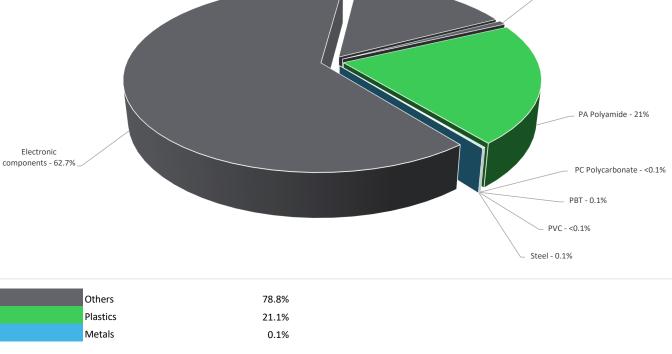
Product Environmental Profile

TeSys Tera - Motor Management Profibus DP 100-240V AC/DC


General information

Constituent materials

12

Reference product	TeSys Tera - Motor Management Profibus DP 100-240V AC/DC - LTMTPFM
Description of the product	TeSys Tera motor management profibus DP is a motor controller unit used for motor management and protection having 4 Digital Input and 3 Digital output modules with operational voltage 100-240V AC/DC supply. It Confirms to IEC 60947-4-1 standard.
Description of the range	Single product
Functional unit	TeSys Tera - Motor Management Profibus DP has Digital 4 Inputs and 3 Outputs 100-240V AC/DC module for motor protection relays having the following dimensions 45mm x 112mm x 90mm with continuous current passing for the devices to be connected, in accordance with IEC 60947-4-1 standard during the lifetime of 10 years.
Specifications are:	The product used for the analysis is a TeSys Tera - Motor Management Profibus DP with following specifications, • Ue : Rated Operating current (A) - 240V AC • In : Rated operating current (A) - 10A • IP degree of protection: IP30 conforming to IEC 60529 • IK degree of protection : IK08 conforming to IEC 62262 • LED for Indication • Reset key for Fault Reset

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

E

(1) Additional environmental information

0%

End Of Life

Recyclability potential:

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

\mathcal{O} Environmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligible consumption									
Installation elements	The Product does not need any special installation	n operation.								
Use scenario	As per PSR005 the TeSys Tera motor management Profibus DP product is in active mode 100% of its time with a Power Consumption of 8W for 10 years.									
Time representativeness	The collected data are representative of the year 2025									
Technological representativeness	The modules of technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.									
Geographical	Final assembly site	Us	e phase	End-of-life						
representativeness	India - Vadodara	APAC, Euro	pe, US, Australia	APAC, Europe, US, Australia						
	[A1 - A3]	[A5]	[B6]	[C1 - C4]						
			Electricity Mix; Low voltage; 2020; Asia Pacific, APAC							
Energy model used	Electricity Mix; Low voltage; 2020; China,CN (A1)		Electricity Mix; Low voltage; 2020; Europe, EU-27	Global, European and French datasets are used.						
	Electricity Mix; Low voltage; 2020; India, IN (A3)	No energy used	Electricity Mix; Low voltage; 2020; United States, US							
			Electricity Mix; Low voltage; 2020; Australia, AU							

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	Andatory Indicators TeSys Tera - Motor Management Profibus DP 100-240V AC/DC - LTMTPFM							
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	4.43E+02	2.51E+01	1.26E-01	6.10E-02	4.17E+02	9.06E-01	-2.07E-03
Contribution to climate change-fossil	kg CO2 eq	4.40E+02	2.52E+01	1.26E-01	5.81E-02	4.14E+02	9.06E-01	1.28E-02
Contribution to climate change-biogenic	kg CO2 eq	3.04E+00	0*	0*	2.90E-03	3.14E+00	3.61E-04	-1.49E-02
Contribution to climate change-land use and land use change	kg CO2 eq	6.89E-08	6.89E-08	0*	0*	0*	0*	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	5.23E-06	3.19E-06	0*	7.91E-10	2.03E-06	7.20E-10	7.55E-10
Contribution to acidification	mol H+ eq	2.78E+00	1.81E-01	7.99E-04	0*	2.60E+00	6.12E-04	7.16E-05
Contribution to eutrophication, freshwater	kg P eq	4.88E-04	9.48E-05	0*	1.40E-06	3.87E-04	5.07E-06	1.85E-07
Contribution to eutrophication, marine	kg N eq	3.11E-01	1.84E-02	3.75E-04	7.77E-05	2.92E-01	3.06E-04	2.00E-05
Contribution to eutrophication, terrestrial	mol N eq	3.85E+00	1.96E-01	4.11E-03	5.41E-04	3.64E+00	3.11E-03	1.74E-04
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.03E+00	6.60E-02	1.04E-03	1.24E-04	9.61E-01	7.54E-04	4.76E-05
Contribution to resource use, minerals and metals	kg Sb eq	1.81E-02	1.80E-02	0*	0*	6.75E-05	0*	-3.58E-07
Contribution to resource use, fossils	MJ	8.17E+03	3.27E+02	1.76E+00	0*	7.84E+03	1.14E+00	1.76E-01
Contribution to water use	m3 eq	3.59E+01	1.09E+01	0*	4.71E-03	2.49E+01	2.70E-02	5.84E-03

Inventory flows Indicators	TeSys Tera - Motor Management Profibus DP 100-240V AC/DC - LTMTPFM									
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to renewable primary energy used as energy	MJ	1.10E+03	1.02E+01	0*	0*	1.09E+03	0*	-3.37E-02		
Contribution to renewable primary energy used as raw material	MJ	9.04E-03	9.04E-03	0*	0*	0*	0*	1.81E-01		
Contribution to total renewable primary energy	MJ	1.10E+03	1.02E+01	0*	0*	1.09E+03	0*	1.48E-01		
Contribution to non renewable primary energy used as energy	MJ	8.17E+03	3.24E+02	1.76E+00	0*	7.84E+03	1.14E+00	1.76E-01		
Contribution to non renewable primary energy used as raw material	MJ	3.78E+00	3.78E+00	0*	0*	0*	0*	0.00E+00		
Contribution to total non renewable primary energy	MJ	8.17E+03	3.27E+02	1.76E+00	0*	7.84E+03	1.14E+00	1.76E-01		
Contribution to use of secondary material	kg	6.47E-02	6.47E-02	0*	0*	0*	0*	0.00E+00		
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to net use of fresh water	m ³	8.36E-01	2.54E-01	0*	1.10E-04	5.81E-01	6.29E-04	1.36E-04		
Contribution to hazardous waste disposed	kg	2.68E+02	2.57E+02	0*	0*	1.13E+01	2.24E-01	-2.64E-02		
Contribution to non hazardous waste disposed	kg	7.49E+01	5.22E+00	0*	2.61E-02	6.95E+01	8.35E-02	5.59E-03		
Contribution to radioactive waste disposed	kg	1.14E-02	2.60E-03	3.15E-06	3.23E-06	8.81E-03	4.43E-06	2.74E-06		
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to materials for recycling	kg	3.61E-04	6.74E-05	0*	0*	0*	2.94E-04	0.00E+00		
Contribution to materials for energy recovery	kg	1.44E-08	1.44E-08	0*	0*	0*	0*	0.00E+00		
* represents less than 0.01% of the total life cycle of the refere	anco flow									

 * represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg of C	0.00E+00
Contribution to biogenic carbon content of the associated packaging	kg of C	1.62E-02

* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators	TeSys	Tera - Motor	Manage	ment P	ofibus D	P 100-240V AC	/DC - LTMTP		
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	4.17E+02	0*	0*	0*	0*	0*	4.17E+02	0*
Contribution to climate change-fossil	kg CO2 eq	4.14E+02	0*	0*	0*	0*	0*	4.14E+02	0*
Contribution to climate change-biogenic	kg CO2 eq	3.14E+00	0*	0*	0*	0*	0*	3.14E+00	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	2.03E-06	0*	0*	0*	0*	0*	2.03E-06	0*
Contribution to acidification	mol H+ eq	2.60E+00	0*	0*	0*	0*	0*	2.60E+00	0*
Contribution to eutrophication, freshwater	kg P eq	3.87E-04	0*	0*	0*	0*	0*	3.87E-04	0*
contribution to eutrophication marine	kg N eq	2.92E-01	0*	0*	0*	0*	0*	2.92E-01	0*
ontribution to eutrophication, terrestrial	mol N eq	3.64E+00	0*	0*	0*	0*	0*	3.64E+00	0*
ontribution to photochemical ozone formation - human health	kg COVNM eq	9.61E-01	0*	0*	0*	0*	0*	9.61E-01	0*
Contribution to resource use, minerals and metals	kg Sb eq	6.75E-05	0*	0*	0*	0*	0*	6.75E-05	0*
ontribution to resource use, fossils	MJ	7.84E+03	0*	0*	0*	0*	0*	7.84E+03	0*
ontribution to water use	m3 eq	2.49E+01	0*	0*	0*	0*	0*	2.49E+01	0*

Inventory flows Indicators				TeSys Tera - Motor Management Profibus DP 100-240V AC/DC - LTMTPFM					
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1.09E+03	0*	0*	0*	0*	0*	1.09E+03	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	1.09E+03	0*	0*	0*	0*	0*	1.09E+03	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	7.84E+03	0*	0*	0*	0*	0*	7.84E+03	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	7.84E+03	0*	0*	0*	0*	0*	7.84E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	5.81E-01	0*	0*	0*	0*	0*	5.81E-01	0*
Contribution to hazardous waste disposed	kg	1.13E+01	0*	0*	0*	0*	0*	1.13E+01	0*
Contribution to non hazardous waste disposed	kg	6.95E+01	0*	0*	0*	0*	0*	6.95E+01	0*
Contribution to radioactive waste disposed	kg	8.81E-03	0*	0*	0*	0*	0*	8.81E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*

 * represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2501020_V1-EN	Drafting rules	PEP-PCR-ed4-2021 09 06						
		Supplemented by	PSR-0005-ed3-2023 06 06						
Date of issue	03-2025	Information and reference documents	www.pep-ecopassport.org						
Validity period 5 years									
Independent verification of	the declaration and data, in compliance with ISO 14021 : 2016	·							
Internal X External									
The PCR review was cond	ucted by a panel of experts chaired by Julie Orgelet (DDemain)								
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
The components of the pre	sent PEP may not be compared with components from any other	program.							
Document complies with IS	O 14021:2016 "Environmental labels and declarations. Type II en	vironmental declarations"							

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact Head Office 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com

ENVPEP2501020_V1-EN

Published by Schneider Electric ©2024 - Schneider Electric – All rights reserved

03-2025