseur pour un jeu de cellules photoélectriques de type barrage, série MOF.,MMF.. et MNF (voir les fiches techniques distinctes MMFTR15 et MOFT20). Raccordement aisé par embasecirculaire 11 points. Relais de sortie 8A, 1 inverseur, sortie transistor NPN / PNP ou sortie

Alarme. Tests et diagnostic du détecteur en cours de fonctionnement. Fonction d'aide à l'alignement par LED ou sortie alarme (l'une ou l'autre). Indication du niveau d'encrassement. Régulation manuelle ou automatique de la puissance de l'émetteur. Disponibilité de deux codes « émetteur » pour une immunité élevée interférences.

Référence

S142 A RNN 924

Type — Fonction spéciale — Type de sortie — (R-Relais, N-NPN, P-PNP, T-Test)
Alimentation —

Type Selection

Fonction	Référence à commander: Alimentation: 24VCA/CC		Référence à commander: Alimentation: 115 VCA	Référence à commander: Alimentation: 230 VCA
Sortie NPN et entrée de test Sortie NPN et sortie alarme Sortie PNP, Alarme PNP et Test	S142 A RNT 924 S142 A RNN 924 ¹⁾ S142 A PPT 924	S142 A RNT 024 S142 A RNN 024 ¹⁾	S142 A RNT 115 S142 A RNN 115 ¹⁾ S142 A PPT 115	S142 A RNT 230 S142 A RNN 230 ¹⁾ S142 A PPT 230

¹⁾ Amplificateur de remplacement pour S1421156xxx

Caractéristiques

Tension nominale de			Fonction de sortie	Travail ou repos sur DIP switch	
fonctionnement (U _B)			Relais	1 inverseur	
Broches 2 et 10	230	195 à 265 VCA, 45 à 65 Hz	Transistor	NPN / PNP, 100 mA, 10-40 VCC	
	115	98 à 132 VCA, 45 à 65 Hz	Alarme	NPN / PNP, 100 mA, 10-40 VCC	
	024	20,4 à 27,6 VCA, 45 à 65 Hz		Temporisation alarme 10 sec	
	924	20,4 à 27,6 VCA/CC Classe 2	Désactivation de l'entrée de test	NPN PNP	
Puissance nominale de	е		Emetteur activé	> 5.0 VCC < V _{CC} - 3 VCC	
fonctionnement			Emetteur désactivé	< 3.0 VCC > V _{CC} - 5 VCC	
Alimentation CA		3,3 VA	Imax à 40 VCC	1 mA	
Alimentation CA/CC		1,6 VA / 1,4 W	Protection de la sortie		
Temporisation travail	(t _v)	< 300 mS	Transistor	Inversion de polarité, court	
Sorties				circuit, transitoires	
Caractéristiques des	relais		Alimentation des détecteurs		
(AgCdO)		μ (micro entrefer)	Emetteur	Broches 5 et 7	
Charges résistives	CA1	8 A / 250 VCA (2500 VA)	Tension d'alimentation		
Griarges redictives	CC1	0.2 A / 250 VCC (50 W)	(boucle ouverte)	15 V signal carré	
	ou	2 A 25 VCC (50 W)	Courant	< 450 mA, protection contre	
Durée de vie électriq		2 A 23 VOO (30 VV)		les courts circuits	
(typique)	CA1	> 100 000 opérations	Résistance de sortie	10 Ω	
Sortie transistor	0, (1	> 100 000 operations	Récepteur	Broches 6 et 8	
Courant de sortie (I _e)		< 100 mA à 10-40 VCC	Tension d'alimentation		
(-6)		(capacité de charge 100 nF	(boucle ouverte)	5 VCC	
		maxi)	Courant de court-circuit	10 mA	
Chute de tension (U _d)	< 2,5 VCC à 100 mA	Résistance en entrée	470 Ω	

Caractéristiques

Puissance de l'émetteur Puissance	Réglage par DIP switch num. 4, gamme 50% ou 100%
Réglage de sensibilité Manuel Automatique / Auto=LED allumée	Potentiomètre 240° Réglages par potentiomètre en butée dans le sens anti horaire
Gamme maximale	La gamme maximale est indiquée au paragraphe «Réglages à 100%»
Tension nominale d'isolement (U _I)	250 VCA
Tension diélectrique	>2,0 KVCA (eff.) (contacts / électronique)
Tension nominale d'impulsion supportée	4 kV (1,2/50 μS) (contacts / électronique) (IEC 664)
Fréquence de fonctionnement (f) Ratio lumière / noir Relais de sortie Transistor de sortie	1:1 20 HZ 20 HZ

Temps de réponse OFF-ON (t _{ON}) ON-OFF (t _{OFF})	20 mS 30 mS
Environnement	
Type d'alimentation	Surtension catégorie III (IEC 60664)
Indice de protection	ÎP 20 /IEC 60529, 60947-1)
Degré de pollution	3 (IEC 60664/60664A, 60947-1)
Température	
En fonctionnement	-20° à +50°C
Stockage	-50° à +85°C
Matériau du boîtier	NORYL SE1, gris clair
Poids	
Alimentation CA	200 g
Alimentation CA/CC	125 g
Homologations	UL508, UL325*, CSA
Marquage	CE (EN12445, EN12453, EN12978)

- A approuver impérativement à l'installation finale de la porte
- ** EN12453 (ne s'applique qu'à l'utilisation de cellules MOF Carlo Gavazzi avec angle optique de 2 et 5 degrés)

Caractéristiques

Diagnostic

En cas de défaut de l'émetteur ou du récepteur, la LED d'alarme (rouge) s'allume et la sortie est Activée.

Défaut émetteur

En fonctionnement normal, le système surveille les éventuels défauts du récepteur.

En cas de court circuit des fils, la « LED jaune Code A » clignote 2 fois par seconde. En cas de rupture des fils, la « LED jaune Code A » clignote 4 fois par seconde.

Défaut récepteur

En fonctionnement normal, le système surveille les éventuels défauts de l'émetteur.

En cas de court circuit des fils, la « LED verte, Code B » clignote 2 fois par seconde. En cas de rupture des fils, la « LED verte, Code B » clignote 4 fois par seconde.

Alignement

Si le DIP switch « alignement » est configuré, la LED jaune clignote en fonction de la qualité du signal.

Une fréquence de clignotement lente est caractéristique d'un signal de faible intensité. L'intensité du signal est maximale lorsque la LED reste allumée en fixe. Sur des distances importantes, l'obtention d'un signal stable n'est pas possible mais une fréquence de clignotement très élevée indique un alignement optimal.

Sur des distances courtes, on peut réduire la puissance de l'émetteur au moyen du potentiomètre et obtenir alors une meilleure lecture par la LED d'alignement.

La sortie ALARME suit la LED signalisation en mode Alignement. Un testeur en option connecté fournit une indication distante pendant l'alignement des capteurs.

NOTA La sortie est désactivée en mode alignement.

Code A ou B

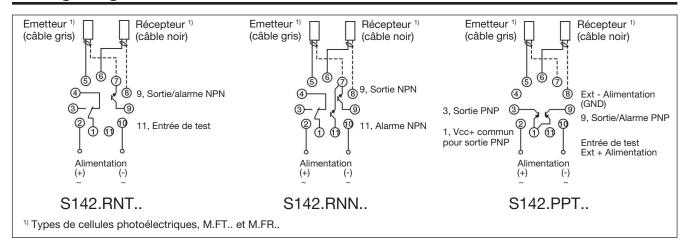
Lorsque deux paires de capteurs sont montées proches l'une de l'autre, sélectionner une paire en code A et l'autre en code B afin de réduire la diaphonie.

Réglage du gain

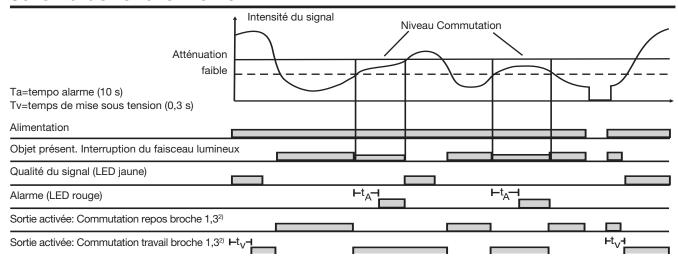
Pour une détection optimale, le DIP switch de niveau haut/bas permet des réglages de gain excédentaire:

Niveau haut:

Permet un niveau élevé d'encrassement du capteur. Niveau bas :


Permet la détection d'objets semi transparents.

Réglage de l'alimentation


Pour éviter un émetteur trop puissant, on peut ramener la puissance d'émission à 50% en réduisant la distance maximale de 25%

Wiring Diagram

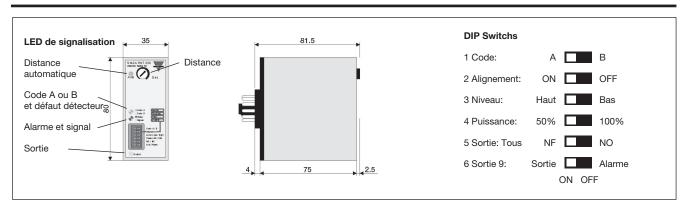


Schéma de fonctionnement

²⁾ Fonction commutation: sélection par DIP-switch, fonction inversée sur les broches 1, 4

Dimensions

CARLO GAVAZZI

Raccordement à un boîtier indicateur d'alignement (STO3)

Raccordement à un testeur de détecteur ST-03 pour alignement

	Testeur de détecteur		
	-	Signal	+
broche RNT	10	9	
broche RNN	10	11	
broche PPT		9	2

Accessoires

Connecteur circulaire 11 points	ZPD11
Ressort de maintien	HF
Rack de montage	SM13
 Châssis de montage sur tableau en face avant 	FRS2

Contenu du colis

- Amplificateur
- Conditionnement: boîte en carton

Installation de portes industrielles selon la norme UL325

Connexions

- 1) Connecter les câbles d'alimentation à l'amplificateur (pour les systèmes CC : plus (+) à la borne 2, moins (-) à la borne 10).
- 2) Constater que l'alimentation est dans les tolérances spécifiées et exploitée selon les réglementations locales.

Montage

- 1) Au montage, constater que les capteurs sont installés à l'intérieur de la distance maximale. Dans le cas de deux-systèmes séparés montés adjacents, positionner les capteurs de manière à éviter la diaphonie.
- Afin d'éviter toute avarie du récepteur et de l'émetteur, utiliser impérativement des raccords d'installation adéquats.
 Installer impérativement l'amplificateur dans une enceinte adaptée afin d'assurer sa protection mécanique, électrique, et anti incendie.
- 4) Ne pas mettre l'amplificateur sous-tension tant que les capteurs ne sont pas connectés.
- 5) Connecter le récepteur et l'émetteur à la borne dédiée.
- 6) Mettre l'amplificateur sous-tension.

7) La LED de sortie jaune doit être allumée (NO) et éteinte (NF) lorsqu'aucun objet n'est présent.

Nota: pour les systèmes équipés d'une entrée test, constater que l'émetteur est activé.

8) Faire écran au faisceau lumineux et constater que la LED jaune s'éteint (NO), s'allume (NF).

Pour chaque cycle de porte :

Le contrôleur de porte connecté doit vérifier que les capteurs fonctionnent correctement dans au moins une des positions finales de la porte. L'entrée test permet de tester la fonction des capteurs.

ATTENTION

Ne jamais utiliser ni monter le produit en accessoire séparé. Ce produit a été conçu à l'usage des installateurs professionnels qui l'intègrent à un opérateur ou à un système de porte, rideau, portail, ventelle, une fois que l'ensemble combiné a fait la preuve de sa conformité aux normes applicables.