Product Environmental Profile

Netbotz Rack Mount Appliance

General information

Reference product	Netdotz Kack Mount Appliance - NBKK0250A I AA							
Description of the product	NetBotz Rack Mount Appliance is a rack-mountable central hardware appliance for an environmental monitoring and control system that is used to monitor and control devices installed in data center application							
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The products of the range are: NBRK0250ATAA, NBRK0750TAA, NBWL0755TAA							
Functional unit	The NetBotz Rack Monitor 250A provides integrated sensing, access control and advanced alerting for IT environments of all size from single-rack edge network to large data centers. This product offers an active monitoring solution designed to protect against environmental threats and unauthorized access risks that can cause downtime to IT infrastructure in both edge compute and data center environments with its integrated suite of sensors and access control pods.							
Specifications are:	Input power : 100–240 VAC; 50/60 Hz Maximum total current draw for AC Line Inlet : 10 A Voltage for Voltage Output contacts : 12 VDC, 24 VDC Current for Voltage Output contacts : 75 mA total for 12 V and 24 V load Current capacity of Relay Output : 1 A, 30 V AC/DC							

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(1) Additional environmental information

End Of Life

Recyclability potential:

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

O Environmental impacts

50%

Reference service life time	10 years									
Product category	Monitoring system									
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumtion	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption									
Installation elements	The installation requires screws, cable and Installation racks									
Use scenario	The product is in active mode for 100% of the time with a power use of 4W for 10 years									
Time representativeness	The collected data are representative of the year 2025									
Technological representativeness	The Modules of technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and représentative of the actual type of technologies used to make the product.									
Geographical	Final assembly site	Use phase End-of-life								
representativeness	Manufactured compoents in Philippines and assembled whole product in Mexico	C	Global Global							
	[A1 - A3]	[A5]	[C1 - C4]							
Energy model used	Electricity Mix; Low voltage; 2020; Mexico, MX	No energy used	Electricity Mix; Low voltage; 2020; United States, US Electricity Mix; Low voltage; 2020; China, CN Electricity Mix; Low voltage; 2020; India, IN Electricity Mix; Low voltage; 2020; Australia, AU Electricity Mix; Low voltage; 2020; United Kingdom, GB	Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	Netbotz Rack Mount Appliance - NBRK0250ATAA								
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads	
Contribution to climate change	kg CO2 eq	2.50E+02	3.06E+01	4.71E-01	4.43E-01	2.13E+02	5.22E+00	-3.36E+00	
Contribution to climate change-fossil	kg CO2 eq	2.45E+02	2.70E+01	4.71E-01	3.66E-01	2.12E+02	5.17E+00	-2.81E+00	
Contribution to climate change-biogenic	kg CO2 eq	4.72E+00	3.61E+00	0*	7.70E-02	9.84E-01	4.74E-02	-5.46E-01	
Contribution to climate change-land use and land use change	kg CO2 eq	1.62E-05	1.54E-05	0*	0*	0*	7.86E-07	0.00E+00	
Contribution to ozone depletion	kg CFC-11 eq	3.94E-06	2.90E-06	7.22E-10	1.91E-09	9.91E-07	4.26E-08	-5.54E-07	
Contribution to acidification	mol H+ eq	1.44E+00	1.87E-01	3.15E-03	6.24E-04	1.24E+00	1.60E-02	-5.18E-02	
Contribution to eutrophication, freshwater	kg P eq	1.81E-03	1.01E-04	0*	1.93E-06	2.13E-04	1.49E-03	1.88E-06	
Contribution to eutrophication, marine	kg N eq	1.72E-01	2.43E-02	1.48E-03	2.82E-04	1.43E-01	3.29E-03	-1.47E-03	
Contribution to eutrophication, terrestrial	mol N eq	2.01E+00	2.56E-01	1.63E-02	2.99E-03	1.69E+00	3.73E-02	-1.95E-02	
Contribution to photochemical ozone formation - human health	kg COVNM eq	5.76E-01	8.74E-02	4.13E-03	6.96E-04	4.73E-01	1.08E-02	-9.27E-03	
Contribution to resource use, minerals and metals	kg Sb eq	3.97E-03	3.89E-03	0*	0*	2.78E-05	4.82E-05	-1.20E-03	
Contribution to resource use, fossils	MJ	4.83E+03	5.69E+02	6.57E+00	5.62E-01	4.09E+03	1.67E+02	-6.81E+01	
Contribution to water use	m3 eq	2.49E+01	1.12E+01	0*	1.23E-01	1.14E+01	2.14E+00	-2.93E+00	

Inventory flows Indicators	Netbotz Rad	ootz Rack Mount Appliance - NBRK0250ATAA							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - J Distribution	[A: n Instal	5] - lation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads
Contribution to renewable primary energy used as energy	MJ	4.98E+02	1.53E+01 0*		C)*	4.82E+02	1.16E+00	-2.94E+00
Contribution to renewable primary energy used as raw material	MJ	7.02E+00	7.02E+00	0*	C)*	0*	0*	6.30E+00
Contribution to total renewable primary energy	MJ	5.05E+02	2.23E+01	0*	C)*	4.82E+02	1.16E+00	3.36E+00
Contribution to non renewable primary energy used as energy	MJ	4.81E+03	5.44E+02	6.57E+00	5.62	E-01	4.09E+03	1.67E+02	-6.82E+01
Contribution to non renewable primary energy used as raw material	MJ	2.57E+01	2.57E+01	0*	C)*	0*	0*	4.61E-02
Contribution to total non renewable primary energy	MJ	4.83E+03	5.69E+02	6.57E+00	6.57E+00 5.62E·		4.09E+03	1.67E+02	-6.81E+01
Contribution to use of secondary material	kg	7.45E-01	7.45E-01	0*	C)*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	C)*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	C)*	0*	0*	0.00E+00
Contribution to net use of fresh water	m³	5.81E-01	2.61E-01	0*	2.87	2.87E-03 2.67E-01		4.99E-02	-6.82E-02
Contribution to hazardous waste disposed	kg	3.75E+01	3.14E+01	0*	C)*	5.19E+00	8.77E-01	-9.83E+01
Contribution to non hazardous waste disposed	kg	5.92E+01	2.35E+01	1.65E-02	1.16	E+00	3.44E+01	1.15E-01	-2.06E+00
Contribution to radioactive waste disposed	kg	1.58E-02	1.07E-02	1.18E-05	5.28	E-06	5.08E-03	1.80E-05	-9.49E-04
Contribution to components for reuse	kg	0.00E+00	0*	0*	C)*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	1.68E+00	7.20E-01	0*	C)*	0*	9.60E-01	0.00E+00
Contribution to materials for energy recovery	kg	1.58E-09	1.58E-09	0*	C)*	0*	0*	0.00E+00
Contribution to exported energy	MJ	2.35E+00	2.34E+00	0*	C)*	0*	7.20E-03	0.00E+00
* represents less than 0.01% of the total life cycle of the refere	nce flow								
Contribution to biogenic carbon content of the product	ka of C	0.00E+00							
Contribution to biogenic carbon content of the associated packaging	kg of C	2.90E-01							
* The calculation of the biogenic carbon is based on the Adem	e for the Card	dboard (28%), EN1	6485 for Wood ((39,52%), and Al	PESA/RECC	ORD for	Paper (37,8%)		
Mandatory Indicators				Netbotz Rad	ck Mount A	opliance	- NBRK0250ATAA		
Impact indicators	Unit	[B1 - B7] - Use	[B1] [B21 [B3	31 [B4]	[B5]	[B6]	[B7]	
Contribution to climate change	ka CO2 ea	2.13E+02	0*	0* 0*	0*	0*	2.13E+02	0*	
Contribution to climate change-fossil	ka CO2 ea	2.12E+02	0*	0* 0*	0*	0*	2.12E+02	0*	
Contribution to climate change-biogenic	kg CO2 eq	9.84E-01	0*	0* 0*	0*	0*	9.84E-01	0*	
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0* 0*	0*	0*	0*	0*	
Contribution to ozone depletion	kg CFC-11 eq	9.91E-07	0*	0* 0*	0*	0*	9.91E-07	0*	
Contribution to acidification	mol H+ eq	1.24E+00	0*	0* 0*	0*	0*	1.24E+00	0*	
Contribution to eutrophication, freshwater	kg P eq	2.13E-04	0*	0* 0*	0*	0*	2.13E-04	0*	
Contribution to eutrophication marine	kg N eq	1.43E-01	0*	0* 0*	0*	0*	1.43E-01	0*	
Contribution to eutrophication, terrestrial	mol N eq	1.69E+00	0*	0* 0*	0*	0*	1.69E+00	0*	
Contribution to photochemical ozone formation - human health	kg COVNM eq	4.73E-01	0*	0* 0*	0*	0*	4.73E-01	0*	
Contribution to resource use, minerals and metals	kg Sb eq	2.78E-05	0*	0* 0*	0*	0*	2.78E-05	0*	
Contribution to resource use, fossils	MJ	4.09E+03	0*	0* 0*	0*	0*	4.09E+03	0*	
Contribution to water use	m3 eq	1.14E+01	0*	0* 0*	0*	0*	1.14E+01	0*	

Inventory flows Indicators	Netbotz Rack Mount Appliance - NBRK0250ATAA								
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	4.09E+03	0*	0*	0*	0*	0*	4.09E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	2.67E-01	0*	0*	0*	0*	0*	2.67E-01	0*
Contribution to hazardous waste disposed	kg	5.19E+00	0*	0*	0*	0*	0*	5.19E+00	0*
Contribution to non hazardous waste disposed	kg	3.44E+01	0*	0*	0*	0*	0*	3.44E+01	0*
Contribution to radioactive waste disposed	kg	5.08E-03	0*	0*	0*	0*	0*	5.08E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2503037_V1	Drafting rules	PEP-PCR-ed4-2021 09 06						
		Supplemented by	No PSR						
Date of issue	03-2025	Information and reference documents	www.pep-ecopassport.org						
		Validity period	5 years						
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016									
Internal X	External								
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
The components of the present PEP may not be compared with components from any other program.									
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"									

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact Head Office 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439

Capital social 928 298 512 €

www.se.com

ENVPEP2503037_V1

Published by Schneider Electric ©2024 - Schneider Electric – All rights reserved

03-2025