


# **Technical Documentation**



Fieldbus manual

Fieldbus protocol for Servodrive LXM05B

# Profibus DP V0 USA

Document: BLMT00007 Edition: V1.1, 04.2007



# Important information

The drive systems described here are products for general use that conform to the state of the art in technology and are designed to prevent any dangers. However, drives and drive controllers that are not specifically designed for safety functions are not approved for applications where the functioning of the drive could endanger persons. The possibility of unexpected or unbraked movements can never be totally excluded without additional safety equipment. For this reason personnel must never be in the danger zone of the drives unless additional suitable safety equipment prevents any personal danger. This applies to operation of the machine during production and also to all service and maintenance work on drives and the machine. The machine design must ensure personal safety. Suitable measures for prevention of property damage are also required.

See safety section for additional critical instructions.

#### Not all product variants are available in all countries.

Please consult the current catalogue for information on the availability of product variants.

We reserve the right to make changes during the course of technical developments.

All details provided are technical data and not promised characteristics.

In general, product names must be considered to be trademarks of the respective owners, even if not specifically identified as such.

# **Table of Contents**

|   | Importa                                          | nt information                                                                                                                                                      | 2                        |
|---|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|   | Table o                                          | f Contents                                                                                                                                                          | 3                        |
|   | Writing                                          | conventions and symbols                                                                                                                                             | 5                        |
| 1 | Introdu                                          | ction                                                                                                                                                               |                          |
|   | 1.1                                              | Documentation and literature references                                                                                                                             | 1-1                      |
|   | 1.2                                              | Directives and standards                                                                                                                                            | 1-1                      |
| 2 | Safety                                           |                                                                                                                                                                     |                          |
|   | 2.1                                              | Qualification of personnel                                                                                                                                          | 2-1                      |
|   | 2.2                                              | Intended use                                                                                                                                                        | 2-1                      |
|   | 2.3                                              | General safety instructions                                                                                                                                         | 2-2                      |
| 3 | Basics                                           |                                                                                                                                                                     |                          |
|   | 3.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5 | Profibus technology<br>Profibus transmission technology<br>Network topology<br>Access procedures<br>Transmission technology in the network<br>Device identification | 3-1<br>3-1<br>3-1        |
|   | 3.2                                              | Fieldbus devices in the Profibus-DP network                                                                                                                         | 3-3                      |
|   | 3.3                                              | Operating modes and functions                                                                                                                                       | 3-3                      |
| 4 | Installa                                         | tion                                                                                                                                                                |                          |
|   | 4.1<br>4.2                                       | Electromagnetic compatibility, EMC                                                                                                                                  |                          |
| 5 | Commis                                           | ssioning                                                                                                                                                            |                          |
|   | 5.1                                              | Requirements for commissioning                                                                                                                                      | 5-1                      |
|   | 5.2                                              | Initiating network operation                                                                                                                                        | 5-2                      |
|   | 5.3                                              | Running function test.                                                                                                                                              |                          |
| 6 | Operati                                          | on                                                                                                                                                                  |                          |
|   | 6.1                                              | Profibus parameters                                                                                                                                                 | 6-1                      |
|   | 6.2<br>6.2.1<br>6.2.2<br>6.2.3                   | Profibus communication profile Profibus DP V0 communication Data structure                                                                                          | 6-1<br>6-1<br>6-2<br>6-3 |

|    | 6.3<br>6.3.1<br>6.3.2                            | Parameter channel                                                                                                                                                     |
|----|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 6.4<br>6.4.1<br>6.4.2                            | Process data channel                                                                                                                                                  |
|    | 6.5<br>6.5.1                                     | PLC as a fieldbus master device 6-16<br>Response with special master commands 6-18                                                                                    |
| 7  | Exampl                                           | es                                                                                                                                                                    |
|    | 7.1                                              | Overview of examples                                                                                                                                                  |
|    | 7.2<br>7.2.1<br>7.2.2<br>7.2.3                   | Use of the parameter channel                                                                                                                                          |
|    | 7.3<br>7.3.1<br>7.3.2<br>7.3.3                   | Operating states in the process data channel7-3Switch power amplifier on and off7-4Trigger Quick Stop7-5Fault reset7-6                                                |
|    | 7.4<br>7.4.1<br>7.4.2<br>7.4.3<br>7.4.4<br>7.4.5 | Operating modes in the process data channel7-7Absolute positioning7-8Relative positioning7-9Profile velocity7-10Homing by dimension setting7-11Reference movement7-12 |
|    | 7.5<br>7.5.1<br>7.5.2                            | Error signalling in process data channel                                                                                                                              |
| 8  | Service                                          | , maintenance and disposal                                                                                                                                            |
|    | 8.1                                              | Replacing units                                                                                                                                                       |
| 9  | Diagnos                                          | stics and troubleshooting                                                                                                                                             |
|    | 9.1                                              | Fieldbus communication error diagnosis                                                                                                                                |
|    | 9.2<br>9.2.1<br>9.2.2<br>9.2.3                   | Error messages9-2Synchronous errors9-2Asynchronous errors9-3Errors during operating mode control9-3                                                                   |
| 10 | Glossa                                           | ry                                                                                                                                                                    |
|    | 10.1                                             | Terms and Abbreviations 10-1                                                                                                                                          |
| 11 | Index                                            |                                                                                                                                                                       |

# Writing conventions and symbols

*Work steps* If work steps must be carried out in sequence, they are shown as follows:

- Special prerequisites for the following work steps
- Step 1
- ⊲ Important response to this work step
- Step 2

If a response to a work step is specified, this will inform you that the step has been carried out correctly.

Unless otherwise stated, the individual instruction steps must be carried in the given sequence.

- *Lists* Lists can be sorted alphanumerically or by priority. Lists are structured as follows:
  - Point 1
  - Point 2
    - Subpoint to 2
    - Subpoint to 2
  - Point 3

Making work easier

Information on making work easier can be found at this symbol:



This offers supplementary information on making work easier. See the chapter on safety for an explanation of the safety instructions.

#### Introduction 1

The Profibus is a serial fieldbus system in which products from different manufacturers can be networked without the need for special interface adaptation.

This manual describes the online command processing for products in the Profibus-DP V0 fieldbus network.

#### 1.1 **Documentation and literature references**

Documentation In addition to this fieldbus manual, the following manuals belong to the AC servo drive LXM05B:

- Product manual, describes the technical data, installation, commissioning and all operating modes and operating functions.
- Motor manual, describes the technical properties of the motors, including correct installation and commissioning.
- Literature PROFIBUS Specification (FMS, DP, PA); Profibus User Organisa-٠ tion
  - Popp, M: PROFIBUS-DP/DPV1; Grundlagen, Tipps und Tricks für Anwender [Basics, Tips and Tricks for Users]; ISBN 3-7785-2781-9

#### **Directives and standards** 1.2

| Regulations, standards        | • DIN 19245, Parts 1 to 3: PROFIBUS-FMS                                                                                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                               | EN50170, fieldbus standard                                                                                                      |
| Profibus User Association     | Profibus Nutzerorganisation e.V. (PNO)<br>Interessenvertretung der Profibusanwender<br>Haid-und-Neu-Str. 7<br>D-76131 Karlsruhe |
| Profibus international in the | http://www.profibus.com                                                                                                         |

Internet

# 2 Safety

## 2.1 Qualification of personnel

Only technicians who are familiar with and understand the contents of this manual and the other relevant manuals are authorised to work on and with this drive system. The technicians must be able to detect potential dangers that may be caused by setting parameters, changing parameter values and generally by the mechanical, electrical and electronic equipment.

The technicians must have sufficient technical training, knowledge and experience to recognise and avoid dangers.

The technicians must be familiar with the relevant standards, regulations and safety regulations that must be observed when working on the drive system.

### 2.2 Intended use

The drive systems described here are products for general use that conform to the state of the art in technology and are designed to prevent any dangers. However, drives and drive controllers that are not specifically designed for safety functions are not approved for applications where the functioning of the drive could endanger persons. The possibility of unexpected or unbraked movements can never be totally excluded without additional safety equipment. For this reason personnel must never be in the danger zone of the drives unless additional suitable safety equipment prevents any personal danger. This applies to operation of the machine during production and also to all service and maintenance work on drives and the machine. The machine design must ensure personal safety. Suitable measures for prevention of property damage are also required.

In the system configuration described the drive systems must be used in industrial applications only and must have a fixed connection only.

In all cases the applicable safety regulations and the specified operating conditions, such as environmental conditions and specified technical data, must be observed.

The drive system must not be commissioned and operated until completion of installation in accordance with the EMC regulations and the specifications in this manual.

To prevent personal injury and damage to property damaged drive systems must not be installed or operated.

Changes and modifications of the drive systems are not permitted and if made all no warranty and liability will be accepted.

The drive system must be operated only with the specified wiring and approved accessories. In general, use only original accessories and spare parts.

The drive systems must not be operated in an environment subject to explosion hazard (ex area).

# 2.3 General safety instructions

# 

#### **RISK OF INJURY BY COMPLEX SYSTEM**

When the system is started the drives are generally out of the operator's view and cannot be visually monitored.

 Only start the system if there are no persons in the operating zone of the moving components and the system can be operated safely.

Failure to follow these instructions will result in death or serious injury.

# **A** WARNING!

#### LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link. \*
- Each implementation of LXM05\* must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury or equipment damade.

\* For additional information, refer to NEMA ICS 1.1 (latest edition), Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control and to NEMA ICS 7.1 (latest edition), Safety standards for Construction and Guide for Selection, Indtallation and Operation of Adjustable-Speed Drive Systems.

# ▲ CAUTION!

#### FAULTY CONTROL COMMANDS

If a PLC is used as the master unit, the exchange of data can lead to inconsistent transmission data as a result of fieldbus and PLC cycles not operating synchronously.

• Observe the notes concerning the operation using PLC.

Failure to follow these instructions can result in injury or equipment damage.

# 3 Basics

### 3.1 Profibus technology

#### 3.1.1 Profibus transmission technology

Profibus is available in three types that can be used for time.critical and complex communications tasks:

- Profibus-FMS
- Profibus-PA
- Profibus-DP

Profibus-FMS (FMS: Fieldbus Message Specification) is a universal, flexible solution for communications tasks in general automation technology. For example, FMS is used for communications between manufacturing cells.

Profibus-PA (PA: Process Automation) is primarily used in process technology, such as process automation. Profibus-PA networks are characterised by their ability to use sensors and actuators in explosionendangered areas, and to provide data communication and power to devices over the bus.

Profibus-DP (DP: Distributed Periphery) is the fast Profibus version. It is specially tailored for communications in manufacturing areas. Features include simple connection of new products into the bus and high transmission speeds.

The drive system with Profibus-DP described here supports various parameter message frames as per the Profibus-DP V0 specification.

#### 3.1.2 Network topology

A Profibus-DP network consists of one or more masters (active bus devices) and slaves (passive bus devices). All bus devices are linked together by the Profibus-DP network cable.

- Master The master controls the data traffic in the network. Examples for master:
  - automation devices, e.g. PLCs
  - PCs
  - programming devices
  - Slave They receive control commands and supply data to the master. Examples for slaves:
    - input/output modules
    - drive systems
    - sensors and actuators

### 3.1.3 Access procedures

There are two possible access procedures resulting from the arrangement of network devices on the bus:

- the Token-Passing method
- The Master-Slave method

the Token-Passing method The Token-Passing method is used between multiple master in a Profibus-DP network. The masters form a logical token ring in which every master receives transmission authorisation for a specified period.

*The Master-Slave method* Data is exchanged with the product with the master-slave method. The slave has a transmit and receive buffer through which it provides and receives data. The master reserves a memory area with a transmit and receive buffer for every slave.

Data exchange between master and slave is cyclical. The master device sends commands to the slave device and receives data back from the slave in the next cycle. The bus cycle is extended for transmission of repeat message frames only in case of fault

Drive systems are linked into the network as slaves, therefore they do not use the token passing system.

#### 3.1.4 Transmission technology in the network

Profibus-DP networks can be set up with optical waveguides or with RS-485 technology.

Drive systems work with RS-485 technology and are linked to a Profibus-DP network with two-wire cables.

RS485 technology RS485 technology is a simple method of transmission over two-wire twisted-pair cables. It can handle transmission rates from 9.6 kbit/s to 12 Mbit/s.

### 3.1.5 Device identification

Device master data file The specific features of a Profibus product are described in the device master data file (GSD file). This file is supplied with the product by the manufacturer and must be read by the network configuration programme. The GSD file contains all information on the operation of the product in the Profibus-DP network, such as manufacturer's specifications and product identification, supported baud rate, levels and meaning of plug signals, time intervals for monitoring times and product-specific values for network devices such as settings for inputs/outputs. The GSD file for this product is available for download from the Internet. Identity number A master device uses the ID number to identify the device class of the connected slave. The ID number is a unique number allocated for a specific device class by the Profibus user organisation. Slave address In the network every device must be allocated a unique address between 1 and 126. Slaves normally occupy the address space 3...126. The master (normally address 0...2) can contact every slave directly from this address. The exact setting of the address for the product described here is described in the product manual.

# 3.2 Fieldbus devices in the Profibus-DP network

Different fieldbus products can be operated in the same fieldbus segment. Profibus-DP provides a unified basis for exchanging commands and data between the network devices.

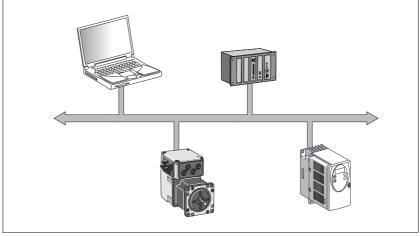



Figure 3.1 Fieldbus products in the network

# 3.3 Operating modes and functions

This manual only describes the protocol for fieldbus operation. Descriptions of operating modes, operating functions and all parameters can be found in the relevant product manual.

Setting options The following settings can be made over the fieldbus:

- Reading and writing parameters
- Monitoring inputs and outputs
- Diagnostics and error monitoring functions

|   | A WARNING                                                                                                                                                                                                                                                                                                                                             |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L | OSS OF CONTROL                                                                                                                                                                                                                                                                                                                                        |
| • | The designer of any control scheme must consider the poten-<br>tial failure modes of control paths and, for certain critical con-<br>trol functions, provide a means to achieve a safe state during<br>and after a path failure. Examples of critical control functions<br>are emergency stop and overtravel stop.                                    |
| • | Separate or redundant control paths must be provided for critical control functions.                                                                                                                                                                                                                                                                  |
| • | System control paths may include communication links. Con-<br>sideration must be given to the implications of unanticipated<br>transmission delays or failures of the link. *                                                                                                                                                                         |
| • | Each implementation of LXM05* must be individually and thor-<br>oughly tested for proper operation before being placed into<br>service.                                                                                                                                                                                                               |
|   | ailure to follow these instructions can result in death, se-<br>ous injury or equipment damade.                                                                                                                                                                                                                                                       |
|   | * For additional information, refer to NEMA ICS 1.1 (latest edi-<br>tion), Safety Guidelines for the Application, Installation, and<br>Maintenance of Solid State Control and to NEMA ICS 7.1 (latest<br>edition), Safety standards for Construction and Guide for Selec-<br>tion, Indtallation and Operation of Adjustable-Speed Drive Sys-<br>tems. |

# 4.1 Electromagnetic compatibility, EMC

The following measures are necessary for trouble-free fieldbus operation. They supplement the EMC measures in the product manual.

| EMC measures                                                                                                                                | Effect                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Use wiring with braided and foil shielding                                                                                                  | Discharge of interference currents                     |
| Fieldbus lines and signal lines must not be laid out in the same cable conduit as lines for DC and AC voltage over 60 V $^{1)}$             | Prevention of mutual interference                      |
| Recommendation: lay in separate conduits at least 20 cm (7.87 in) apart.                                                                    |                                                        |
| Use bonding conductors in system with<br>– wide-area installation<br>– different voltage infeed<br>– networking between different buildings | Discharge of interference currents                     |
| Use fine-core bonding conductors                                                                                                            | Deflect even high-frequency interference cur-<br>rents |
| Circuit breaker if there is danger of overvoltage or lightning strike                                                                       | Protection against damage by overvoltage               |

1) Fieldbus lines can be laid out in one conduit with signal and analogue lines

Table 4.1 EMC measures

*Equipotential bonding conductors* The shields are connected at both ends for fault protection. Potential differences can result in excessive currents on the shield and must be prevented by equipotential bonding conductor cables.

If lines over 100 m (328 feet) are approved, the following applies: up to 200 m (656 feet) length a cable cross section of 16 mm<sup>2</sup> (6 AWG) is sufficient, for greater lengths a cable cross section of 20 mm<sup>2</sup> (5 AWG) is required.

For more information please see the product manual.

## 4.2 **Profibus DP interface**

*Function* With the Profibus-DP interface you can connect the drive system to a Profibus network as a slave.

The drive system includes data and commands from a higher level bus device, the master. Status information such as operating status and processing status are sent to the master as acknowledgment.

Consult the product manual for the exact terminal assignments and the settings for the address and the terminating resistor.

# 5 Commissioning

# A DANGER

#### RISK OF INJURY BY COMPLEX SYSTEM

When the system is started the drives are generally out of the operator's view and cannot be visually monitored.

 Only start the system if there are no persons in the operating zone of the moving components and the system can be operated safely.

Failure to follow these instructions will result in death or serious injury.

# A WARNING

#### UNCONTROLLED SYSTEM OPERATION

- Do not write to reserved parameters.
- Do not write to parameters before you have understood the function. For more information see the product manual.
- Run the first tests without coupled loads.
- Make sure that the system is free and ready for the movement before changing parameters.
- Check the use of the bits during fieldbus communication: Bit 0 is far right (least significant). Bit 15 is far left (most significant).
- Check the use of the word sequence during fieldbus communication:
- Do not establish a fieldbus connection before you have understood the communications principles.

Failure to follow these instructions can result in death, serious injury or equipment damage.

# 5.1 Requirements for commissioning

The following components are required for commissioning:

- product with Profibus-DP interface
- GSD file on data medium
- Product manual for the described product
- manual for the Profibus-DP fieldbus (this manual)

Read the manuals carefully before commissioning and take particular note of the safety instructions!



Drivers for Siemens PLCs can be obtained from your local agent as required.

# 5.2 Initiating network operation

Network operation is started via a master. This can be a PLC or a PC with the appropriate user software with which commands can be sent and received data read.

## 5.3 Running function test

Test all functions that are important for your system. Run the function tests first with no coupled load. Also check the operating temperature under normal operation and the response of the system to power failure.

#### Steps for troubleshooting If the slave does not send a response, check the following settings:

- Is the product switched on and is the master started for network operation?
- Are all cable connections in good mechanical repair?
- Check the function of the fieldbus using both LEDs on the HMI: BUS-Run LED on, BUS-Error LED off ⇒ Fieldbus is functioning correctly
- Is the correct address set?

For more information on the cause of the error and troubleshooting see the product manual.

# 7 Examples

# 7.1 Overview of examples

|                                 | The program examples demonstrate practical applications for use on networks. There are generally two access methods over the Profibus field bus: via the parameter channel and the process data channel.                                                                                                                                                                                     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use of the parameter channel    | An access is always a write or read access on one single parameter. The<br>available parameters are described in the product manual. In this chap-<br>ter the use over the parameter channel is described for only a few pa-<br>rameters, because this type of communication can be used in unified<br>fashion for all available user parameters and is always structured very<br>similarly. |
| Use of the process data channel | The process data channel is recommended for the actual positioning<br>mode, because the information is transferred much more effectively<br>here. Various practical examples for application of the protocols suppor-<br>ted by the drive system are shown and the general procedure is descri-<br>bed.                                                                                      |
| Structure of the examples       | The following is shown in the examples:                                                                                                                                                                                                                                                                                                                                                      |
|                                 | description of task                                                                                                                                                                                                                                                                                                                                                                          |
|                                 | initial conditions                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | Required commands in the transmitted data frame                                                                                                                                                                                                                                                                                                                                              |
|                                 | Response in the received data frame                                                                                                                                                                                                                                                                                                                                                          |
|                                 | Possible restrictions for command execution.                                                                                                                                                                                                                                                                                                                                                 |
|                                 | You should be aware of the following to be able to reproduce the examples:                                                                                                                                                                                                                                                                                                                   |
|                                 | <ul> <li>Operating concept and functional scope of the drive system. For<br/>more information see your product manual.</li> </ul>                                                                                                                                                                                                                                                            |
|                                 | Fieldbus protocol and connection to the master                                                                                                                                                                                                                                                                                                                                               |
|                                 | Scope of function of the fieldbus profile.                                                                                                                                                                                                                                                                                                                                                   |
| Product manual                  | The examples are designed as a supplement to the function descripti-<br>ons in the product manual. The basic functions of the operating modes<br>and functions are described there in detail.                                                                                                                                                                                                |
|                                 | You will also find all parameters for the operating modes and functions and also the number format of the parameter values.                                                                                                                                                                                                                                                                  |

# 7.2 Use of the parameter channel

### 7.2.1 Write parameter

*Task* The parameter RAMPacc, 1556:00 (acceleration) must be set to the value 10,000.

Index and subindex must be converted to hexadecimal format for this purpose:

- Index:1556=06 14<sub>h</sub>
- Subindex:  $00 = 00_h$
- Value:10000 = 00002710<sub>h</sub>

The value  $30_h$  must be input as PKE (parameter identification), because the parameter has a 32-bit data type.

Transmitted data

| Parameter                                        | PKE, 1st<br>byte Job<br>identifier | PKE, 2nd<br>byte (Sdx) | ldx               | Data                   | Description                                                    |
|--------------------------------------------------|------------------------------------|------------------------|-------------------|------------------------|----------------------------------------------------------------|
| Tx 0614 <sub>h</sub> :00 <sub>h</sub><br>RAMPacc | 30 <sub>h</sub>                    | 00 <sub>h</sub>        | 0614 <sub>h</sub> | 0000 2710 <sub>h</sub> | Set the acceleration to 10000 rpm*s = $2710_h$ as 32-bit value |

The data type of the value to be written can be taken from the corresponding column in the parameter description of the product manual. With the Profibus protocol in use, 16-bit values and 32-bit values are transferred in the format "highest value bit first - lowest value bit last". The parameter identification corresponding to the data type must be input when transferring a INT16 or UINT16 value. The value must be stored in the last two data bytes and the first two data bytes must be described with zero (0).

|                                                  | Receivea                                   | Received data          |                   |           |                                                                                                   |  |
|--------------------------------------------------|--------------------------------------------|------------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------|--|
| Parameter                                        | PKE, 1st<br>byte<br>Response<br>identifier | PKE, 2nd<br>byte (Sdx) | ldx               | Data      | Description                                                                                       |  |
| Rx 0614 <sub>h</sub> :00 <sub>h</sub><br>RAMPacc | 20 <sub>h</sub>                            | 00 <sub>h</sub>        | 0614 <sub>h</sub> | XXXX XXXX | The response data have no mea-<br>ning, the positive acknowledge-<br>ment is signalled by PKE=20. |  |

### 7.2.2 Read parameter

Task The parameter  $n_act$ , 7696:0 (actual speed) must be read. Index and subindex must be converted to hexadecimal format for this purpose:

- Index:7696 = 1E10<sub>h</sub>
- Subindex:0 = 00<sub>h</sub>

The value 10<sub>h</sub> must be input as PKE. This identifies a read request.

|                                                  | Transmittee                        | d data                 |                   |           |                                                     |
|--------------------------------------------------|------------------------------------|------------------------|-------------------|-----------|-----------------------------------------------------|
| Parameter                                        | PKE, 1st<br>byte Job<br>identifier | PKE, 2nd<br>byte (Sdx) | ldx               | Data      | Description                                         |
| Tx 1E10 <sub>h</sub> :00 <sub>h</sub><br>_n_actT | 10 <sub>h</sub>                    | 00 <sub>h</sub>        | 1E10 <sub>h</sub> | XXXX XXXX | Reading the actual speed. The data are meaningless. |

The 4 data bytes are meaningless for a read request.

|                                                 | Received                                   | Received data          |                   |            |                                                                                |  |
|-------------------------------------------------|--------------------------------------------|------------------------|-------------------|------------|--------------------------------------------------------------------------------|--|
| Parameter                                       | PKE, 1st<br>byte<br>Response<br>identifier | PKE, 2nd<br>byte (Sdx) | ldx               | Data       | Description                                                                    |  |
| Rx 1E10 <sub>h</sub> :00 <sub>h</sub><br>_n_act | 20 <sub>h</sub>                            | 00 <sub>h</sub>        | 1E10 <sub>h</sub> | 0000 03E8h | The data 000003E8 correspond to 1000 rpm; PKE=20 signals successful execution. |  |

A distinction is made between parameter values with 32-bit data and parameter values with 16-bit data (described in the product manual as INT32 or UINT32 and INT16 or UINT16 data types) based on the response identifier (2 or 1). However, for 16-bit data it is important to evaluate only the last two data bytes and to ignore the first two data bytes.

#### 7.2.3 Synchronous errors

If a write or read command fails, the drive system responds with an error framework (Error Response). The transmitted error number shows information on the exact cause.

Received data with error framework (Error Response)

| Parameter                             | PKE, 1st<br>byte<br>Response<br>identifier | PKE, 2nd<br>byte (Sdx) | ldx               | Data                   | Description                                                                                    |
|---------------------------------------|--------------------------------------------|------------------------|-------------------|------------------------|------------------------------------------------------------------------------------------------|
| Rx 0101 <sub>h</sub> :00 <sub>h</sub> | 70 <sub>h</sub>                            | 00 <sub>h</sub>        | 0065 <sub>h</sub> | 0000 B30A <sub>h</sub> | Error number 0000B30A <sub>h</sub> means:<br>parameter not present in parame-<br>ter directory |

The example shows the response to a write or read request for a nonexistent parameter 0101:00.

The table of error numbers can be found in of the product manual, diagnostics section.

## 7.3 Operating states in the process data channel

| U | INCONTROLLED SYSTEM OPERATION                                                                                     |
|---|-------------------------------------------------------------------------------------------------------------------|
| • | Note that inputs to these parameters are executed by the drive controller immediately on receipt of the data set. |
| • | Make sure that the system is free and ready for movement before changing these parameters                         |
|   | ailure to follow these instructions can result in death, se-<br>ous injury or equipment damage.                   |

Drive systems detect various operating states. The different operating states are numbered from 1 to 9. The operating statuses and transition conditions are described in the product manual.

| Operating status | Name               | Power<br>amplifier | Description                                                 |
|------------------|--------------------|--------------------|-------------------------------------------------------------|
| 3                | Switch On disabled | off                | Activation of power amplifier disabled, motor without power |
| 4                | Ready To Switch On | off                | Power amplifier is ready to switch on, motor without power  |
| 6                | Operation Enable   | on                 | active operating status, motor under power                  |
| 7                | Quick Stop active  | on                 | error state, power amplifier remains on                     |
| 9                | Fault              | off                | error state, power amplifier switched off                   |

Table 7.1 Important operating states

Requests for switching operating status are sent by the master in the process data channel PZD1 in the field driveCtrl. The slave reports the current operating status back to the master in the process data channel PZD1, field driveStat.

Tabelle7.2, Seite 7-4 shows the bit assignment of the field driveCtrl in the transmission data in the process channel (byte 9):

| bit no. | Significance    | Description                                                  |
|---------|-----------------|--------------------------------------------------------------|
| 0       | 01 <sub>h</sub> | Disable, Operation enable $\Rightarrow$ Ready to switch on   |
| 1       | 02 <sub>h</sub> | Enable, Ready to switch on $\Rightarrow$ Operation enable    |
| 2       | 04 <sub>h</sub> | Quick Stop, Operation enable $\Rightarrow$ Quick Stop active |
| 3       | 08 <sub>h</sub> | Fault Reset, Fault $\Rightarrow$ Ready to switch on          |
| 4       | 10 <sub>h</sub> | 0, reserved                                                  |
| 5       | 20 <sub>h</sub> | SetHALT, set HALT                                            |
| 6       | 40 <sub>h</sub> | ClearHALT, clear HALT                                        |
| 7       | 80 <sub>h</sub> | Continue, resume operating mode interrupted by HALT          |

Table 7.2 Transmitted data byte 9, driveCtrl, bit assignment

#### 7.3.1 Switch power amplifier on and off

The power amplifier is switched on by the transition from operating status 4 to 6. Byte 9 contains transmission data, driveCtrl, the two bits Enable and Disable. One must always be set to 1 and the other to 0.

Switch on power amplifier Condition: drive system is in operating status 4. A 0>1 edge must be generated to switch on the power amplifier in driveCtrl, Bit 1 (Enable). This can be done by deleting Bit 0 (Disable) and setting Bit 1. The master then waits until the drive system reports operating status 6.

Example:

|                                         |                  | Master |                             | Slave |
|-----------------------------------------|------------------|--------|-----------------------------|-------|
| Disable is requested                    | Transmitted data | »      | driveCtrl 01 <sub>h</sub>   | »     |
| Drive system reports operating status 4 | Received data    | «      | driveStat xxx4 <sub>h</sub> | «     |

|                                         |                  | Master |                             | Slave |
|-----------------------------------------|------------------|--------|-----------------------------|-------|
| Request Enable                          | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Drive system reports operating status 5 | Received data    | «      | driveStat xxx5 <sub>h</sub> | «     |
| Request Enable                          | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Drive system reports operating status 6 | Received data    | «      | driveStat xxx6 <sub>h</sub> | «     |

| Table 7.3 | Switch on power amplifier |  |
|-----------|---------------------------|--|
|-----------|---------------------------|--|

Switch off power amplifier Condition: drive system is in operating status 6 or 7. A 0>1 edge must be generated to switch off the power amplifier in driveCtrl, Bit 0 (Disable). This can be done by setting Bit 0 (Disable) and deleting Bit 1 (Enable). The drive system then switches to operating status 4.

|                  | Master                            |                                                                               | Slave                                                                                                                                                                     |
|------------------|-----------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitted data | »                                 | driveCtrl 02 <sub>h</sub>                                                     | »                                                                                                                                                                         |
| Received data    | «                                 | driveStat xxx6 <sub>h</sub>                                                   | «                                                                                                                                                                         |
| Transmitted data | »                                 | driveCtrl 01 <sub>h</sub>                                                     | »                                                                                                                                                                         |
| Received data    | «                                 | driveStat xxx4 <sub>h</sub>                                                   | «                                                                                                                                                                         |
|                  | Received data<br>Transmitted data | Transmitted data     »       Received data     «       Transmitted data     » | Transmitted data       >       driveCtrl 02 <sub>h</sub> Received data       «       driveStat xxx6 <sub>h</sub> Transmitted data       >       driveCtrl 01 <sub>h</sub> |

Table 7.4Switch off power amplifier

### 7.3.2 Trigger Quick Stop

A current travel command can be interrupted by the fieldbus at any time with the QuickStop command. This is triggered by a 0>1 edge in driveCtrl, Bit 2. When switching to operating status 7 (Quick Stop) the drive system brakes with the specified emergency stop ramp and comes to a standstill.

Operating status 6 must be reached first to start a new travel command. To do this, perform a 0>1 edge in driveCtrl, Bit 3 Fault Reset.

#### Example:

|                                                                  |                  | Master |                             | Slave |
|------------------------------------------------------------------|------------------|--------|-----------------------------|-------|
| Enable is requested                                              | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Drive system reports operating status 6                          | Received data    | «      | driveStat xxx6 <sub>h</sub> | «     |
| Quick Stop and Request enable                                    | Transmitted data | »      | driveCtrl 06 <sub>h</sub>   | »     |
| Drive system reports operating status 7                          | Received data    | «      | driveStat xxx7 <sub>h</sub> | «     |
| Wait until drive system stops and system should continue running |                  |        |                             |       |
| Drive system reports operating status 7                          | Received data    | «      | driveStat xxx7 <sub>h</sub> | «     |
| Clear Quick Stop request, apply Fault<br>Reset                   | Transmitted data | »      | driveCtrl 0A <sub>h</sub>   | »     |
| Drive system reports operating status 6                          | Received data    | «      | driveStat xxx6 <sub>h</sub> | «     |
| Clear Fault Reset                                                | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Drive system reports operating status 6                          | Received data    | «      | driveStat xxx6 <sub>h</sub> | «     |

Table 7.5 **Triggering Quick Stop** 

#### 7.3.3 Fault reset

If an error occurs during operation, the system switches to operating status 7 (Quick Stop) or operating status 9 (Fault) depending on the type of error.

After correction of the error the error status can be reset by running a fault reset (0>1 edge in driveCtrl, Bit 3).

If the operating status was 7, it switches to operating status 6 after the fault reset.

If the operating status was 9, it switches to operating status 4 after the fault reset. Then a 0>1 edge in driveCtrl, Bit 1 (Enable) must be sent to switch on the power amplifier again.

#### Example:

|                                          |                  | Master |                             | Slave |
|------------------------------------------|------------------|--------|-----------------------------|-------|
| Request Enable                           | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Slave reports operating status 9 (Fault) | Received data    | «      | driveStat xxx9 <sub>h</sub> | «     |
| Correcting error                         |                  |        |                             |       |
| Request Fault Reset                      | Transmitted data | »      | driveCtrl 08 <sub>h</sub>   | »     |
| Slave reports operating status 4         | Received data    | «      | driveStat xxx4 <sub>h</sub> | «     |
| Request Enable                           | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Slave reports operating status 5         | Received data    | «      | driveStat xxx5 <sub>h</sub> | «     |
| Request Enable                           | Transmitted data | »      | driveCtrl 02 <sub>h</sub>   | »     |
| Slave reports operating status 6         | Received data    | «      | driveStat xxx6 <sub>h</sub> | «     |

Table 7.6

Note: In this example the master deletes the Bit 1 (Enable) during the fault reset to be able to run implicitly a 0>1 edge at Bit 1. Then it switches back to operating status 6.

# 7.4 Operating modes in the process data channel

| Transmitted data | You can start movement commands with the transmission data and change them during the process.                                                                                                                                                                                  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | The following fields are available in the process data channel:                                                                                                                                                                                                                 |
|                  | • PZD1: modeCtrl, start and change operating mode                                                                                                                                                                                                                               |
|                  | <ul> <li>PZD2: ref_16, e.g. set speed, depending on operating mode</li> </ul>                                                                                                                                                                                                   |
|                  | <ul> <li>PZD3+4: ref_32, e.g. setpoint position, depending on operating<br/>mode</li> </ul>                                                                                                                                                                                     |
|                  | PZD5+6: mapped value                                                                                                                                                                                                                                                            |
|                  | The default value of these fields is only imported if modeCtrl, Bit 7 (ModeToggle) has been changed.                                                                                                                                                                            |
|                  | You must always proceed as follows to transfer values:                                                                                                                                                                                                                          |
|                  | Input the desired operating mode and the associated default values<br>in the fields modeCtrl, PZD26.                                                                                                                                                                            |
|                  | "Toggle"modeCtrl, Bit 7 (ModeToggle)                                                                                                                                                                                                                                            |
|                  | This is a method of always avoiding consistency problems within the transmitted data.                                                                                                                                                                                           |
| Received data    | Travel commands are monitored with the aid of the received data in the process data channel.                                                                                                                                                                                    |
|                  | The following fields are available in the process data channel:                                                                                                                                                                                                                 |
|                  | • PZD1: modeStat, for handshake purposes                                                                                                                                                                                                                                        |
|                  | <ul> <li>PZD2: driveStat, reports movement status and errors and I/O signals</li> </ul>                                                                                                                                                                                         |
|                  | <ul> <li>PZD3+PZD4:"32-bit actual position", actual position</li> </ul>                                                                                                                                                                                                         |
|                  | <ul> <li>PZD5+PZD6: can be configured (mapped) but, excluding excepti-<br/>ons, do not show any time consistency with PZD14.</li> </ul>                                                                                                                                         |
| Mapping          | Parameter values may be mapped in the PZD5 + PZD6 for transmit data as well as received data, see Section , page onwards.                                                                                                                                                       |
| Mode Toggle      | Both transmit and receive protocol have the bit Mode-Toggle. The master sets this bit and the drive system reflects it in the receive proto-<br>col. The master uses this procedure to detect whether the data sent by the slave are current.                                   |
| Example          | The master device starts a positioning movement that will only take a very short time. The master waits for the end of the positioning by checking the receive protocol for bit $x_{end} = 1$ (positioning end).                                                                |
|                  | The master may receive data from the slave that still come from the time before the start of positioning. These data also contain $x_{end} = 1$ . Now the master detects that the data are old because the included bit Mode-Toggle does not match that of the positioning job. |

In general, the master should only evaluate data in which the received bit ModeToggle is identical with the last bit sent by the master.

Acceleration Before a positioning you can first set the desired acceleration by mapping the acceleration to PZD5 and PZD6 or by using the parameter channel (parameter RAMPacc, 1556:00). Note that the acceleration can only be changed with the drive system at a standstill.

Assumptions The examples are based on the following assumptions:

- Operating status 6 (Operation Enable)
- Homing not run (bit ref\_ok = 0)
- \_p\_act = 0 (actual position, motor)
- Transmitted data PZD1:modeCtrl, Bit 7 = 0(ModeToggle)

#### 7.4.1 Absolute positioning

#### A WARNING

#### UNCONTROLLED SYSTEM OPERATION

- Note that inputs to these parameters are executed by the drive controller immediately on receipt of the data set.
- Make sure that the system is free and ready for movement before changing these parameters

Failure to follow these instructions can result in death, serious injury or equipment damage.

To start an absolute positioning movement the following setting must be made in the transmitted log:

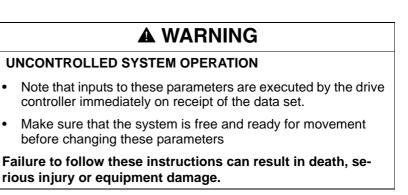
- Enter the set speed in PZD2 ref\_16 and the target position in PZD3 and PZD4 ref\_32.
- Input in the field modeCtrl operating mode 03<sub>h</sub> (profile position mode, absolute positioning).
- ▶ "Toggle"modeCtrl, Bit 7 to import the data.

*Example 1:* Absolute positioning at position 100,000 (0001 86A0<sub>h</sub>) at a set speed of 1000 rpm (03E8<sub>h</sub>)

|                                                           |                  | Master |                                |                             |                             |                                            | Slave |
|-----------------------------------------------------------|------------------|--------|--------------------------------|-----------------------------|-----------------------------|--------------------------------------------|-------|
| Trigger positioning                                       | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 83 <sub>h</sub>    | ref_16<br>03E8 <sub>h</sub> | ref_32<br>0001 86A0 <sub>h</sub>           | »     |
| Positioning running x<br>_err = 0, x_end = 0              | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>83 <sub>h</sub> |                             | 32_bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Trigger positioning                                       | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 83 <sub>h</sub>    | ref_16<br>03E8 <sub>h</sub> | ref_32<br>0001 86A0 <sub>h</sub>           | »     |
| Positioning complete x<br>_err = 0, x_end = 1, x_info = 1 | Received data    | «      | driveStat<br>6006 <sub>h</sub> | modeStat<br>83 <sub>h</sub> |                             | 32-bit act. pos.<br>0001 86A0 <sub>h</sub> | «     |

Table 7.7 Absolute positioning at constant set speed

Note: the data frame "Positioning running" can also be transmitted several times; in each case the current position is in the "32-bit actual position" field.


*Example 2:* As in example 1, except that the set speed is changed to 2000 rpm  $(07D0_h)$  during the movement.

|                                                        |                  | Master |                                |                             |                             |                                            | Slave |
|--------------------------------------------------------|------------------|--------|--------------------------------|-----------------------------|-----------------------------|--------------------------------------------|-------|
| Trigger positioning                                    | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 83 <sub>h</sub>    | ref_16<br>03E8 <sub>h</sub> | ref_32<br>0001 86A0 <sub>h</sub>           | »     |
| Positioning runningx_err = 0,<br>x_end = 0             | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>83 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change set speed                                       | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 03 <sub>h</sub>    | ref_16<br>07D0 <sub>h</sub> | ref_32<br>0001 86A0 <sub>h</sub>           | »     |
| Positioning runningx_err = 0,<br>x_end = 0             | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change set speed                                       | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 03 <sub>h</sub>    | ref_16<br>07D0 <sub>h</sub> | ref_32<br>0001 86A0 <sub>h</sub>           | »     |
| Positioning finished x_err=0,<br>x_end = 1, x_info = 1 | Received data    | «      | driveStat<br>6006 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                             | 32-bit act. pos.<br>0001 86A0 <sub>h</sub> | «     |

 Table 7.8
 Absolute positioning with change of set speed

Note: The data frame "positioning running" can also be sent multiple times. In each case, the actual position is in the "32-bit actual position" field. When the set speed is changed the same target position is sent, because this does not change in this example.

#### 7.4.2 Relative positioning



A relative positioning is run similarly to the absolute positioning. You only need to input in field modeCtrl the value  $13_h$  (profile position mode, relative positioning). It is also important to ensure that multiple target positions transferred in succession are added.

*Example:* Relative positioning at 100,000 (000186A0<sub>h</sub>) increments at a set speed of 1000 rpm (03E8<sub>h</sub>)

During the movement the speed must be changed to 2000 rpm (07D0 $_{h}$ ).

|                                                         |                  | Master |                                |                             |                             |                                            | Slave |
|---------------------------------------------------------|------------------|--------|--------------------------------|-----------------------------|-----------------------------|--------------------------------------------|-------|
| Trigger positioning                                     | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 93 <sub>h</sub>    | ref_16<br>03E8 <sub>h</sub> | ref_32<br>0001 86A0 <sub>h</sub>           | »     |
| Positioning running: x_err = 0,<br>x_end = 0            | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>83 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change set speed Send rela-<br>tive position 0          | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 13 <sub>h</sub>    | ref_16<br>07D0 <sub>h</sub> | ref_32<br>0000 0000 <sub>h</sub>           | »     |
| Positioning running, $x_{err} = 0$ ,<br>$x_{end} = 0$   | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change set speed Send rela-<br>tive position 0          | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 13 <sub>h</sub>    | ref_16<br>07D0 <sub>h</sub> | ref_32<br>0000 0000 <sub>h</sub>           | »     |
| Positioning finishedx_err = 0,<br>x_end = 1, x_info = 1 | Received data    | «      | driveStat<br>6006 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |

Table 7.9 Profile position mode, relative positioning with change of set speed

Comments: the data frame "Positioning running" can also be transmitted several times; in each case the current position is in the "32-bit actual position" field. When the set speed is changed, the value zero (0) must be sent as the new target position, because the new value is added to the previously calculated target position.

#### 7.4.3 Profile velocity

### **A** WARNING

#### UNCONTROLLED SYSTEM OPERATION

- Note that inputs to these parameters are executed by the drive controller immediately on receipt of the data set.
- Make sure that the system is free and ready for movement before changing these parameters

Failure to follow these instructions can result in death, serious injury or equipment damage.

In profile velocity a set speed is specified and a movement is initiated with no defined finishing point.

You must make the following settings in the transmitted log to start speed mode or to change the set speed while speed mode is running:

- Enter the set speed in PZD2, ref\_16 (ref\_32 is of no significance here)
- ► In modeCtrl enter operating mode 04<sub>h</sub> (profile velocity)
- Switch modeCtrl, Bit 7 to import the data.

*Example* A profile velocity is started at a set speed of 1000 rpm ( $03E8_h$ ) (ref\_16). The set speed is changed to 2000 rpm ( $07D0_h$ ) during the movement. The profile velocity is ended by transfer of the set speed 0 and standstill is waited for.

|                                                     |                  | Master |                                |                             |                             |                                            | Slave |
|-----------------------------------------------------|------------------|--------|--------------------------------|-----------------------------|-----------------------------|--------------------------------------------|-------|
| Start profile velocity at 1000 rpm                  | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 84 <sub>h</sub>    | ref_16<br>03E8 <sub>h</sub> | ref_32<br>xxxxxxx <sub>h</sub>             | »     |
| Drive system accelerates<br>xerr=0, xend=0, xinfo=0 | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>84 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Profile velocity at 1000 rpm                        | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 84 <sub>h</sub>    | ref_16<br>03E8 <sub>h</sub> | ref_32<br>xxxx xxxx <sub>h</sub>           | »     |
| Set speed reached xerr=0,<br>xend=0, xinfo=1        | Received data    | «      | driveStat<br>2006 <sub>h</sub> | modeStat<br>84 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change speed to<br>2000 rpm                         | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 04 <sub>h</sub>    | ref_16<br>07D0 <sub>h</sub> | ref_32<br>xxxx xxxx <sub>h</sub>           | »     |
| Drive system accelerates<br>xerr=0, xend=0, xinfo=0 | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>04 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Speed at<br>2000 rpm                                | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 04 <sub>h</sub>    | ref_16<br>07D0 <sub>h</sub> | ref_32<br>xxxx xxxx <sub>h</sub>           | »     |
| Set speed reached xerr=0,<br>xend=0, xinfo=1        | Received data    | «      | driveStat<br>2006 <sub>h</sub> | modeStat<br>04 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change speed to 0 rpm                               | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 84 <sub>h</sub>    | ref_16<br>0000 <sub>h</sub> | ref_32<br>xxxx xxxx <sub>h</sub>           | »     |
| Drive system decelerates<br>xerr=0, xend=0, xinfo=0 | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>84 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Change speed to<br>0 rpm                            | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 84 <sub>h</sub>    | ref_16<br>0000 <sub>h</sub> | ref_32<br>xxxx xxxx <sub>h</sub>           | »     |
| Profile velocity ended xerr=0,<br>xend=1, xinfo=1   | Received data    | «      | driveStat<br>6006 <sub>h</sub> | modeStat<br>84 <sub>h</sub> |                             | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |

Table 7.10 Profile velocity

Note: the current position in increments is in the "32-bit actual position" field of the received protocol.

### 7.4.4 Homing by dimension setting

During dimension setting a new position is assigned to the current motor position. This only moves the coordinate system, the motor does not move.

You must make the following settings for dimension settings in the transmitted log:

- Enter the new position in ref\_32. (PZD2 (ref\_16) is of no significance here)
- In modeCtrl enter operating mode 02<sub>h</sub> (homing, set dimensions)
- Switch modeCtrl, Bit 7 to import the data from the slave.

| Example: | The motor is at position -100000 (FFFE7960 <sub>h</sub> ) (ref_32). |
|----------|---------------------------------------------------------------------|
|          | Position 200000 is assigned to the motor (00030D40 <sub>h</sub> ).  |

|                                                      |                  | Master |                                |                                                      |                                            | Slave |
|------------------------------------------------------|------------------|--------|--------------------------------|------------------------------------------------------|--------------------------------------------|-------|
| Drive system reports<br>position 100000              | Received data    | «      | driveStat<br>xxxx <sub>h</sub> | modeStat<br>xx <sub>h</sub>                          | 32-bit act. pos.<br>FFFE 7960 <sub>h</sub> | «     |
| Dimension setting at 200000                          | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 82 <sub>h</sub> ref_16<br>xxxx <sub>h</sub> | ref_32<br>0003 0D40 <sub>h</sub>           | »     |
| Position applied<br>x_err = 0, x_end = 1, x_info = 0 | Received data    | «      | driveStat<br>4006 <sub>h</sub> | modeStat<br>A2 <sub>h</sub>                          | 32-bit act. pos.<br>0003 0D40 <sub>h</sub> | «     |

Table 7.11 Dimension setting

#### 7.4.5 Reference movement

### A WARNING

#### UNCONTROLLED SYSTEM OPERATION

- Note that inputs to these parameters are executed by the drive controller immediately on receipt of the data set.
- Make sure that the system is free and ready for movement before changing these parameters

# Failure to follow these instructions can result in death, serious injury or equipment damage.

During the reference movement a limit or reference switch is approached and then a new value is assigned to this position.

Before starting a reference movement the parameters must be set appropriately to the requests over the parameter channel. See the product manual for more information on parameterisation and on running a reference movement.

To start a reference movement the following settings must be made in the transmitted log:

 Enter the type of reference movement in PZD2 (ref\_16) (PZD3+PZD4 (ref\_32) is of no significance here).

The types of reference movement are described in the product manual.

- In modeCtrl enter operating mode  $12_h$  (homing, reference movement)
- Switch modeCtrl, Bit 7 to import the data from the slave.

| Example | A reference movement must be run to the negative limit switch (LIMN); |
|---------|-----------------------------------------------------------------------|
|         | this is reference movement type 2.                                    |

|                  | Master                                                      |                                                                         |                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                               | Slave                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitted data | »                                                           | driveCtrl<br>02 <sub>h</sub>                                            | modeCtrl 92 <sub>h</sub>                                                                                                           | ref_16<br>0002 <sub>h</sub>                                                                                                                                                                | ref_32<br>xxxx xxxx <sub>h</sub>                                                                                                                                                                                                              | »                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Received data    | «                                                           | driveStat<br>0006 <sub>h</sub>                                          | modeStat80<br>2 <sub>h</sub>                                                                                                       |                                                                                                                                                                                            | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub>                                                                                                                                                                                                    | «                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transmitted data | »                                                           | driveCtrl<br>02 <sub>h</sub>                                            | modeCtrl 92 <sub>h</sub>                                                                                                           | ref_16<br>0002 <sub>h</sub>                                                                                                                                                                | ref32<br>xxxx xxxx <sub>h</sub>                                                                                                                                                                                                               | »                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Received data    | «                                                           | driveStat<br>4006 <sub>h</sub>                                          | modeStat<br>A2 <sub>h</sub>                                                                                                        |                                                                                                                                                                                            | 32_bit act. pos.<br>0000 0000 <sub>h</sub>                                                                                                                                                                                                    | «                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | data<br>Received<br>data<br>Transmitted<br>data<br>Received | Transmitted<br>data>Received<br>data«Transmitted<br>data>Received<br>w« | Transmitted<br>data>driveCtrl<br>02hReceived<br>data«driveStat<br>0006hTransmitted<br>data>driveCtrl<br>02hReceived<br>w«driveStat | Transmitted<br>data»driveCtrl<br>02hmodeCtrl 92hReceived<br>data«driveStat<br>0006hmodeStat80<br>2hTransmitted<br>data»driveCtrl<br>02hmodeCtrl 92hReceived<br>w«driveStat<br>modeCtrl 92h | Transmitted<br>data»driveCtrl<br>02hmodeCtrl 92h ref_16<br>0002hReceived<br>data«driveStat<br>0006hmodeStat80<br>2hTransmitted<br>data»driveCtrl<br>02hmodeCtrl 92h ref_16<br>0002hReceived<br>w«driveStat<br>02hmodeCtrl 92h ref_16<br>0002h | Transmitted<br>data*driveCtrl<br>$02_h$ modeCtrl $92_h$ ref_16<br>$0002_h$ ref_32<br>xxxx xxxhReceived<br>data«driveStat<br>$0006_h$ modeStat80<br>$2_h$ 32-bit act. pos.<br>xxxx xxxhTransmitted<br>data*driveCtrl<br>$02_h$ modeCtrl $92_h$ ref_16<br>$0002_h$ ref32<br>xxxx xxxhReceived<br>w«driveCtrl<br>$02_h$ modeCtrl $92_h$ ref_16<br>$0002_h$ ref32<br>xxxx xxxhReceived<br>w«driveStat<br>modeStat32-bit act. pos. |

Table 7.12 Reference movement

### 7.5 Error signalling in process data channel

#### 7.5.1 Synchronous errors

If request of an operating mode sent via the transmission protocol cannot be processed, the slave rejects the process and sets modeStat, Bit 6 (ModeError) in the receive protocol. This does not interrupt the current process. To find the cause of the error the master can read the error number from the parameter ModeError, 6962:00 by accessing the parameter channel. See the product manual for a list of the error numbers.

The error display is reset when the next valid data protocol is transmitted.

| Parameter Name<br>Code<br>HMI menu, Code | Description                                                                                                                                                     | Unit<br>Minimum value<br>Default value<br>Maximum value | Data type<br>R/W<br>persistent<br>Expert | Parameter address<br>via fieldbus |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|-----------------------------------|
| ModeError                                | Error code for synchronous errors (ME flag)()                                                                                                                   | -                                                       | UINT16<br>R/-                            | Profibus 6962                     |
| -                                        | Manufacturer-specific error code which led<br>to setting of ModeError flag.<br>In general this is an error that was triggered<br>by starting an operating mode. | -                                                       | -                                        |                                   |

*Example* The drive system is in profile velocity. An attempt is made to run a dimension setting.

|                                    |                  | Master |                                |                                    |                                                       | Slave |
|------------------------------------|------------------|--------|--------------------------------|------------------------------------|-------------------------------------------------------|-------|
| Profile velocity,<br>x_end = 0     | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>04 <sub>h</sub>        | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub>            | «     |
| Request: Dimension setting to 0    | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 82 <sub>h</sub> ref<br>xx | f_16 ref_32<br>xx <sub>h</sub> 0000 0000 <sub>h</sub> | »     |
| Request rejected, ModeError =<br>1 | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>C4 <sub>h</sub>        | 32-bit act. pos.<br>xxxx xxxxh                        | «     |

Table 7.13

7.13 Synchronous error, Invalid request of an operating mode

Note: when the set dimensions request is rejected the drive system continues unchanged in profile velocity.

#### 7.5.2 Asynchronous errors

Asynchronous errors are triggered by internal monitoring (temperature, for example) or external monitoring (limit switch, for example). If an asynchronous error occurs, the drive system responds by braking or by switching off the power amplifier.

Asynchronous errors are displayed as follows:

- Switch to operating status 7 (Quick Stop) or operating status 9 (Fault).
   The switch is displayed in the receive protocol driveStat, Bits
  - 0...3.
- Setting of driveStat, Bit 6 (malfunction) or driveStat, bit 7 (warning) and Bit 15, x\_err (error status during processing)
- An error number is also assigned to every error. In the event of an asynchronous error the corresponding error number can be read from the parameter \_StopFault (7178:00).
- *Example:* Trigger an error message by the external monitoring: movement to the positive limit switch LIMP

|                                       |                  | Master |                                |                             |                                     |                                            | Slave |
|---------------------------------------|------------------|--------|--------------------------------|-----------------------------|-------------------------------------|--------------------------------------------|-------|
| Trigger positioning                   | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 03 <sub>h</sub>    | ref_16,<br>vel<br>03E8 <sub>h</sub> | ref_32<br>0FFF 8765 <sub>h</sub>           | »     |
| Positioning running xerr=0,<br>xend=0 | Received data    | «      | driveStat<br>0006 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                                     | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Positioning                           | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 03 <sub>h</sub>    | ref_16,<br>vel<br>03E8 <sub>h</sub> | ref_32<br>0FFF 8765 <sub>h</sub>           | »     |
| Limit switch detected xerr=1, xend=0  | Received data    | «      | driveStat<br>8047 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                                     | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |
| Positioning                           | Transmitted data | »      | driveCtrl<br>02 <sub>h</sub>   | modeCtrl 03 <sub>h</sub>    | ref_16,<br>vel<br>03E8 <sub>h</sub> | ref_32<br>0FFF 8765 <sub>h</sub>           | »     |
| Motor stopped xerr=1, xend=1          | Received data    | «      | driveStat<br>C047 <sub>h</sub> | modeStat<br>03 <sub>h</sub> |                                     | 32-bit act. pos.<br>xxxx xxxx <sub>h</sub> | «     |

Table 7.14 Asynchronous errors

NOTE: when the limit switch is detected the motor is braked at the emergency stop ramp until it reaches standstill and the bit  $x\_err$  is set. After standstill of the motor, bit  $x\_end$  is set.

# 8 Service, maintenance and disposal

### 8.1 Replacing units

The response of a system should typically not change when a slave is replaced. This is ensured by import of the specified parameter values to the new slave.

Default values of parameters can be salved on the master. After start-up of the slave these values must be sent to the slave again.



Please see the product manual for service, maintenance and disposal procedures.

# 9 Diagnostics and troubleshooting

# 9.1 Fieldbus communication error diagnosis

A correctly functioning fieldbus operation is essential for evaluating operational and error messages.

Checking connections

If the drive system cannot be addressed over the fieldbus, first check the connections. The product manual contains the technical data and information on network and product installation.

Check the following connections:

- ► System power supply
- Power connections
- ► Fieldbus cable and wiring
- ► Fieldbus terminal



If the internal terminating resistor is enabled with switch S1 (terminated), the A2/B2 output and any additional connected bus devices are automatically disconnected from the fieldbus.

| Function display via HMI LED        | The function of the fieldbus can be checked using both LEDs on the HMI:                                                                                                                                                               |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                     | - BUS-Run LED on, BUS-Error LED off $\Rightarrow$ Fieldbus is functioning correctly                                                                                                                                                   |  |  |  |  |
|                                     | • BUS-Run LED off, BUS-Error LED on $\Rightarrow$ A bus error occurred.                                                                                                                                                               |  |  |  |  |
|                                     | • BUS-Run LED off, BUS-Error LED off $\Rightarrow$ Communication not yet established                                                                                                                                                  |  |  |  |  |
| Function test on the fieldbus       | If the connections are correct, check the settings for the fieldbus addres-<br>ses. After correct configuration of the transmission data test the fieldbus<br>operation.                                                              |  |  |  |  |
|                                     | In addition to the master that knows the drive system by GSD and pol-<br>ling, a bus monitor that as a passive device displays messages should be installed.                                                                          |  |  |  |  |
|                                     | <ul> <li>Switch the supply voltage of the drive system off and on.</li> </ul>                                                                                                                                                         |  |  |  |  |
|                                     | Observe the network messages shortly before switching on the<br>drive system. A bus monitor can be used to record the elapsed time<br>between message frames and the relevant information in the mes-<br>sage frame during recording. |  |  |  |  |
| possible errors: Polling, parameter | If the connection to a device cannot be established, check the following:                                                                                                                                                             |  |  |  |  |
| setting, configuration              | <ul> <li>Polling: all network devices must have an address between 1 and<br/>126. Every network device must have a different address.</li> </ul>                                                                                      |  |  |  |  |
|                                     | <ul> <li>Setting parameters: The parameterised ID number and the user<br/>parameters must match the values stored in the GSD file.</li> </ul>                                                                                         |  |  |  |  |
|                                     | <ul> <li>Configuration: The data length in the input and output direction<br/>must be identical with the length agreed in the GSD file.</li> </ul>                                                                                    |  |  |  |  |

### 9.2 Error messages

Error messages generated when the network is in operation are received by the master via the fieldbus.

The following error messages are possible:

- Synchronous errors
- Asynchronous errors
- Errors during operating mode control via process data channel.

#### 9.2.1 Synchronous errors

If a command cannot be processed in the parameter channel, the master receives a synchronous error message from the slave.

If request of an operating mode sent via the transmission protocol cannot be processed, the slave rejects the process and sets modeStat, Bit 6 (ModeError) in the receive protocol. This does not interrupt the current process. To find the cause of the error the master can read the error number from the parameter ModeError, 6962:00 by accessing the parameter channel. See the product manual for a list of the error numbers.

The error display is reset when the next valid data protocol is transmitted.

| Parameter Name<br>Code<br>HMI menu, Code | Description                                                                                                                                                     | Unit<br>Minimum value<br>Default value<br>Maximum value | Data type<br>R/W<br>persistent<br>Expert | Parameter address<br>via fieldbus |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|-----------------------------------|
| ModeError                                | Error code for synchronous errors (ME flag)()                                                                                                                   | -                                                       | UINT16<br>R/-                            | Profibus 6962                     |
| -                                        | Manufacturer-specific error code which led<br>to setting of ModeError flag.<br>In general this is an error that was triggered<br>by starting an operating mode. | -                                                       | -                                        |                                   |

Error message in parameter channel

The error message is output as a response to a faulty parameter transmission. The cause of the error is output in the PWE as ErrorCode in bytes 5...8.

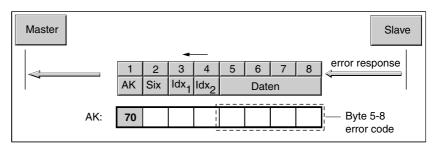



Figure 9.1 Error message in parameter channel

*Causes of a synchronous error* Possible causes of a synchronous error are:

- Error while executing an action or control command.
- Parameter value outside the permissible value range
- illegal action or control command during a running process
- Access to unknown parameter (Index/Subindex)

#### 9.2.2 Asynchronous errors

Asynchronous errors are triggered by internal monitoring (temperature, for example) or external monitoring (limit switch, for example). If an asynchronous error occurs, the drive system responds by braking or by switching off the power amplifier.

Asynchronous errors are displayed as follows:

- Switch to operating status 7 (Quick Stop) or operating status 9 (Fault).
   The switch is displayed in the receive protocol indriveStat, Bits 0..3.
- Setting of driveStat, Bit 6 (malfunction) or driveStat, bit 7 (warning) and Bit 15, x\_err (error status during processing)

The error bits have the following meaning:

- Bit 6 (such as interruption of movement by limit switch). The exact cause is bit coded and entered in parameter \_StopFault, 7178:00 entered in bit code.
- Bit 7
   Warning message (such as overheating warning)
   The error message is bit coded and entered in parameter
   FLT\_err\_num, 15362:00.

The last cause of interruption is entered as an error number in parameter \_StopFault, 7178:00 entered as error number.

The error numbers and their meanings are listed in the "Diagnostics and Troubleshooting" section of the product manual.

For more information on parameters, error classes and troubleshooting see the "Diagnostics and Troubleshooting" section of the product manual.

#### 9.2.3 Errors during operating mode control

Travel commands can be triggered and modified via the process log. If the request cannot be processed, an error bit is set in the received data.

# 10 Glossary

# 10.1 Terms and Abbreviations

| Address               | Memory location which can be accessed by its unique number. See also Slave address.                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AK                    | Job/answer identification                                                                                                                                                                                                         |
| Broadcast             | Type of data transmission in the network, one device sends a message to all devices on the network                                                                                                                                |
| Default value         | Factory settings.                                                                                                                                                                                                                 |
| Direction of rotation | Rotation of the motor shaft in a positive or negative direction of rotation.<br>A positive direction of rotation is defined as the motor shaft rotating clo-<br>ckwise as the observer faces the end of the protruding shaft.     |
| DP                    | Decentralized Periphery                                                                                                                                                                                                           |
| EMC                   | Electromagnetic compatibility                                                                                                                                                                                                     |
| Error class           | Classification of operational faults into groups corresponding to the error responses                                                                                                                                             |
| FMS                   | Fieldbus-Message-Specification                                                                                                                                                                                                    |
| GSD file              | The specific characteristics of a Profibus device type are described in the device master data file (GSD file). This file is supplied with the device by the manufacturer, and must be read by the network configuration program. |
| I/O                   | Inputs/Outputs                                                                                                                                                                                                                    |
| ldx                   | Index value of a parameter                                                                                                                                                                                                        |
| LED                   | Light-Emitting Diode                                                                                                                                                                                                              |
| Limit switch          | Switch that signals an overrun of the permissible travel range.                                                                                                                                                                   |
| LWL                   | Optic fiber                                                                                                                                                                                                                       |
| Master                | Active bus user that controls the data traffic in the network.                                                                                                                                                                    |
| МТ                    | ModeToggle, bit change 0 » 1 or 1 » 0                                                                                                                                                                                             |
| Parameter             | Device functions and values that can be set and called by the user.                                                                                                                                                               |
| PKE                   | Parameter code                                                                                                                                                                                                                    |
| PNO                   | Profibus User Organisation                                                                                                                                                                                                        |
| Profibus              | Standardised open fieldbus compliant with EN 50254-2 over which drives and other devices from different manufacturers communicate with one another.                                                                               |
| PWE                   | Parameter value                                                                                                                                                                                                                   |
| PZD                   | Process data                                                                                                                                                                                                                      |
| Quick Stop            | Quick stop, function used to provide quick braking of the motor via a command or in the event of a fault.                                                                                                                         |
| Six                   | Subindex value of a parameter                                                                                                                                                                                                     |

| Slave         | Passive bus user that receives control commands and sends data to the master.                                                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Slave address | Direct communication between master and slave devices is only pos-<br>sibly after assignment of addresses.                                   |
| PLC           | Programmable Logic Controller                                                                                                                |
| Toggle        | see MT, ModeToggle                                                                                                                           |
| Watchdog      | Equipment that monitors cyclic basic functions in the drive system. Po-<br>wer amplifier and outputs are switched off in the event of error. |

### 11 Index

A Abbreviations 10-1

#### В

Big-endian format 6-3 bit 6-2 byte 6-2

### С

Commissioning 5-1 Commissioning, requirements 5-1

#### D

data frame 6-2 Data structure 6-2 Device master data file 3-2 Diagnostics 9-1 Directives and standards 1-1 Disposal 8-1 Documentation and literature references 1-1 double word 6-2 driveStat 6-13

### Е

EMC 4-1 Equipotential bonding conductors 4-1 Examples 7-1

### F

Function Profibus fieldbus interface 4-2 Function tests 5-2

#### G

Glossary 10-1

#### L

Identity number 3-2 Index 6-4, 6-5 Intended use 2-1 Introduction 1-1

#### L

Literature 1-1

#### Μ

Maintenance 8-1 Mapping 6-11, 7-7 Master 3-1 Master-slave relationship 3-2 Mode Toggle 7-7 modeStat 6-13

#### Ν

Network operation 5-2

#### 0

Operation 6-1

#### Ρ

Parameter channel 6-4 Parameter identifier 6-5 Peripheral memory 6-17 PKE 6-5 Pos1, Pos2 6-13 Process data channel 6-7 Process image 6-17 Profibus fieldbus interface function 4-2 Profibus User Association 1-1 PWE 6-5

#### Q

Qualifications, personnel 2-1

### R

Real-time data exchange 6-7 RS485 technology 3-2

#### S

Service 8-1 Slave 3-1 subindex 6-4 synchronous error 7-13

#### Т

Terms 10-1 the Token-Passing method 3-2 Troubleshooting 9-1

#### W

word 6-2