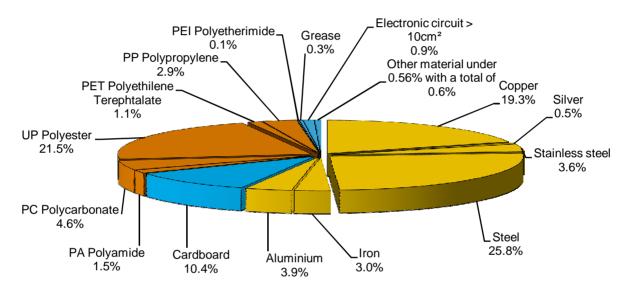

Product Environmental Profile Compact NS 630b-1600

PEP ecopassport SCHN-2013-001-V1

Product Environmental Profile - PEP

Product overview

The main purpose of the Compact NS630b-1600 range is to ensure the protection of low-voltage electrical applications between 630A and 1600A.


This range consists of: Compact NS 3P or 4P fixed or draw-out circuit breaker with a rating of 630A to 1600A, fitted with a "no measurement function" Micrologic or Micrologic A, E and P control unit.

The representative product used for the analysis is Compact NS1250N 3P Micrologic 5.0A (fixed). The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 14.2kg and 18.3kg including packaging. It is 15.8kg for the Compact NS1250N 3P Micrologic5.0A. The constituent materials are distributed as follows:

Substance assessment

The switch disconnector of this product range is designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polyb ronminated biphenyls-PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

Details of ROHS and REACH substances information are available on the Schneider-Electric <u>Green Premium website</u>. (<u>http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page</u>)

Manufacturing

The Compact NS630b-1600 product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The Compact NS630b-1600 packaging weight is from 1.7kg (3P) to 2.5kg (4P). It consists of cardboard (1.36kg for 3P and 2kg for 4P) and foam support (0.38kg for 3P and 0.5kg for 4P).

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Use

The products of the Compact NS630b-1600 range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The dissipated power depends on the conditions under which the product is implemented and used. This dissipated power is between 30 W and 616 W for the Compact NS630b-1600 product range. It is 132 W for the referenced Compact NS1250N 3P Micrologic5.0A. The product range does not require special maintenance operations.

Product Environmental Profile - PEP End of life

At end of life, the products in the Compact NS630b-1600 have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains two PCBAs and one battery that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website <u>Green Premium website</u> (<u>http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page</u>).

The recyclability potential of the products has been evaluated using the "ECO DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 59%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:

- the calculation was performed on the Compact NS1250N 3P Micrologic5.0A.

- product packaging: is included
- installation components: no special components included.

- scenario for the Use phase: this product range is included in the category 1 energy passing product: (assumed service life is 20 years and use scenario is: power dissipation is 132W, loading rate is 30% and service uptime is 30%.

- the geographical representative area for the assessment is Europe and the electrical power model used for calculation is European model. End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

For give the name and commercial reference or description of the representative **Environmental indicators** Unit product S = M + D +м D U Т F I + U + E Y-1 **Raw Material Depletion** 4.72E-12 4.71E-12 2.54E-17 0.00E+00 8.12E-15 2.67E-17 MJ **Energy Depletion** 8.30E+03 1.11E+03 18.597 0.00E+00 7.15E+03 1.95E+01 dm³ Water depletion 1.96E+03 9.19E+02 1.766 0.00E+00 1.03E+03 1.86E+00 **Global Warming** g≈CO₂ 4.32E+05 6.79E+04 1.47E+03 0.00E+00 3.61E+05 1.55E+03 **Ozone Depletion** g≈CFC-11 3.44E-02 1.26E-02 1.04E-03 0.00E+00 1.96E-02 1.09E-03 m³ Air Toxicity 1.04E+08 2.92E+05 4.35E+07 2.78E+05 0.00E+00 5.99E+07 **Photochemical Ozone Creation** $g \approx C_2 H_4$ 1.54E+02 29.307 1.259 0.00E+00 1.22E+02 1.32E+00 Air acidification g≈H⁺ 7.08E+01 1.88E-01 0.00E+00 1.97E-01 21.691 48.714 dm³ Water Toxicity 1.36E+05 3.31E+04 1.84E+02 0.00E+00 1.03E+05 1.94E+02 Water Eutrophication g≈PO₄ 1.44E+01 13.517 2.45E-02 0.00E+00 8.48E-01 2.57E-02 Hazardous waste production kg 8.83E+00 2.844 5.48E-04 0.00E+00 5.986 5.76E-04

Presentation of the product environmental impacts

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 11, and with its database version 4.0.

The use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: the environmental indicators of other products in this family may be proportional extrapolated by power dissipation and raw material mass of the product.

The RMD impact of the other products of the family may be proportional extrapolated by the mass of product.

System approach

As the switch disconnector of this product range is designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive. Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Product Environmental Profile - PEP

Glossary

Raw Material Depletion (RMD)	This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.
Energy Depletion (ED)	This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.
Water Depletion (WD)	This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm ³ .
Global Warming (GW)	The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO_2 .
Ozone Depletion (OD)	This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.
Air Toxicity (AT)	This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.
Photochemical Ozone Creation (POC)	This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C_2H_4).
Air Acidification (AA)	The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H ⁺ .
Water Toxicity (WT)	This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.
Hazardous Waste Production (HWP)	This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Registration N° : SCHN-2013-001-V1			Applicable PCR : PEP- PCR-ed 2-EN-2011 12 09				
Verifier accreditation N° : VH05			Program information: <u>www.pep-ecopassport.org</u>				
Date of issue: 01-2013			Period of validity: 4 years				
Independent verification of the declaration and data, according to ISO 14025:2006							
Internal	Х	External					
In compliance with ISO 14025:2006 type III environmental declarations						PEP	
PCR review was conducted by an expert panel chaired by J. Chevalier (CSTB).						PASS	
The elements of the actual PEP cannot be compared with elements from another program.						PORT	

Schneider Electric Industries SAS 35, rue Joseph Monier CS 30323 F- 92506 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 896 313 776 €

www.schneider-electric.com

Published by Schneider Electric