

Technical Documentation

Fieldbus manual Protocol for AC servo drive

LXM05 Modbus USA

Document: BLMT00005 Edition: V1.1, 04.2007

Important information

The drive systems described here are products for general use that conform to the state of the art in technology and are designed to prevent any dangers. However, drives and drive controllers that are not specifically designed for safety functions are not approved for applications where the functioning of the drive could endanger persons. The possibility of unexpected or unbraked movements can never be totally excluded without additional safety equipment. For this reason personnel must never be in the danger zone of the drives unless additional suitable safety equipment prevents any personal danger. This applies to operation of the machine during production and also to all service and maintenance work on drives and the machine. The machine design must ensure personal safety. Suitable measures for prevention of property damage are also required.

See safety section for additional critical instructions.

Not all product variants are available in all countries.

Please consult the current catalogue for information on the availability of product variants.

We reserve the right to make changes during the course of technical developments.

All details provided are technical data and not promised characteristics.

In general, product names must be considered to be trademarks of the respective owners, even if not specifically identified as such.

Table of Contents

	Importa	Int information	2
	Table o	f Contents	3
	Writing	conventions and symbols	5
1	Introdu	ction	
	1.1	Modbus	1-1
	1.2	Directives and standards	1-1
	1.3	Literature	1-1
2	Safety		
	2.1	Qualification of personnel	2-1
	2.2	Intended use	2-1
	2.3	Safety instructions	2-2
3	Installat	tion	
4	Commis	ssioning	
	4.1	Fieldbus settings	4-2
	4.2	Starting network operation	4-4
	4.3	Running function test	4-4
	4.4	Replacing units	4-4
5	Operati	on	
	5.1 5.1.1 5.1.2 5.1.3	Basics	5-1 5-1
	5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	Function codes FC 3 (Read Multiple Registers) FC 8 (Diagnostics) FC 16 (Write Multiple Registers) FC 16 (Write Multiple Registers) FC 23 (ReadWrite Multiple Registers) FC 43 (Read Device Identification) FC 23 (Read Device Identification)	5-5 5-6 5-7 5-8
	5.3	Examples of function codes FC	5-10
	5.4 5.4.1 5.4.2 5.4.3	Examples for standardised operating modes Profile position operating mode Operating mode Profile velocity Operating mode Homing	5-12 5-12 5-13 5-14
	5.5 5.5.1	Examples of manufacturer specific operating modes Current control mode	5-15 5-15

	5.5.2 5.5.3 5.5.4	Speed control operating mode 5-16 Electronic gearbox operating mode 5-17 Jog mode 5-18
	5.6	Connection monitoring 5-19
6	Diagnos	stics and troubleshooting
	6.1	Communication errors
	6.2	Protocol errors
	6.3 6.3.1 6.3.2	Troubleshooting6-2Synchronous errors6-2Asynchronous errors6-2
7	Service	, maintenance and disposal

8 Glossary

8.1	Terms and Abbreviations	8-1

9 Index

Writing conventions and symbols

Work steps If work steps must be carried out in sequence, they are shown as follows:

- Special prerequisites for the following work steps
- Step 1
- \lhd Important response to this work step
- Step 2

If a response to a work step is specified, this will inform you that the step has been carried out correctly.

Unless otherwise stated, the individual instruction steps must be carried in the given sequence.

- *Lists* Lists can be sorted alphanumerically or by priority. Lists are structured as follows:
 - Point 1
 - Point 2
 - Subpoint to 2
 - Subpoint to 2
 - Point 3

Making work easier

Information on making work easier can be found at this symbol:

This offers supplementary information on making work easier. See the chapter on safety for an explanation of the safety instructions.

1 Introduction

1.1 Modbus

This manual describes the fieldbus handling for products in the fieldbus network, which are addressed to by the modbus RTU.

In order to be able to use a PC as a master in a modbus network, it will need to be equipped with a RS485 interface card. A device for level adaptation must be connected between the network connection and the PC interface for a PC with an RS232 port.

Fieldbus units by other manufacturers can be operated in the same RS485 network as long as they support the modbus protocol.

1.2 Directives and standards

The following guidelines and standards apply to the fieldbus handling of products which are responded to by the modbus:

- RS485 standard,
- EIA RS485.2-4 serial interface

1.3 Literature

- device LXM05A Product manual
- Modbus Modicon Modbus Protocol Reference Guide, PI-MBUS-300 Rev. J, June 1996, MODICON, Inc., USA
 - http://www.modicon.com

2 Safety

2.1 Qualification of personnel

Only technicians who are familiar with and understand the contents of this manual and the other relevant manuals are authorised to work on and with this drive system. The technicians must be able to detect potential dangers that may be caused by setting parameters, changing parameter values and generally by the mechanical, electrical and electronic equipment.

The technicians must have sufficient technical training, knowledge and experience to recognise and avoid dangers.

The technicians must be familiar with the relevant standards, regulations and safety regulations that must be observed when working on the drive system.

2.2 Intended use

The drive systems described here are products for general use that conform to the state of the art in technology and are designed to prevent any dangers. However, drives and drive controllers that are not specifically designed for safety functions are not approved for applications where the functioning of the drive could endanger persons. The possibility of unexpected or unbraked movements can never be totally excluded without additional safety equipment. For this reason personnel must never be in the danger zone of the drives unless additional suitable safety equipment prevents any personal danger. This applies to operation of the machine during production and also to all service and maintenance work on drives and the machine. The machine design must ensure personal safety. Suitable measures for prevention of property damage are also required.

In the system configuration described the drive systems must be used in industrial applications only and must have a fixed connection only.

In all cases the applicable safety regulations and the specified operating conditions, such as environmental conditions and specified technical data, must be observed.

The drive system must not be commissioned and operated until completion of installation in accordance with the EMC regulations and the specifications in this manual.

To prevent personal injury and damage to property damaged drive systems must not be installed or operated.

Changes and modifications of the drive systems are not permitted and if made all no warranty and liability will be accepted.

The drive system must be operated only with the specified wiring and approved accessories. In general, use only original accessories and spare parts.

The drive systems must not be operated in an environment subject to explosion hazard (ex area).

2.3 Safety instructions

Safetv

A DANGER

ELECTRIC SHOCK, FIRE OR EXPLOSION

- Only qualified personnel who are familiar with and understand the contents of this manual are authorised to work on and with this drive system.
- Before working on the drive system:
 - Switch off power to all terminals.
 - Place a sign "DO NOT SWITCH ON" on the switch and lock to prevent switching on.
 - Wait 6 minutes (for discharge of DC bus capacitors).
 - Measure voltage at DC bus and check for <45V. (The DC bus LED is not a safe indication for absence of the DC bus voltage).
- The system manufacturer is responsible for compliance with all applicable regulations relevant to grounding the drive system.
- Many components, including printed wiring boards, operate at mains voltage. Do not short-circuit DC bus or touch unshielded components or screws of the terminals with voltage present.
- Install all covers and close the housing doors before applying power.
- The motor generates voltage when the shaft is rotated. Lock the shaft of the motor to prevent rotation before starting work on the drive system.

Failure to follow these instructions will result in death or serious injury.

A DANGER

RISK OF INJURY BY COMPLEX SYSTEM

When the system is started the drives are generally out of the operator's view and cannot be visually monitored.

 Only start the system if there are no persons in the operating zone of the moving components and the system can be operated safely.

Failure to follow these instructions will result in death or serious injury.

tems.

A WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential fail- ure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path fail- ure. Examples of critical control functions are emergency stop and overtravel stop.
 Separate or redundant control paths must be provided for critical con- trol functions.
 System control paths may include communication links. Consider- ation must be given to the implications of unanticipated transmission delays or failures of the link. *
Each implementation of LXM05* must be individually and thoroughly tested for proper operation before being placed into service.
Failure to follow these instructions can result in death, se- rious injury, or equipment damade.
* For additional information, refer to NEMA ICS 1.1 (latest edi- tion), Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control and to NEMA ICS 7.1 (latest edition), Safety standards for Construction and Guide for Selec- tion, Indtallation and Operation of Adjustable-Speed Drive Sys-

A CAUTION

DANGER OF INJURY AND DAMAGE TO SYSTEM COMPON-ENTS BY EVALUATION OF FAULTY CONTROL COMMANDS

If a PLC is used as the master unit, the exchange of data can lead to inconsistent transmission data as a result of fieldbus and PLC cycles not operating synchronously.

• Please observe the notes concerning the operation using PLC.

Failure to follow these instructions can result in injury or equipment damage.

3 Installation

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link. *
- Each implementation of LXM05* must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damade.

* For additional information, refer to NEMA ICS 1.1 (latest edition), Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control and to NEMA ICS 7.1 (latest edition), Safety standards for Construction and Guide for Selection, Indtallation and Operation of Adjustable-Speed Drive Systems.

A WARNING

INTERFERENCE WITH SIGNALS AND DEVICES MAY CAUSE INJURY

Distorted signals can cause unexpected device responses.

- Install the wiring in accordance with the EMC requirements.
- Check compliance with the EMC requirements, particularly in an environment subject to strong interference.

Failure to follow these instructions can result in death, serious injury or equipment damage.

For information on device installation and connecting the device to the fieldbus see the product manual.

4 Commissioning

A DANGER

RISK OF INJURY BY COMPLEX SYSTEM

When the system is started the drives are generally out of the operator's view and cannot be visually monitored.

• Only start the system if there are no persons in the operating zone of the moving components and the system can be operated safely.

Failure to follow these instructions will result in death or serious injury.

A WARNING

UNCONTROLLED SYSTEM OPERATION

- Do not write to reserved parameters.
- Do not write to parameters before you have understood the function. For more information see the product manual.
- Run the first tests without coupled loads.
- Make sure that the system is free and ready for the movement before changing parameters.
- Check the use of the bits during fieldbus communication: Bit 0 is far right (least significant). Bit 15 is far left (most significant).
- Check the use of the word sequence during fieldbus communication:
- Do not establish a fieldbus connection before you have understood the communications principles.

Failure to follow these instructions can result in death, serious injury or equipment damage.

4.1 Fieldbus settings

Transmission format The data transmission format is set in the factory to:

- Modbus RTU
- 19200 baud
- 8 data bits (LSB is transmitted first)
- Even parity
- 1 stop bit

The communication between master and slave takes place in semi-duplex mode

Node address Up to 31 fieldbus participants can be connected to the bus. Each fieldbus participant must have its own node address, which can be assigned only once in the network. The node address is set in the factory to 1. The node address 0 is a broadcast address, which all fieldbus participants in the network receive data from, but do not answer.

Parameter Name Code HMI menu, Code	Description	Unit Minimum value Default value Maximum value	Data type R/W persistent Expert	Parameter address via fieldbus
MBadr	Modbus address()	-	UINT16	CANopen 3016:4 _h
MBAD COM-ЛЬЯd	valid addresses : 1 to 247	1 1 247	R/W per. -	Modbus 5640

Baud rate The baud rate must be set to the same value for all fieldbus participants.

Parameter Name Code HMI menu, Code	Description	Unit Minimum value Default value Maximum value	Data type R/W persistent Expert	Parameter address via fieldbus
MBbaud	Modbus baud rate()	-	UINT16	CANopen 3016:3 _h
MBBD	Allowed baud rates:	9600	R/W	Modbus 5638
	9600	19200	per.	
СОМ-ЛЬЬЬ	19200	38400	-	
	38400			
	NOTE: A change of the setting is not activa- ted until the unit is switched on again.			

Data bits; stop bits and parity The following combinations of data bits, stop bits and parity can be set.

Parameter Name Code HMI menu, Code	Description	Unit Minimum value Default value Maximum value	Data type R/W persistent Expert	Parameter address via fieldbus
MBformat	Modbus data format()	-	UINT16	CANopen 3016:5 _h
MBFO	1 / 8Bit NoParity 1Stop / 8n1: 8 bit, no	1 2	R/W per.	Modbus 5642
СОМ-ПьГа	parity bit, 1 stop bit 2 / 8Bit EvenParity 1Stop / 8e1: 8 bit, even parity bit, 1 stop bit (default) 3 / 8Bit OddParity 1Stop / 8o1: 8 bit, odd parity bit, 1 stop bit 4 / 8Bit NoParity 2Stop / 8n2: 8 bit, no parity bit, 2 stop bits	4	-	
	NOTE: A change of the setting is not activa- ted until the unit is switched on again.			

Node guarding A monitoring time can be set for the node guarding.

Parameter Name Code HMI menu, Code	Description	Unit Minimum value Default value Maximum value	Data type R/W persistent Expert	Parameter address via fieldbus
MBnode_guard	Modbus Node Guard()	ms	UINT16	CANopen 3016:6 _h
-	Connection monitoring 0 : inactive (default) >0 : Monitoring time	0 0 10000	R/W - -	Modbus 5644

Word sequence This setting specifies how the parameter data (2 words) are sent.

Example: parameter value = 1234 5678_h

- HighWord-LowWord = 1234_h , 5678_h
- LowWord-HighWord = 5678_h, 1234_h

Parameter Name Code HMI menu, Code	Description	Unit Minimum value Default value Maximum value	Data type R/W persistent Expert	Parameter address via fieldbus
MBdword_order	Modbus word sequence for double words	-	UINT16	CANopen 3016:7 _h
MBdword_order MBWO COM-Ոեևօ	(32 bit values)()	0	R/W	Modbus 5646
	Send High Word first or Low Word first	0	per.	
COM-17660	Send high word hist of Low word hist	1	-	
	 0 / HighLow / HiLo: HighWord-LowWord, High Word first -> Modicon Quantum (default) 1 / LowHigh / LoHi : LowWord-HighWord Low Word first -> Premium, HMI (Telemeca- nique) 			

Detailed description A detailed description of the settings is given in the "Commissioning" chapter of the product manual.

4.2 Starting network operation

Network operation is started via a master. This can be a PLC or a PC which uses the corresponding user software to send fieldbus commands and to read reception data.

4.3 Running function test

If the slave does not send a response, check the following settings:

- Voltage supply switched on and master for network operation started?
- Cable connections mechanically sound?
- Correct address set?
- Same settings for baud rate and interface parameters (data bits, parity, stop bits)?

Information concerning fault finding and trouble shooting can be found in the chapter 6 "Diagnostics and troubleshooting" or in the product manual.

4.4 Replacing units

The unit behaviour should remain the same after a slave unit has been replaced. This means that the same parameters must be set on the new unit as were set on the old unit.

The fieldbus parameters should be set via the HMI or by using the installation software, otherwise communication with the unit in the fieldbus network will not be possible.

If the new unit has already been configured for fieldbus operation, then it will recognise the values of the fieldbus parameters when starting up.

If other factory set parameters are to be modified, these values can be stored in the master control system. They will be transferred after each start-up of the unit e.g. in the "ReadyToSwitchOn" (rd) state.

5 Operation

5.1 Basics

5.1.1 Modbus network

A modbus network consists of one superordinate master and at least one slave unit.

- *Master* Masters are active fieldbus participants which control the data traffic within a network. Examples of masters are:
 - automation devices, e.g. PLCs
 - PCs
- *Slave* Slaves are passive fieldbus participants. They receive control commands and supply data to the master. Examples of slaves are programmable drive controls, such as, for example, the unit here in consideration.

A typical application for Modbus is communications between devices in automated manufacturing.

- Slave address In order for the master to be able to communicate with a slave in the fieldbus, it must address the slave. The node address of the slave is contained within the data frame. Notes on setting the address of the slave can be found on page 4-2.
- Parameter addresses Communications between fieldbus master and Slave is based on parameters to which a unique parameter address is assigned. There are write and read parameters. A description of all parameters available for this product (=slave) with the corresponding Modbus addresses can be found in the "Parameters" chapter of the product manual.

The Modbus address is decimal. It must be converted to hexadecimal for input. Values input in hexadecimal are identified in this manual by an attached " $_h$ ". The examples with the Premium are also identified with "16#" before the number.

5.1.2 Modbus transmission technology

Data transmission in the Modbus system takes place via a serial interface (RS485)

Data exchange between the fieldbus participants takes place in the master-slave process. Only the master can send commands (queries). The master can address every slave individually. The reaction (response) of a slave device is to send the requested data or to confirm execution of the requested operating function, depending on the command.

During data transmission request and response alternate continuously.

The master sends commands to the slave. The slave device only sends data when requested by the master device.

The exchange of data follows a fixed routine. The process is always viewed from the point of view of the master device.

	The commands in the form of function codes are embedded in the trans- mitted data frame.
	The request contains a function code which represents a command to be executed by the slave device. The information required to execute the command is included in the transmitted data bytes.
	The error-checking bytes enable the slave device to check the integrity of the received data.
	The response from the slave device contains the function code of the re- quest as an "echo". The data bytes of the response are dependent upon the function code being used and are provided by the slave device. The error-checking bytes enable the master to check the validity of the re- ceived data.
	The structure of the data sent is determined by the Modbus protocol.
Modbus protocols	In general, there are 3 variants of the modbus protocol:
	 Modbus RTU Master-slave-communication, binary coded
	Modbus ASCII: Master-slave-communication, ASCII coded
	Madhua DI LIS: Dear to pear communication

Modbus PLUS: Peer-to-peer communication

The unit only supports the Modbus RTU protocol.

5.1.3 Modbus RTU protocol

5.1.3.1 Modbus RTU message

A Modbus message is also designated as a data frame or telegram. If the message is addressed to a slave device then it is called sending data frame or request. In reply to this request, this device sends a response, the reception data frame.

A Modbus RTU data frame consists of the following fields:

Field name	Description	Number of bytes
<slaveadr></slaveadr>	Slave address	1
<fc></fc>	Function code	1
<data></data>	Data	n (High-Byte, Low-Byte)
<crc></crc>	Checksum	2 (Low-Byte, High-Byte)

Table 5.1 Fields of a Modbus RTU message

<SlaveAdr> <FC> <Data> <CRC>

The beginning and the end of a data frame are detected by a time condition. An interruption of 3.5 characters means that the data frame is completed and that the next character is to be interpreted as a slave address. As a result, a data frame must be sent as a continuous data stream. In the event of an interruption of more than 1.5 characters the data will be rejected by the receiver.

5.1.3.2 Request and response in the Modbus RTU

Request and response have an analogue structure.

If an error occurs on receipt of the request or the slave device cannot execute the action, the slave device sends an error message as the response.

5.1.3.3 Fields of a Modbus RTU data frame

- *<SlaveAddr>* The device address identifies the target device. It is the same in the query and in the response.
 - <FC> The function code determines which Modbus service the slave device should carry out. The function code is the same in both the request and in the response.
 - <Data> Whether a data field is contained in the data frame and its length, is dependent upon the function code being used. The relevant control and action commands for the specific function code are in the data field of a request. The data field of the response contains the data which was requested by the master, depending upon the function code. It can also include an error message.
 - <CRC> For error-checking with Modbus RTU the "Cyclic Redundancy Checksum" (CRC) is formed from the transferred fields <SlaveAdr>, <FC> and <Data>. It comprises a CRC16 with a generator polynome A001_h, which is calculated from the algorithm shown in the following illustration.

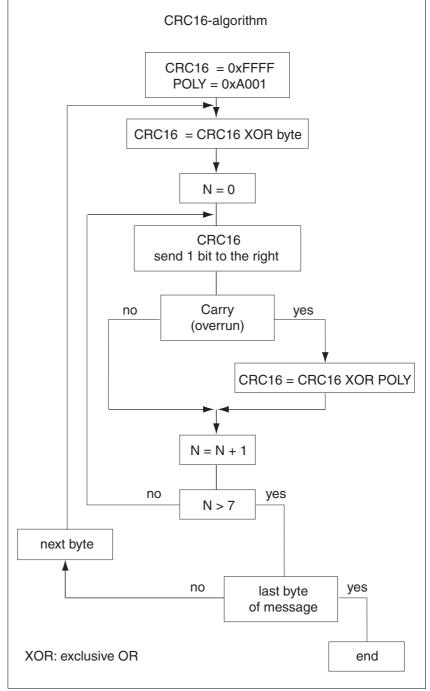


Figure 5.1 CRC16 algorithm

5.2 Function codes

The function codes (function codes, FC) permit the initiation of various communication mechanisms (services) which are provided by the modbus protocol. The following table provides an overview of the function codes implemented in the unit.

FC	Modbus meaning	Unit meaning
3	Read Multiple Registers	Read n Parameter
8	Diagnostics	Diagnostics
16	Write Multiple Registers	Write n Parameter
23	Read/Write Multiple Registers	Read Write n Parameter
43 Subcode14	Read Schneider Identification	-

5.2.1 FC 3 (Read Multiple Registers)

With this function code, it is possible to read "n" sequential parameters from any address from the device.

Field	Bytes	Value	Description
FC	1	3 = 03 _h	Request code
1. ReadingAddress	2	(various)	Address of the first parameter to be read
NumberParameter	2	2 * n	Number of 16-bit parameters to be read.

Structure of the positive response <FC> <NumberBytes> <Data>

Field	Bytes	Value	Description	
FC	1	3 = 03 _h	Response code	
NumBytes	1	4 * n	Number of data bytes	
Data	4 * n	(various)	n read parameter values	

Structure of the negative response see chapter 6.2 "Protocol errors"

Example for Premium in PL7

Read out the current motor position:

The Modbus parameter address for the current position (_p_act) is 7700 (16#1E14). The following command calls the service "Read Multiple Registers" (FC 3). The current position is saved in %MW20, the result of the execution of the function from %MW30.

// Request 2 words from the parameter address 16#1E14
from the device with the address (ADR)
READ_VAR (ADR, '%MW', 16#1E14, 2, %MW20:2, %MW30:4);

All parameters are sent as 4 byte wide values (32Bit). A list of all the parameters can be found in the product manual under the chapter "Parameters".

5.2.2 FC 8 (Diagnostics)

This function code allows diagnostics data to be read by the slave.

	Structure of request:	uest: <fc> <subfunction> <data></data></subfunction></fc>		
Field	Bytes	Value	Description	
FC	1	8 = 08 _h	Request code	
Subfunction	2	(various)	Subfunction (see)Table 5.2)	
Data	2	(various)	Data (depending on subfunction)	

Structure of the positive response: <FC> <Subfunction> <Data>

Field	Bytes	Value	Description	
FC	1	8 = 08 _h	Response code	
Subfunction	2	(various)	Subfunction (see)Table 5.2)	
Data	2	(various)	Requested diagnostics data	

Structure of the negative response see chapter 6.2 "Protocol errors"

Subfunctions The following subfunctions are provided by the Modbus protocol:

Code	Subfunction	device-specific function	
00	Return Query Data	Return request as response	
01	Restart Communication Option	Re-initialise the communication port	
02	Return Diagnostic Register	Provide the error number in the event of synchronous errors	
03	(reserved)	_	
04	Force Listen Only Mode	Mute slave	
0509	(reserved)	_	
10	Clear Counters and Diag- nostic Register	Reset all statistical counters	
11	Return Bus Message Count	Show the number of received messages	
12	Return Bus Communication Error Count	Show number of detected LRC errors	
13	Return Bus Exception Error Count	Show number of detected exception errors	
14	(reserved)	_	
15	(reserved)	-	
16	Return Slave NAK Count	Show the number of detected "not-acknowledged" errors	
17	Return Slave Busy Count	Show the number of "Slave Busy" errors	
18	Return Bus Char Overrun Count	Show number of detected character overrun errors	
>18	(reserved)	_	

Table 5.2 Modbus subfunctions for FC 8

5.2.3 FC 16 (Write Multiple Registers)

This function code allows "m" sequential parameters from any address to be written on the device.

Structure of request: <FC> <1. WriteAddress> <NumberParameter> <NumberBytes> <Data>

Field	Bytes	Value	Description
FC	1	16 = 10 _h	Request code
1. WriteAddress	2	(various)	Address of the first parameter to be written
NumberParameter	2	2 * m	Number of parameters to be written
NumBytes	1	4 * m	Number of data bytes
Data	2 * m	(various)	m parameter values to be written

Structure of the positive response: <FC> <ParamAddress> <NumberParameter>

Field	Bytes	Value	Description	
FC	1	$16 = 10_{h}$	Response code	
ParamAddress	2	(various)	inverted from request	
NumberParameter	2	2	inverted from request	

Structure of the negative response

Example for Premium in PL7

see chapter 6.2 "Protocol errors"

▶ Write a target position (profile position mode):

The Modbus parameter address for the target position PPp_targetusr is 6940 (16#1B1C). The following command calls the Modbus service "Write Multiple Registers" (FC 16). The target position is in %MW25, the result of the execution of the function is saved from %MW35.

// Write 2 words into the parameter address 16#1B1C of the device with the address (ADR) WRITE_VAR (ADR, '%MW', 16#1B1C, 2, %MW25:2, %MW35:4);

All parameters are sent as 4 byte wide values (32Bit). A list of all the parameters can be found in the product manual under the chapter "Parameters".

5.2.4 FC 23 (ReadWrite Multiple Registers)

This function code allows data to be exchanged between master and slave device in reading and writing modes.

Structure of request:

<FC> <1. Read Address> <NumberParameter> <1. WriteAddress> <NumberParameter> <NumberParameter> <NumberBytes> <Data>

Field	Bytes	Value	Description
FC	1	23 = 17 _h	Function code
1. ReadingAddress	2	(various)	Address of the first parameter to be read
NumberParameter	2	2 * n	Number of 16-bit parameters to be read.
1. WriteAddress	2	(various)	Address of the first parameter to be written
NumberParameter	2	2 * m	Number of parameters to be written
NumBytes	1	4 * m	Number of data bytes
Data	4 * m	(various)	m parameter values to be written

Structure of the positive response: <FC> <NumberBytes> <Data>

Field	Bytes	Value	Description	
FC	1	23 = 17 _h	Response code	
NumBytes	1	2 * n	Number of data bytes	
Data	2 * n	n sequential	n read parameter values	

Structure of the negative response

see chapter 6.2 "Protocol errors"

All parameters are sent as 4 byte wide values (32Bit). A list of all the parameters can be found in the product manual under the chapter "Parameters".

FC 43 (Read Device Identification) 5.2.5

This function code allows data for device identification to be read out.

	Structure of request:	<fc> <mei></mei></fc>	<readdevid> <objid></objid></readdevid>
Field	Bytes	Value	Description
FC	1	$43 = 2B_{h}$	Function code
MEI	1	$14 = 0E_{h}$	Modbus Encapsulated Interface Type(subfunction)

01

0x00

Structure of the positive response:

1

1

ReadDevID

ObjID

<FC> <MEI> <ReadDevID> <ConfLev><MoreFoll><NextObjID><NumbObj><Data>

Object IDvendor name, product code, revision

Read Device ID Codeall objects

Field	Bytes	Value	Description	
FC	1	$43 = 2B_{h}$	Function code	
MEI	1	$14 = 0E_{h}$	Modbus Encapsulated Interface Type(subfunction)	
ReadDevID	1	01	Read Device ID Codeall objects	
ConfLev	1	02	Conformity Levelfixed value	
MoreFoll	1	00	More Followsfixed value, because message frame length < 255	
NextObjID	1	00	Next Object IDfixed value because of MoreFoll = 00	
NumbObj	1	03	Number of objects	
Data	1	(various)	Object ID (1 byte, see following table)Object Length (1 byte)Object data (various)	

The following identification data can be read:

Object ID	Object Name	Value
00 _h	vendor name	Manufacturer name
01 _h	product code	"xxxxxxxxxxx" (see type code
03 _h	revision	"Vxx.yyy" (e.g.: "V02.001")

Structure of the negative response see chapter 6.2 "Protocol errors"

5.3 Examples of function codes FC

In general: parameters are always read or written individually.

Exception: If Modbus parameter addresses are located sequentially (Modbus address, Modbus address+2), it is sufficient to have one request for the transmission of the values.

Example 1 Read an error register entry -> FLT_err_num (15362) / FLT_class (15364) / FLT_Time (15366) / FLT_Qual (15368). Since all the error information has Modbus addresses in ascending sequence, one read request as follows is sufficient:

Field	Bytes	Value	Description
FC (Request Code)	1	3	Request code (Multiple Register READ)
ParamAddress	2	15362dec (3C02 _h)	First parameter address to be read
NumberParameter	2	4 * 2 = 8	Number of 16-bit parameters to be read = 8, i. e. read 16 byte data

Table 5.3 Example 1, FC3 Request

Field	Bytes	Value	Description
FC (Request Code)	1	3	Request code Multiple Register READ
NumBytes	1	16	Number of bytes: 8 Byte Data
Data	16	32Bit value 32Bit value 32Bit value 32Bit value	FLT_err_num, 15362 (error number) FLT_class, 15364 (error class) FLT_Time, 15366 (time of error) FLT_Qual, 15368 (error identification)

Table 5.4 Example 1, FC3 Positive Response

Example 2 Write the software limit switch -> SPVswLimPusr (1544)/ SPVswLimNusr(1546).

Since these parameters also are located one after the other (Modbus address, Modbus address+2), a write command can be used:

Field	Bytes	Value	Description
FC (Request Code)	1	16	Request code (Multiple Register WRITE)
ParamAddress	2	1544dec (608 _h)	First parameter address to be written
NumberParameter	2	2 * 2 = 4	Number of parameters = 4 (8 bytes data)
NumBytes	1	8	Number of bytes: 8 bytes data
Data	8	32Bit value 32Bit value	SPVswLimPusr, 1544 SPVswLimNusr, 1546

Table 5.5 Example 2, FC16 Request

Field	Bytes	Value	Description
FC (Request Code)	1	16	Response code (Multiple Register WRITE)
ParamAddress	2	1544dec (608 _h)	Modbus parameter address
NumberParameter	2	2 * 2 = 4	Number of parameters = 4 (8 bytes data)

Table 5.6 Example 2, FC16 Positive Response

5.4 Examples for standardised operating modes

5.4.1 Profile position operating mode

Example Node address 1.

Description Fieldbus command / parameter name (address)	Value
 Acceleration ramp 2000 rpm*s FC16 / RAMPacc (1556) 	0000 07D0
 Delay ramp 4000 rpm*s FC16 / RAMPdecel (1558) 	0000 0FA0 _r
 Limit set speed 6000 rpm FC16 / RAMPn_max (1554) 	0000 1770 _h
 Set speed 4000 rpm FC16 / PPn_target (6942) 	0000 0FA0 _h
 Disable Voltage FC16 / DCOMcontrol (6914) 	0000 0000 _h
 Shut Down FC16 / DCOMcontrol (6914) 	0000 0006 _h
 Operation Enable FC16 / DCOMcontrol (6914) 	0000 000F _h
 Checking operating status ¹⁾ FC 3 / DCOMstatus (6916) 	
 Operation state active 	0000 0007 _h
 Start operating mode FC16 / DCOMopmode (6918) 	0000 0001 _h
 Checking operating mode ¹⁾ FC 3 / _DCOMopmd_act (6920) 	
 Operating mode active 	0000 0001 _h
 Store new set position FC16 / PPp_targetusr (6940) 	0000 0030 _h
 Start absolute positioning FC16 / DCOMcontrol (6914) 	0000 005F _h
 Checking target position ¹⁾ FC 3 / DCOMstatus (6916) 	
✓ Target position reached (Bit 10 = 1)	xxxx x4xx _h
 Reset start bit FC16 / DCOMcontrol (6914) 	0000 000Fh

5.4.2 Operating mode Profile velocity

Example

Description Fieldbus command / parameter name (address)	Value
 Acceleration ramp 2000 rpm*s FC16 / RAMPacc (1556) 	0000 07D0h
 Delay ramp 10000 rpm*s FC16 / RAMPdecel (1558) 	0000 2710 _h
 Limit set speed 10000 rpm FC16 / RAMPn_max (1554) 	0000 2710 _h
 Disable Voltage FC16 / DCOMcontrol (6914) 	0000 0000 _h
 Shut Down FC16 / DCOMcontrol (6914) 	0000 0006 _h
 Operation Enable FC16 / DCOMcontrol (6914) 	0000 000Fh
 Checking operating status ¹⁾ FC 3 / DCOMstatus (6916) 	
 Operation state active 	0000 0007 _h
 Start operating mode FC16 / DCOMopmode (6918) 	0000 0003 _h
 Checking operating mode ¹⁾ FC 3 / _DCOMopmd_act (6920) 	
 Operating mode active 	0000 0003 _h
 Transmission set speed 1000 rpm FC16 / PVn_target (6938) 	0000 03E8h
 Checking target speed ¹⁾ FC 3 / DCOMstatus (6916) 	
⊲ Target position reached (Bit 10 = 1)	xxxx x4xx _h
 Transmission set speed 0 rpm FC16 / PVn_target (6938) 	0000 0000 _h
 Checking target speed ¹⁾ FC 3 / DCOMstatus (6916) 	
⊲ Target position reached (Bit 10 = 1)	xxxx x4xx _h

5.4.3 Operating mode Homing

Example Node address 1.

Description Fieldbus command / parameter name (address)	Value
 Set speed for displacement to limit switch 100 rpr FC16 / HMn (10248) 	n 0000 0064 _h
 Set speed for free displacement 10 rpm FC16 / HMn_out (10250) 	0000 000A _h
 Disable Voltage FC16 / DCOMcontrol (6914) 	0000 0000 _h
 Shut Down FC16 / DCOMcontrol (6914) 	0000 0006 _h
 Operation Enable FC16 / DCOMcontrol (6914) 	0000 000Fh
 Checking operating status ¹⁾ FC 3 / DCOMstatus (6916) 	
Operation state active	0000 0007 _h
 Start operating mode FC16 / DCOMopmode (6918) 	0000 0006 _h
 Checking operating mode ¹⁾ FC 3 / _DCOMopmd_act (6920) 	
Operating mode active	0000 0006 _h
 Select reference displacement method, LIMN (17 FC16 / HMmethod (6936)) 0000 0011 _h
 Start homing FC16 / DCOMcontrol (6914) 	0000 001F _h
 Checking homing ¹⁾ FC 3 / DCOMstatus (6916) 	
Drive has a valid reference point (Bit 12 = 1)	xxxx 1xxx _h
 Reset start bit FC16 / DCOMcontrol (6914) 	0000 000Fh

5.5 Examples of manufacturer specific operating modes

5.5.1 Current control mode.

Example Node address 1.

Fieldbus command / parameter name (address)	Value
Disable Voltage	0000 0000
FC16/DCOMcontrol (6914)	0000 0000 _h
Shut Down	
FC16/DCOMcontrol (6914)	0000 0006 _h
Operation Enable	
FC16/DCOMcontrol (6914)	0000 000Fh
Checking operating status ¹⁾	
FC 3 / DCOMstatus (6916)	
 Operation state active 	0000 0007 _h
 Start operating mode (-3) 	
FC16 / DCOMopmode (6918)	FFFF FFFD _h
Checking operating mode ¹⁾	
FC 3 / _DCOMopmd_act (6920)	
 Operating mode active 	FFFF FFFD _h
Default set value via parameter	
FC16/CURreference (6944)	0000 0002 _h
 Transfer set current 1000 (10A) 	
FC16/CUR_I_target (8200)	0000 03E8h

5.5.2 Speed control operating mode

Example Node address 1.

Description Fieldbus command / parameter name (address)	Value
 Disable Voltage FC16 / DCOMcontrol (6914) 	0000 0000 _h
 Shut Down FC16 / DCOMcontrol (6914) 	0000 0006 _h
 Operation Enable FC16 / DCOMcontrol (6914) 	0000 000Fh
 Checking operating status ¹⁾ FC 3 / DCOMstatus (6916) 	
 Operation state active 	0000 0007 _h
 Start operating mode (-4) FC16 / DCOMopmode (6918) 	FFFF FFFC _h
 Checking operating mode ¹⁾ FC 3 / _DCOMopmd_act (6920) 	
 Operating mode active 	FFFF FFFC _h
 Default set value via parameter FC16 / SPEEDreference (6946) 	0000 0002 _h
 Transmission set speed 1000 rpm FC16 / SPEEDn_target (8456) 	0000 03E8h

5.5.3 Electronic gearbox operating mode

Example	Node address 1.
Encampio	11000 000 11

Fieldbus command / parameter name (address)	Value
 Signal interchange position interface FC16 / IOposInterfac (1284) 	0000 0001 _h
 Disable Voltage FC16 / DCOMcontrol (6914) 	0000 0000 _h
 Shut Down FC16 / DCOMcontrol (6914) 	0000 0006 _h
 Operation Enable FC16 / DCOMcontrol (6914) 	0000 000Fh
 Checking operating status ¹⁾ FC 3 / DCOMstatus (6916) 	
Operation state active	0000 0007 _h
 Start operating mode (-2) FC16 / DCOMopmode (6918) 	FFFF FFFE
 Checking operating mode ¹⁾ FC 3 / _DCOMopmd_act (6920) 	
Operating mode active	FFFF FFFE
 Gearbox activation with immediate synchronisation FC16 / GEARreference (6948) 	0000 0001 _h
 Transfer denominator FC16 / GEARdenom (9734) 	0000 0003 _h
 Transfer numerator FC16 / GEARnum (9736) 	0000 0002 _h

5.5.4 Jog mode

Example	Node address 1.	
	Description Fieldbus command / parameter name (address)	Value
	 Speed slow displacement to 100 rpm FC16 / JOGn_slow (10504) 	0000 0064 _h
	 Speed fast displacement to 250 rpm FC16 / JOGn_fast (10506) 	0000 00FA _h
	 Disable Voltage FC16 / DCOMcontrol (6914) 	0000 0000 _h
	 Shut Down FC16 / DCOMcontrol (6914) 	0000 0006 _h
	 Operation Enable FC16 / DCOMcontrol (6914) 	0000 000Fh
	 Checking operating status ¹⁾ FC 3 / DCOMstatus (6916) 	
	⊲ Operation state active	0000 0007 _h
	 Start operating mode (-1) FC16 / DCOMopmode (6918) 	FFFF FFFF _h
	 Checking operating mode ¹⁾ FC 3 / _DCOMopmd_act (6920) 	
	 Operating mode active 	FFFF FFFF _h
	 Jog (clockwise rotation, slow) FC16 / JOGactivate (6930) 	0000 0001 _h
	 Jog (clockwise rotation, fast) FC16 / JOGactivate (6930) 	0000 0005 _h

5.6 Connection monitoring

	A WARNING
	LOSS OF CONTROL
	• Enable the timeout function. Without timeout the system will not detect interruptions in the communication connection.
	• The shorter the timeout period the faster the detection of the interruption.
	Failure to follow these instructions can result in death, se- rious injury or equipment damage.
	Two types of monitoring are continuously in operation on the master and slave side to monitor error-free data exchange:
	Timeout monitoring
	Received character check
<i>Timeout monitoring</i>	A timeout can be set on the slave side, specifying the time within which the master must re-contact (node guarding). If no contact is received from the master within this time period, the device will stop the process initiated by the fieldbus and will initiate a "Quick Stop".
	The time interval for the timeout message can be set with the paramete MBnode_guard (5644). Value range:
	=0: Node guarding switched off (factory setting) >0: Node guarding in ms (milliseconds)
	If the timeout monitoring is not used, then an interruption of the communication does not produce an error message. The control system continues to perform the last transmitted command.
	Use the timeout function during normal network operation. The timeour monitoring can be switched off during troubleshooting. The device manufacturer must then provide alternative control paths for stopping and controlling the motor.
Received character check	The unit checks a fieldbus command for transmission errors. If the transmission data could not be correctly received, e.g. because of a parity e ror, an acknowledgement is not generated and the master detects a

timeout.

6 Diagnostics and troubleshooting

In troubleshooting, there are two error types to be distinguished:

- Communication errors (serial transmission errors),
- Protocol errors (specific to Modbus),

6.1 Communication errors

Communication errors include:

- character timeout (time exceeded during transmission of characters),
- parity errors,
- framing errors (error in data frame),
- overrun errors (overrun in receive register of the serial module).

If one of these errors arises, the unit no longer responses. The master generates a timeout error.

6.2 Protocol errors

With all protocol errors the response is sent as an exception code. The response has the same function code as the normal response, but, in addition, the "MSB" is set. The function code is followed by a 1-byte wide exception code.

Structure of the negative response For FC3, FC8, FC16, FC23: <FC> <ExcpCode>

For FC43: <FC> <MEI> <ExcpCode>

Field	Bytes	Value	Meaning
FC	1	$\begin{array}{c} FC + 128 \ (80_h) \\ 03_h + 80_h = 83_h \\ 08_h + 80_h = 88_h \\ 10_h + 80_h = 90_h \\ 17_h + 80_h = 97_h \\ 2B_h + 80_h = AB_h \end{array}$	Response code for errors FC3 FC8 FC16 FC23 FC43
MEI (only FC43)	1	14	Modbus Encapsulated Interface Type(subfunc- tion)
ExcpCode	1	01 _h 04 _h	$01_{h} = Invalid function$ $02_{h} = Invalid data addresses$ $03_{h} = Invalid data$ $04_{h} = Slave unit error$

6.3 Troubleshooting

6.3.1 Synchronous errors

Synchronous errors only occur in response to a command. When a command is sent, it is immediately checked whether it can be correctly executed. If this is not the case, the unit sends an exception code as a return message to the command. The actual error which has occurred can be read out using the diagnostics function, see page 5-6.

Causes of error Possible causes of a synchronous error are:

- Unknown command, syntax error or incorrect transmitting data frame
- Parameter value outside the permissible value range
- Non-permissible action or control command during a running process.
- Error while executing an action or control command.

The table with the error numbers is in the manual in the chapter on diagnostics and troubleshooting.

6.3.2 Asynchronous errors

Asynchronous errors Asynchronous errors are reported by the monitoring devices of the unit as soon as a unit error occurs. An a synchronous error is signalled via bit 3, "Fault" of the parameter DCOMstatus (6041_h). For errors that cause a displacement interruption the unit sends an EMCY message.

7 Service, maintenance and disposal

Information concerning service, maintenance, and disposal can be obtained from the corresponding product manual.

8 Glossary

8.1 Terms and Abbreviations

Actual position	Current absolute or relative position of moving components in the drive system.
Address	Memory location which can be accessed by its unique number. See also Slave address.
API	Application Program Interface
ASCII	American Standard Code for Information Interchange; Standard for co- ding text characters
Asynchronous error	Error detected and reported by the internal controller monitoring equip- ment.
CRC	Cyclical Redundancy Check, error checking
Data frame	Serially transmitted data packet with unique start and end identification. The structure depends on the protocol in use.
Default value	Factory settings.
Direction of rotation	Rotation of the motor shaft in a positive or negative direction of rotation. A positive direction of rotation is defined as the motor shaft rotating clo- ckwise as the observer faces the end of the protruding shaft.
Drive system	The drive system consists of the controller, power amplifier and motor.
Electronic gear	An input speed is recalculated by the drive system using the values of an adjustable gear factor to derive a new output speed for the motor movement.
EMC	Electromagnetic compatibility
Error class	Classification of operational faults into groups corresponding to the error responses
Field	Bytes of a message that belong together because of their content.
Fieldbus	A bus optimised for data transmission between field devices. A Fieldbus is "open", meaning that it is not proprietary (not supported by only one manufacturer). The parameter settings of the drive system can be called and modified via the Fieldbus, inputs can be monitored and outputs con- trolled and diagnosis and error monitoring functions enabled.
Half duplex	Bidirectional data transmission in which only one user can transmit at any time.
HMI	Human Machine Interface, handheld operating unit.
l ² t-monitoring	Predictive temperature monitoring. The expected temperature rise of unit components is calculated in advance on the basis of the motor cur- rent. If a limit value is exceeded, the drive system reduces the motor cur- rent.
I/O	Inputs/Outputs
Inc	Increment

Incremental signals	Angular steps of an encoder in the form of square-wave pulse se- quences. Relative changes in position are signalled by the number of pulses contained in the pulse sequence.
Index pulse	Encoder signal for referencing the rotor position in the motor. The enco- der sends one index pulse per revolution.
LED	Light-Emitting Diode
Limit switch	Switch that signals an overrun of the permissible travel range.
LRC	Longitudinal Redundancy Check, error checking
LSB	Least Significant Bit, the least significant bit of a bit sequence, e.g. of a byte
Master	Active bus user that controls the data traffic in the network.
Node Guarding	Monitoring function with slave at an interface for cyclic communication.
Parameter	Device functions and values that can be set and called by the user.
Power amplifier	A device that generates current for controlling the motor in accordance with the positioning signals from the controller.
PC	Personal Computer
PLC	Programmable Logic Controller
Profibus	Standardised open fieldbus compliant with EN 50254-2 over which drives and other devices from different manufacturers communicate with one another.
Protocol	Guideline that specifies the format required for transmitting data.
PWM	Pulse Width Modulation
Quick Stop	Quick stop, function used to provide quick braking of the motor via a command or in the event of a fault.
Register	Memory range of specified size (generally 8, 16 or 32 bits) for temporary storage of data transmitted from one system unit to another.
RS485	Fieldbus interface compliant with EIA-485, which enables serial data transmission with multiple devices.
RTU	Remote Terminal Unit
Slave	Passive bus user that receives control commands and sends data to the master.
Slave address	Direct communication between master and slave devices is only pos- sibly after assignment of addresses.
Synchronous errors	Error reported by the controller if it is unable to execute a command sent by the master.
Timeout	Error caused by exceeding the maximum allowable time between query and response of devices.
Watchdog	Equipment that monitors cyclic basic functions in the drive system. Po- wer amplifier and outputs are switched off in the event of error.

9 Index

Α

Abbreviations 8-1 Asynchronous errors 6-2

В

Baud rate 4-2

С

Character check 5-19 Commissioning 4-1 Communication errors 6-1 Connection monitoring 5-19 Current control example 5-15

D

```
Data bits 4-2
Data frame 5-3
device address 5-1
Diagnostics 5-6, 6-1
Directives and standards 1-1
Disposal 7-1
```

Ε

Electronic gearbox example 5-17 Example current control 5-15 Electronic gearbox 5-17 Function codes FC 5-10 Homing 5-14 jog 5-18 profile position 5-12 Profile velocity 5-13 speed control 5-16

F

Factory settings 4-2 Fields, data frame 5-3 Function codes 5-5 Function tests 4-4

G

Glossary 8-1

Η

Homing example 5-14

Intended use 2-1 Introduction 1-1

J

Jog example 5-18

Μ

Maintenance 7-1 Master 5-1 Messages asynchronous errors 6-2 Modbus message 5-3 Modbus network 5-1 Modbus transmission technology 5-1

Ν

Network operation 4-4 Node address 4-2 Node guarding 4-3

0

Operation 5-1

Ρ

Parameter addresses, hexadecimal, decimal 5-1 parity 4-2 Profile position example 5-12 Profile velocity example 5-13 Protocol errors 6-1 Protocols for the modbus, in general 5-2

Q

Qualifications, personnel 2-1

R

Read Device Identification 5-9 Read Multiple Registers 5-5 Read Write Multiple Registers 5-8 Request 5-2, 5-3 Response 5-2, 5-3

S

Semi-duplex operation 4-2 Service 7-1 Settings 4-2 Slave 5-1 Speed control example 5-16 stop bits 4-2 Synchronous errors 6-2

Т

Telegram 5-3 Terms 8-1 Timeout 5-19 Transmission format 4-2 Troubleshooting 6-1

W

Word sequence 4-3 Write Multiple Registers 5-7