BSHServomoteur Manuel du moteur

01/2017

Le présent document comprend des descriptions générales et/ou des caractéristiques techniques des produits mentionnés. Il ne peut pas être utilisé pour définir ou déterminer l'adéquation ou la fiabilité de ces produits pour des applications utilisateur spécifiques. Il incombe à chaque utilisateur ou intégrateur de réaliser l'analyse de risques complète et appropriée, l'évaluation et le test des produits pour ce qui est de l'application à utiliser et de l'exécution de cette application. Ni la société Schneider Electric ni aucune de ses sociétés affiliées ou filiales ne peuvent être tenues pour responsables de la mauvaise utilisation des informations contenues dans le présent document. Si vous avez des suggestions, des améliorations ou des corrections à apporter à cette publication, veuillez nous en informer.

Aucune partie de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit, électronique, mécanique ou photocopie, sans autorisation préalable de Schneider Electric.

Toutes les réglementations de sécurité pertinentes locales doivent être observées lors de l'installation et de l'utilisation de ce produit. Pour des raisons de sécurité et afin de garantir la conformité aux données système documentées, seul le fabricant est habilité à effectuer des réparations sur les composants.

Lorsque des équipements sont utilisés pour des applications présentant des exigences techniques de sécurité, suivez les instructions appropriées.

La non-utilisation du logiciel Schneider Electric ou d'un logiciel approuvé avec nos produits matériels peut entraîner des blessures, des dommages ou un fonctionnement incorrect.

Le non-respect de cette consigne peut entraîner des lésions corporelles ou des dommages matériels. © 2017 Schneider Electric. Tous droits réservés.

Table des matières

	Consignes de sécurité
	A propos de ce manuel
Chapitre 1	Introduction
-	Famille de moteurs
	Options et accessoires
	Plaque signalétique
	Code de désignation
Chapitre 2	Caractéristiques techniques
	Caractéristiques générales
	Conditions d'environnement
	Variateurs autorisés
	Dimensions
	Données spécifiques à l'arbre
	Données spécifiques au moteur
	Codeur
	Frein de maintien
	Certifications
	Conditions pour UL 1004-1, UL 1004-6 et CSA 22.2 No. 100
Chapitre 3	Installation
3.1	Compatibilité électromagnétique (CEM)
	Compatibilité électromagnétique (CEM)
3.2	Installation mécanique
	Avant le montage
	Spécification des câbles
	Montage du moteur
	Installation et raccordement du kit IP67 (accessoire)
3.3	Installation électrique
	Connecteurs et affectations des connecteurs
	Branchement de la puissance et du codeur
	Raccordement du frein de maintien
Chapitre 4	Mise en service
	Mise en service
Chapitre 5	Diagnostic et élimination d'erreurs
	Problèmes mécaniques
	Problèmes électriques
Chapitre 6	Accessoires et pièces de rechange
	Kit IP67
	Connecteur
	Câbles moteur
	Câbles codeur
Chapitre 7	Entretien, maintenance et mise au rebut
	Maintenance
	Remplacement du moteur
	Expédition, stockage, mise au rebut
Glossaire	
Index	

0198441113838 01/2017

Consignes de sécurité

Informations importantes

AVIS

Lisez attentivement ces instructions et examinez le matériel pour vous familiariser avec l'appareil avant de tenter de l'installer, de le faire fonctionner, de le réparer ou d'assurer sa maintenance. Les messages spéciaux suivants que vous trouverez dans cette documentation ou sur l'appareil ont pour but de vous mettre en garde contre des risques potentiels ou d'attirer votre attention sur des informations qui clarifient ou simplifient une procédure.

La présence de ce symbole sur une étiquette "Danger" ou "Avertissement" signale un risque d'électrocution qui provoquera des blessures physiques en cas de non-respect des consignes de sécurité.

Ce symbole est le symbole d'alerte de sécurité. Il vous avertit d'un risque de blessures corporelles. Respectez scrupuleusement les consignes de sécurité associées à ce symbole pour éviter de vous blesser ou de mettre votre vie en danger.

A DANGER

DANGER signale un risque qui, en cas de non-respect des consignes de sécurité, **provoque** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** la mort ou des blessures graves.

A ATTENTION

ATTENTION signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** des blessures légères ou moyennement graves.

AVIS

AVIS indique des pratiques n'entraînant pas de risques corporels.

REMARQUE IMPORTANTE

L'installation, l'utilisation, la réparation et la maintenance des équipements électriques doivent être assurées par du personnel qualifié uniquement. Schneider Electric décline toute responsabilité quant aux conséquences de l'utilisation de ce matériel.

Une personne qualifiée est une personne disposant de compétences et de connaissances dans le domaine de la construction, du fonctionnement et de l'installation des équipements électriques, et ayant suivi une formation en sécurité leur permettant d'identifier et d'éviter les risques encourus.

A propos de ce manuel

Présentation

Objectif du document

Ce manuel décrit les propriétés techniques, l'installation, la mise en service et la maintenance des servomoteurs BSH.

Champ d'application

Ce manuel est valide pour les produits standard indiqués dans le code de désignation, voir chapitre Code de désignation.

Pour plus d'informations sur la conformité des produits avec les normes environnementales (RoHS, REACH, PEP, EOLI, etc.), consultez le site <u>www.schneider-electric.com/green-premium</u>.

Les caractéristiques techniques des équipements décrits dans ce document sont également fournies en ligne. Pour accéder à ces informations en ligne :

Etape	Action
1	Accédez à la page d'accueil de Schneider Electric www.schneider-electric.com.
2	 Dans la zone Search, saisissez la référence d'un produit ou le nom d'une gamme de produits. N'insérez pas d'espaces dans la référence ou la gamme de produits. Pour obtenir des informations sur un ensemble de modules similaires, utilisez des astérisques (*).
3	Si vous avez saisi une référence, accédez aux résultats de recherche Fiches produit et cliquez sur la référence qui vous intéresse. Si vous avez saisi une gamme de produits, accédez aux résultats de recherche Product Ranges et cliquez sur la gamme de produits qui vous intéresse.
4	Si plusieurs références s'affichent dans les résultats de recherche Products , cliquez sur la référence qui vous intéresse.
5	Selon la taille de l'écran, vous serez peut-être amené à faire défiler la page pour consulter la fiche technique.
6	Pour enregistrer ou imprimer une fiche technique au format .pdf, cliquez sur Download XXX product datasheet.

Les caractéristiques présentées dans ce manuel devraient être identiques à celles fournies en ligne. Toutefois, en application de notre politique d'amélioration continue, nous pouvons être amenés à réviser le contenu du document afin de le rendre plus clair et plus précis. Si vous constatez une différence entre le manuel et les informations fournies en ligne, utilisez ces dernières en priorité.

Information spécifique au produit

L'utilisation et l'application des informations fournies dans le présent manuel nécessitent des connaissances spécialisées dans le secteur de la conception et de la programmation de systèmes de commande automatisés.

Vous seul, en tant que constructeur de machines ou intégrateur système, connaissez l'ensemble des conditions et facteurs applicables lors de l'installation, du réglage, de l'exploitation, de la réparation et de la maintenance de la machine ou du processus.

Veiller au respect de toutes les prescriptions et réglementations applicables en matière de mise à la terre de tous les composants de l'ensemble du système. Veiller au respect de toutes les consignes de sécurité, de toutes les exigences en vigueur en matière d'électricité ainsi que des normes applicables à votre machine ou à votre processus en liaison avec l'utilisation de ce produit.

De nombreux composants du produit, y compris la carte de circuit imprimée, utilisent la tension réseau, ce qui implique la présence éventuelle de forts courants transformés et/ou de tensions élevées.

Le moteur produit une tension en cas de rotation de l'arbre.

A DANGER

CHOC ELECTRIQUE. EXPLOSION OU ÉCLAIR D'ARC ÉLECTRIQUE

- Veiller à mettre hors tension tous les équipements, y compris les composants raccordés, avant de retirer les capots de protection ou les portes, ainsi qu'avant d'installer ou de retirer des accessoires, du matériel, des câbles ou des conducteurs.
- Placer une pancarte d'avertissement de danger de type « Ne pas actionner » sur tous commutateurs et les bloquer en position hors tension.
- Attendre 15 minutes pour permettre la décharge de l'énergie résiduelle des condensateurs du bus DC.
- Mesurer la tension sur le bus DC à l'aide d'un voltmètre approprié et vérifier que la tension est inférieure à 42,4 V dc.
- Ne pas supposer que le bus DC est hors tension lorsque le voyant du bus DC est éteint.
- Protéger l'arbre du moteur contre tout entraînement externe avant d'effectuer des travaux sur le système d'entraînement.
- Ne pas court-circuiter le bus DC et les condensateurs du bus DC.
- Installer et sécuriser les capots de protection, les accessoires, le matériel, les câbles et les conducteurs, et s'assurer que la mise à la terre du produit est correcte avant d'appliquer la tension.
- L'exploitation de cet appareil et des appareils raccordés doit être effectuée uniquement à la tension indiquée.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Ce produit est conçu pour être utilisé hors des zones d'atmosphère explosive. Ne pas installer le produit dans une zone où une atmosphère explosive peut se former.

A DANGER

RISQUE D'EXPLOSION

Installer et exploiter le produit exclusivement dans des zones où aucune atmosphère explosive ne peut se former.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Lorsque l'étage de puissance est désactivé de manière involontaire, par exemple suite à une panne de tension, des erreurs ou des fonctions, le moteur n'est plus freiné de manière contrôlée. Une surcharge, une erreur ou une utilisation incorrecte peut entraîner un fonctionnement incorrect du frein de maintien ou une usure prématurée de ce dernier.

AVERTISSEMENT

FONCTIONNEMENT ANORMAL

- S'assurer qu'un déplacement non freiné ne risque pas d'occasionner des blessures ou des dommages matériels.
- Vérifier régulièrement le fonctionnement du frein de maintien.
- Ne pas utiliser le frein de maintien comme frein de service.
- Ne pas utiliser le frein de maintien pour la sécurité.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

A AVERTISSEMENT

PERTE DE CONTROLE

- Le concepteur d'un système de commande doit envisager les modes de défaillance possibles des chemins de commande et, pour certaines fonctions de commande critiques, prévoir un moyen d'atteindre un état sécurisé en cas de défaillance d'un chemin, et après cette défaillance. Par exemple, l'arrêt d'urgence, l'arrêt en cas de surcourse, la coupure de courant et le redémarrage sont des fonctions de commande cruciales.
- Des canaux de commande séparés ou redondants doivent être prévus pour les fonctions de commande critiques.
- Les chemins de commande système peuvent inclure les liaisons de communication. Une attention particulière doit être prêtée aux implications des délais de transmission non prévus ou des pannes de la liaison
- Respectez toutes les réglementations de prévention des accidents ainsi que les consignes de sécurité locales.¹
- Chaque implémentation de cet équipement doit être testée individuellement et entièrement pour s'assurer du fonctionnement correct avant la mise en service.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

¹ Pour plus d'informations, consultez le document NEMA ICS 1.1 (dernière édition), « Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control » (Directives de sécurité pour l'application, l'installation et la maintenance de commande statique) et le document NEMA ICS 7.1 (dernière édition), « Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems » (Normes de sécurité relatives à la construction et manuel de sélection, installation et opération de variateurs de vitesse) ou son équivalent en vigueur dans votre pays.

Normes et concepts

Les termes techniques, la terminologie, les symboles et les descriptions correspondantes employés dans ce manuel ou figurant dans ou sur les produits proviennent généralement des normes internationales.

Dans les domaines des systèmes de sécurité fonctionnelle, des variateurs et de l'automatisme en général, les termes employés sont *sécurité*, *fonction de sécurité*, *état sécurisé*, *défaut*, *réinitialisation du défaut*, *dysfonctionnement*, *panne*, *erreur*, *message d'erreur*, *dangereux*, etc.

Entre autres, les normes concernées sont les suivantes :

Norme	Description
EN 61131-2:2007	Automates programmables - Partie 2 : exigences et essais des équipements
ISO 13849-1:2008	Sécurité des machines - Parties des systèmes de commande relatives à la sécurité - Principes généraux de conception
EN 61496-1:2013	Sécurité des machines - Équipements de protection électro-sensibles - Partie 1 : prescriptions générales et essais
ISO 12100:2010	Sécurité des machines - Principes généraux de conception - Appréciation du risque et réduction du risque
EN 60204-1:2006	Sécurité des machines - Équipement électrique des machines - Partie 1 : règles générales
EN 1088:2008 ISO 14119:2013	Sécurité des machines - Dispositifs de verrouillage associés à des protecteurs - Principes de conception et de choix
ISO 13850:2006	Sécurité des machines - Fonction d'arrêt d'urgence - Principes de conception
EN/IEC 62061:2005	Sécurité des machines - Sécurité fonctionnelle des systèmes de commande électrique, électronique et électronique programmable relatifs à la sécurité
IEC 61508-1:2010	Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques programmables relatifs à la sécurité - Exigences générales
IEC 61508-2:2010	Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques programmables relatifs à la sécurité - Exigences pour les systèmes électriques/électroniques/électroniques programmables relatifs à la sécurité
IEC 61508-3:2010	Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques programmables relatifs à la sécurité - Exigences concernant les logiciels

Norme	Description
IEC 61784-3:2008	Communications numériques pour les systèmes de mesure et de commande - Bus de terrain de sécurité fonctionnelle
2006/42/EC	Directive Machines
2014/30/EU	Directive sur la compatibilité électromagnétique
2014/35/EU	Directive sur les basses tensions

De plus, des termes peuvent être utilisés dans le présent document car ils proviennent d'autres normes telles que :

Norme	Description				
Série IEC 60034	Machines électriques rotatives				
Série IEC 61800	Entraînements électriques de puissance à vitesse variable				
Série IEC 61158	Communications numériques pour les systèmes de mesure et de commande - Bus de terrain utilisés dans les systèmes de commande industriels				

Enfin, le terme zone de fonctionnement utilisé dans le contexte de la description de dangers spécifiques a la même signification que les termes zone dangereuse ou zone de danger employés dans la directive Machines (2006/42/EC) et la norme ISO 12100:2010.

NOTE : Les normes susmentionnées peuvent s'appliquer ou pas aux produits cités dans la présente documentation. Pour plus d'informations sur chacune des normes applicables aux produits décrits dans le présent document, consultez les tableaux de caractéristiques de ces références de produit.

Chapitre 1 Introduction

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Famille de moteurs	12
Options et accessoires	12
Plaque signalétique	13
Code de désignation	15

Famille de moteurs

Les moteurs de la série BSH sont des servomoteurs AC synchrones possédant un faible moment d'inertie propre spécialement conçu pour les tâches de positionnement hautement dynamiques.

Un système d'entraînement est constitué du servomoteur et du variateur correspondant (voir page 22). La puissance optimale n'est atteinte que si le moteur et le variateur sont parfaitement ajustés.

Caractéristiques

Les moteurs présentent les caractéristiques suivantes :

- protection contre les surcharges par capteur de température intégré (évaluation externe nécessaire)
- · faible moment d'inertie
- densité de puissance élevée
- dynamique élevée
- capacité de surcharge importante
- grande plage de couple
- enroulement spécial pour les faibles courants de phase
- raccordements moteur via connecteurs ronds ou boîte à bornes
- mise en service aisée grâce à une plaque signalétique électronique dans le codeur SinCos
- faible entretien

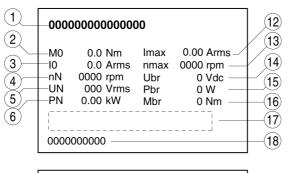
Options et accessoires

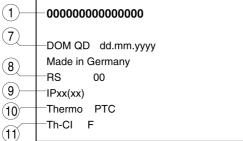
Possibilités

Les moteurs peuvent être fournis avec des options, telles que :

- différents systèmes de codeurs
- frein de maintien
- différentes versions d'arbre
- · différents degrés de protection
- différentes longueurs
- différentes tailles
- différentes variantes d'enroulements
- Différentes variantes de branchement

Accessoires

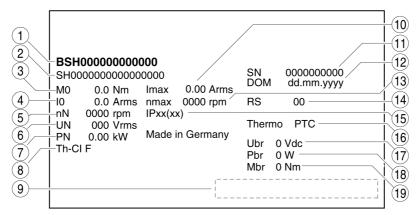

Voir le chapitre Accessoires et pièces de rechange (voir page 85).


Les réducteurs compatibles avec le moteur figurent dans le catalogue Lexium 32.

Plaque signalétique

BSH040

La plaque signalétique comporte les données suivantes :



- 1 Type de moteur, voir code de désignation (voir page 15)
- 2 Couple continu à l'arrêt
- 3 Courant continu à l'arrêt
- 4 Vitesse nominale
- 5 Valeur nominale maximale de la tension d'alimentation
- 6 Puissance nominale
- 7 Date de fabrication
- 8 Version matérielle
- 9 Degré de protection (boîtier sans traversée d'arbre)
- 10 Capteur de température
- 11 Classification thermique
- 12 Courant maximal
- 13 Vitesse de rotation max.
- 14 Tension nominale, frein de maintien
- 15 Puissance nominale (puissance électrique au collage) frein de maintien
- 16 Couple de maintien, frein de maintien
- 17 Code-barres
- 18 Numéro de série

BSH055 ... BSH205

La plaque signalétique comporte les données suivantes :

- 1 Type de moteur, voir code de désignation (voir page 15)
- 2 Numéro d'identification
- 3 Couple continu à l'arrêt
- 4 Courant continu à l'arrêt
- 5 Vitesse nominale
- 6 Valeur nominale maximale de la tension d'alimentation
- 7 Puissance nominale
- 8 Classification thermique
- 9 Code-barres
- 10 Courant maximal
- 11 Numéro de série
- 12 Date de fabrication
- 13 Vitesse de rotation max.
- 14 Version matérielle
- 15 Degré de protection (boîtier sans traversée d'arbre)
- 16 Capteur de température
- 17 Tension nominale, frein de maintien
- 18 Puissance nominale (puissance électrique au collage) frein de maintien
- 19 Couple de maintien, frein de maintien

Code de désignation

Code de désignation

Pos.	1	2	3	4	5	6	7	8	9	10	11	12	13
Code de désignation (exemple)	В	S	Н	0	7	0	1	Р	0	1	Α	1	Α

Pos.	Signification
1 3	Gamme de produits BSH = moteur synchrone - moment d'inertie minime
4 6	Taille (carter) 040 = bride de 40 mm 055 = bride de 55 mm 070 = bride de 70 mm 100 = bride de 100 mm 140 = bride de 140 mm 205 = bride de 205 mm
7	Longueur 1 = 1 stack 2 = 2 stacks 3 = 3 stacks 4 = 4 stacks
8	Enroulement M = optimisé pour un couple élevé P = Optimisé en termes de couple et de vitesse de rotation T = Optimisé pour les vitesses de rotation élevées S = variante client
9	Arbre et degré de protection ¹⁾ 0 = arbre lisse; degré de protection : arbre IP54, carcasse IP65 1 = clavette; degré de protection : arbre IP54, carter IP65 2 = arbre lisse; degré de protection : arbre et carcasse IP65 3 = clavette ; degré de protection: arbre et carter IP65
10	Système de codeur 1 = absolu monotour 128 périodes Sin/Cos par rotation (SKS36) 2 = absolu multi-tours 128 périodes Sin/Cos par rotation (SKM36) 6 = absolu monotour 16 périodes Sin/Cos par rotation (SEK37) 7 = absolu multi-tours 16 périodes Sin/Cos par rotation (SEL37)
11	Frein de maintien A = sans frein de maintien F = avec frein de maintien
12	Variante de branchement 1 = connecteur droit 2 = connecteur coudé à 90°, pivotant 3 = boîte à bornes pour puissance et frein de maintien, connecteur coudé à 90° pour codeur, pivotant
13	Interface mécanique - Montage A = norme internationale CEI (sur la bride du moteur) P = norme internationale CEI (sur la bride du moteur), BSH1402T, BSH1403T et BSH1404P avec connecteur de puissance M40
1) En position de mo de protection IP 5	ntage IM V3 (arbre d'entraînement vertical, extrémité d'arbre vers le haut), seul le degré 0 est atteint.

Si vous avez des questions concernant le code de désignation, veuillez vous adresser au bureau de vente local Schneider Electric.

Marquage variante client

Avec une variante client, la position 8 du code de désignation est occupée par un « S ». Le numéro suivant définit la variante client respective. Exemple : B••••••S1234

En cas de questions concernant les variantes client, s'adresser au fabricant de la machine.

Chapitre 2

Caractéristiques techniques

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Caractéristiques générales	18
Conditions d'environnement	20
Variateurs autorisés	22
Dimensions	23
Données spécifiques à l'arbre	34
Données spécifiques au moteur	37
Codeur	50
Frein de maintien	52
Certifications	53
Conditions pour UL 1004-1, UL 1004-6 et CSA 22.2 No. 100	53

Caractéristiques générales

Caractéristique	Valeur	Norme
Type de moteur	Servomoteur AC synchrone	-
Classification thermique	F (155 °C)	selon CEI 60034-1
Niveau de vibration	A	selon CEI 60034-14
Tension d'essai	> 2400 V ac	selon CEI 60034-1
Perpendicularité	normal class	selon CEI 60072-1, DIN42955
Couleur du carter	Noir RAL 9005	-
Catégorie de surtension	III	selon IEC 61800-5-1
Classe de protection ¹⁾	I	selon CEI 61140, EN 50178
1) Les signaux du frein de m	aintien sur CN1 et les signaux sur CN2	2 remplissent les exigences de TBTP.

Durée de vie

Durée de vie nominale des roulements	Unité	Valeur			
Durée de vie nominale des roulements L _{10h} ¹⁾	h	20000			
1) Heures de fonctionnement avec probabilité de panne de 10 %					

Dans le cas d'une mise en œuvre technique correcte, la durée de vie des moteurs est généralement limitée par la durée de vie du palier à roulement.

La durée de vie est limitée de façon importante par les conditions d'exploitation suivantes :

- Altitude d'installation >1000 m (3281 ft) au-dessus du niveau de la mer.
- Mouvement de rotation exclusivement à l'intérieur d'un angle fixe de <100°
- Exploitation sous sollicitation vibratoire > 20 m/s²
- Fonctionnement à sec des bagues d'étanchéité
- Contact des joints avec des substances agressives

Raccordement de l'air comprimé

L'air comprimé génère une surpression permanente à l'intérieur du moteur. La surpression qui règne à l'intérieur du moteur permet d'atteindre le degré de protection IP67.

L'air comprimé doit toujours être disponible, même après la désactivation de l'installation afin, par exemple, de procéder aux travaux de nettoyage avec le degré de protection exigé. Une coupure de l'air comprimé entraîne la réduction du degré de protection à IP65. Le degré de protection ne s'applique qu'au moteur, et non aux pièces rapportées comme un réducteur.

Il faut utiliser de l'air comprimé spécial :

Caractéristique	Unité	Valeur
Pression nominale	bar (psi)	0,1 0,3 (1,45 4,35)
Pression de l'air maximale	bar (psi)	0,4 (5,8)
Humidité admissible de l'air	%	20 30
Autres caractéristiques de l'air comprimé		exempt de poussière, sans huile

Couples de serrage et classe de résistance des vis

Vis	Unité	Valeur
Couple de serrage des vis du carter M3	Nm (lb•in)	1 (8,85)
Couple de serrage des vis du carter M4	Nm (lb•in)	1,5 (13,28)
Couple de serrage des vis du carter M5	Nm (lb•in)	5 (44,3)
Couple de serrage conducteur de protection M3 (BSH040)	Nm (lb•in)	0,9 (7,97)
Couple de serrage conducteur de protection M4 (BSH055, BSH070, BSH100)	Nm (lb•in)	2,9 (25,7)
Couple de serrage conducteur de protection M6 (BSH140, BSH205)	Nm (lb•in)	9,9 (87,3)
Classe de résistance des vis	-	8.8

Conditions d'environnement

Conditions pour le service

Caractéristique	Unité	Valeur
Classe selon IEC 60721-3-3	-	3K3, 3Z12, 3Z2, 3B2, 3C1, 3M6
Température ambiante ¹⁾ (sans condensation, pas de gel)	°C (°F)	-20 40 (-4 104)
Température ambiante avec réduction de courant de 1 % par °C (par 1,8 °F) ¹⁾	°C (°F)	40 60 (104 140)
Humidité relative de l'air (sans condensation)	%	5 85
Altitude d'installation ²⁾	m (ft)	< 1000 (< 3281)
Altitude d'installation avec réduction de courant de 1 % par 100 m (328 ft) à partir de 1000 m (3281 ft) ^{2) 3)}	m (ft)	1000 3000 (3281 9843)

- 1) Valeurs limites pour un moteur fixé par bride (plaque d'acier, hauteur et largeur = 2,5 * bride du moteur, 10 mm (0,39 in) d'épaisseur, alésage centré).
- 2) L'altitude d'installation est définie en tant que hauteur au-dessus du niveau de la mer.
- 3) Pour assurer le fonctionnement correct des moteurs BSH040, appliquer un dispositif de protection contre les surtensions en cas de fonctionnement entre 2000 et 3000 m.

Conditions pour le transport et le stockage

Pendant le transport et le stockage, l'environnement doit être sec et exempt de poussière.

La durée de stockage est essentiellement limitée par la stabilité des lubrifiants dans les paliers. Ne pas stocker le produit pendant plus de 36 mois et faire fonctionner le moteur régulièrement.

Si le frein de maintien n'est pas utilisé pendant une période prolongée, certaines pièces du frein de maintien peuvent se corroder. La corrosion a pour effet de réduire le couple de maintien. Voir le chapitre Vérification/rodage du frein de maintien (*voir page 95*).

Caractéristique	Unité	Valeur
Température	°C	-40 70
	(°F)	(-40 158)
Humidité relative de l'air (sans condensation)	%	≤75
Jeu des combinaisons de classes selon IEC 60721-3-2		IE 21

Vibrations et chocs

pour BSH040 ... BSH140

Caractéristique	Valeur
Vibrations, sinusoïdales	Essai de type avec 10 cycles conformément à IEC 60068-2-6 0,15 mm (de 10 à 60 Hz) 20 m/s² (de 60 à 500 Hz)
Chocs, semi-sinusoïdaux	Essai de type avec 3 chocs dans chaque direction conformément à IEC 60068-2-27 150 m/s ² (11 ms)

pour BSH205

Caractéristique	Valeur
Vibrations, sinusoïdales	Essai de type avec 10 cycles conformément à IEC 60068-2-6 0,35 mm (de 10 à 60 Hz) 50 m/s² (de 60 à 150 Hz)
Chocs permanents	Essai de type avec 3 chocs dans chaque direction conformément à IEC 60068-2-29 200 m/s² (6 ms)

Compatibilité avec les substances étrangères

La compatibilité du moteur avec de nombreuses substances connues a été testée selon l'état actuel de la technique. Avant d'utiliser une substance étrangère, il est cependant nécessaire de procéder à un contrôle de compatibilité.

Degré de protection

Caractéristique	Unité	Valeur
Degré de protection du carter moteur	IP65	selon CEI 60034-5
degré de protection de la traversée d'arbre sans joint à lèvres	IP54 ¹⁾	selon CEI 60034-5
degré de protection de la traversée d'arbre avec joint à lèvres	IP65 ¹⁾	selon CEI 60034-5
Degré de protection avec kit IP67	IP67 ¹⁾	selon CEI 60034-5

¹⁾ En position de montage IM V3 (arbre d'entraînement vertical, extrémité d'arbre vers le haut), seul le degré de protection IP50 est atteint. Le degré de protection ne s'applique qu'au moteur, et non aux pièces rapportées comme un réducteur.

Les moteurs peuvent être équipés en option d'un joint à lèvres. Ce joint leur confère le degré de protection IP65. Le joint à lèvres limite la vitesse de rotation maximale à 6000 1/min.

Noter les points suivants :

- Le joint à lèvres est lubrifié d'origine, départ usine.
- L'utilisation à sec des joints augmente le frottement et réduit considérablement la durée de vie des bagues d'étanchéité.

Variateurs autorisés

L'utilisation de combinaisons non autorisées de variateur et de moteur peut entraîner des déplacements accidentels. Même un moteur similaire présente un risque dû à un réglage différent du système codeur. Même si les connecteurs pour le raccordement moteur et le raccordement du codeur sont compatibles mécaniquement, cela ne signifie pas que le moteur peut être utilisé.

A AVERTISSEMENT

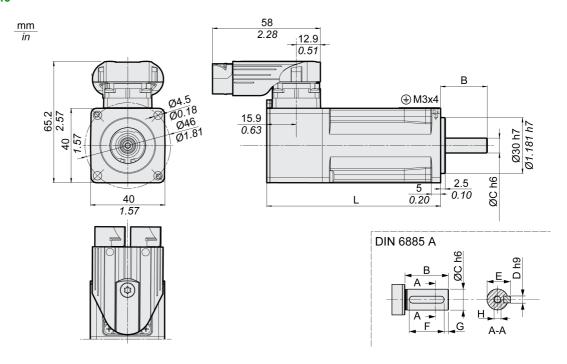
DEPLACEMENT ACCIDENTEL

N'utiliser que des combinaisons autorisées de variateur et de moteur.

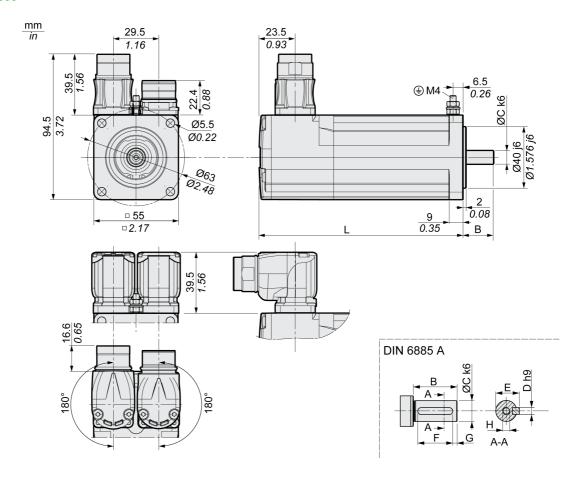
Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Le moteur peut être utilisé avec les variateurs suivants :

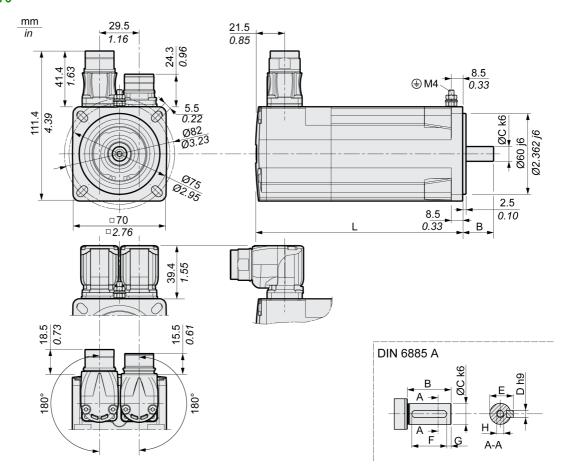
Variateurs	BSH040	BSH055BSH205	
LXM32	✓	✓	
LXM15	5 -		
LXM05	-	✓	
✓ HomologuéNon homologué			


Lors de la sélection du variateur approprié, référez-vous au type du variateur et à l'intensité de la tension réseau.

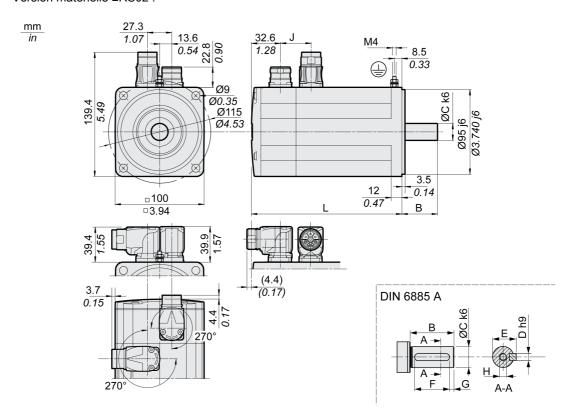
Comme nous développons sans cesse de nouveaux produits, demandez à votre distributeur local si d'autres produits compatibles sont disponibles.


0198441113838 01/2017

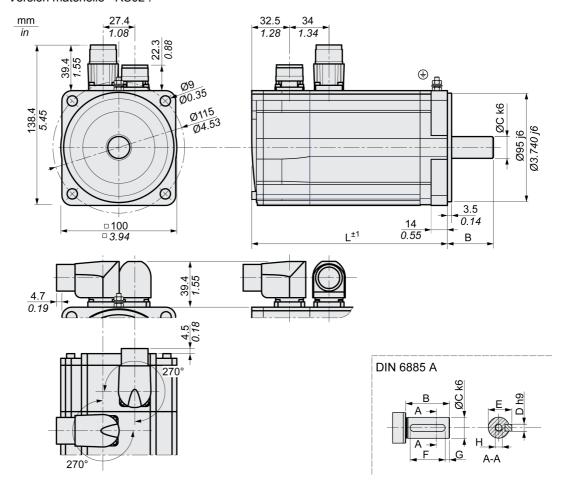
Dimensions


Dimensions BSH040

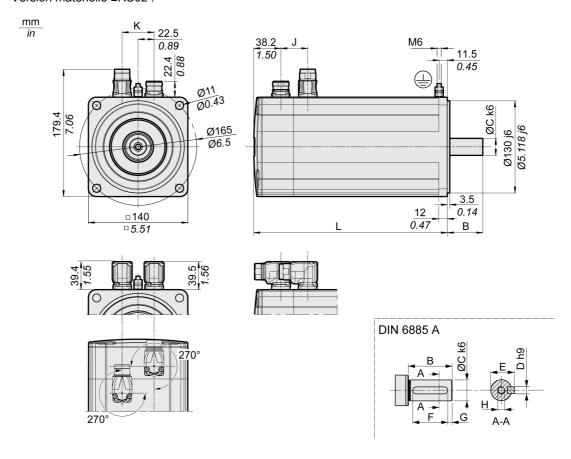
BSH			0401	0402
L	Longueur sans frein de maintien mm (in)		73,4 (2,89)	93,4 (3,68)
L	Longueur avec frein de maintien	mm (in)	99,4 (3,91)	119,4 (4,7)
В	Longueur de l'arbre	mm (in)	25 (0,98)	25 (0,98)
С	Diamètre de l'arbre	mm (in)	8 (0,31)	8 (0,31)
D	Largeur de la clavette	mm (in)	3 (0,12)	3 (0,12)
E	Largeur de l'arbre avec clavette	mm (in)	9,2 (0,36)	9,2 (0,36)
F	Longueur de la clavette	mm (in)	12 (0,47)	12 (0,47)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	4 (0,16)	4 (0,16)
Н	H Filet femelle de l'arbre		DIN 332 DS M3 x 9	DIN 332 DS M3 x 9
	Clavette		DIN 6885-A3x3x12	DIN 6885-A3x3x12



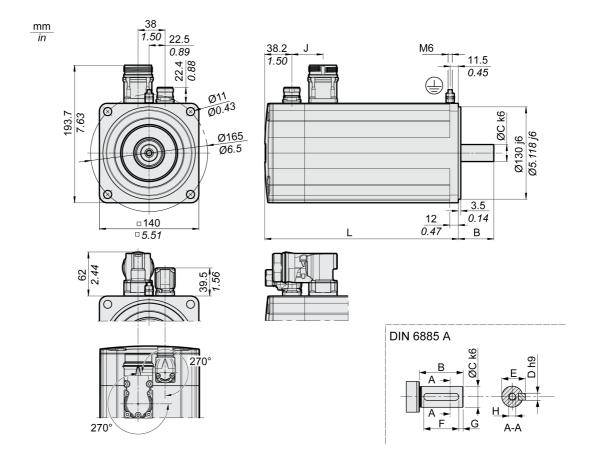
BS	Н		0551	0552	0553
L	Longueur sans frein de maintien	mm (in)	132,5 (5,22)	154,4 (6,08)	176,5 (6,95)
L	Longueur avec frein de maintien	mm (in)	159 (6,26)	181 (7,13)	203 (7,99)
В	Longueur de l'arbre	mm (in)	20 (0,79)	20 (0,79)	20 (0,79)
С	Diamètre de l'arbre	mm (in)	9 (0,35)	9 (0,35)	9 (0,35)
D	Largeur de la clavette	mm (in)	3 (0,12)	3 (0,12)	3 (0,12)
Е	Largeur de l'arbre avec clavette	mm (in)	10,2 (0,4)	10,2 (0,4)	10,2 (0,4)
F	Longueur de la clavette	mm (in)	12 (0,47)	12 (0,47)	12 (0,47)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	4 (0,16)	4 (0,16)	4 (0,16)
Н	Filet femelle de l'arbre		DIN 332-D M3	DIN 332-D M3	DIN 332-D M3
	Clavette		DIN 6885-A3x3x12	DIN 6885-A3x3x12	DIN 6885-A3x3x12


BSH.		0701	0702	0703	
L	Longueur sans frein de maintien	mm (in)	154 (6,06)	187 (7,36)	220 (8,66)
L	Longueur avec frein de maintien	mm (in)	180 (7,09)	213 (8,39)	254 (10)
В	Longueur de l'arbre	mm (in)	23 (0,91)	23 (0,91)	30 (1,18)
С	Diamètre de l'arbre	mm (in)	11 (0,43)	11 (0,43)	14 (0,55)
D	Largeur de la clavette mm (i		4 (0,16)	4 (0,16)	5 (0,2)
E	Largeur de l'arbre avec clavette mm (ii		12,5 (0,49)	12,5 (0,49)	16 (0,63)
F	Longueur de la clavette mm (in)		18 (0,71)	18 (0,71)	20 (0,79)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	2,5 (0,1)	2,5 (0,1)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M4	DIN 332-D M4	DIN 332-D M5
	Clavette		DIN 6885-A4x4x18	DIN 6885-A4x4x18	DIN 6885-A4x4x20

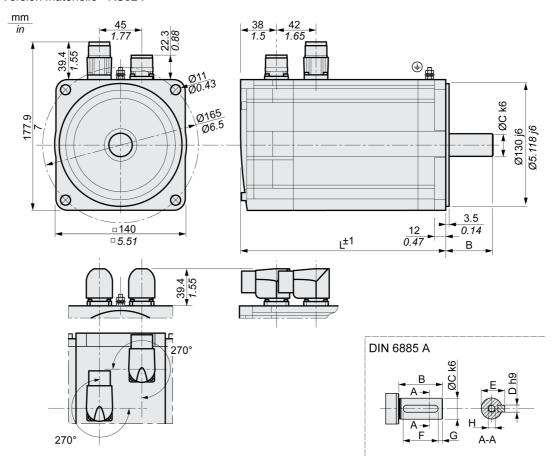
Version matérielle ≥RS02 :


BS	BSH		1001	1002	1003	1004
L	Longueur sans frein de maintien	mm (in)	168,5 (6,63)	204,5 (8,05)	240,5 (9,47)	276,5 (10,89)
L	Longueur avec frein de maintien	mm (in)	199,5 (7,85)	235,5 (9,27)	271,5 (10,69)	307,5 (12,11)
В	Longueur de l'arbre	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)	50 (1,97)
С	Diamètre de l'arbre	mm (in)	19 (0,75)	19 (0,75)	19 (0,75)	24 (0,94)
D	Largeur de la clavette	mm (in)	6 (0,24)	6 (0,24)	6 (0,24)	8 (0,31)
Е	Largeur de l'arbre avec clavette	mm (in)	21,5 (0,85)	21,5 (0,85)	21,5 (0,85)	27 (1,06)
F	Longueur de la clavette	mm (in)	30 (1,18)	30 (1,18)	30 (1,18)	40 (1,57)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M6	DIN 332-D M6	DIN 332-D M6	DIN 332-D M8
J	Espacement de connecteurs sans frein de maintien	mm (in)	34,5 (1,36)	34,5 (1,36)	34,5 (1,36)	34,5 (1,36)
J	Espacement de connecteurs avec frein de maintien	mm (in)	29,8 (1,17)	29,8 (1,17)	29,8 (1,17)	29,8 (1,17)
	Clavette		DIN 6885-A6x6x30	DIN 6885-A6x6x30	DIN 6885-A6x6x30	DIN 6885-A8x7x40

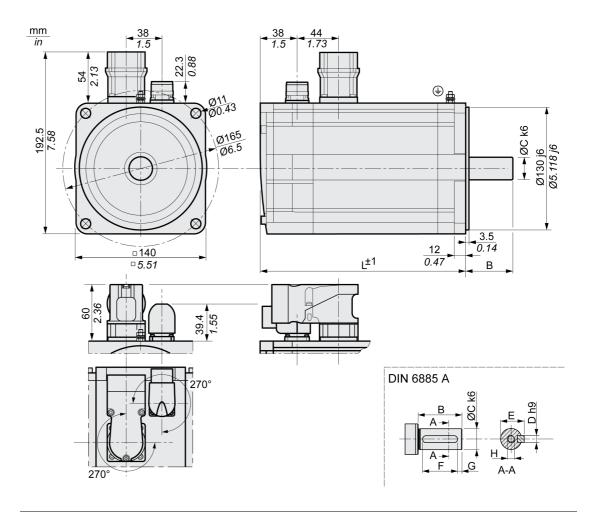
Version matérielle <RS02 :


BS	Н		1001	1002	1003	1004
L	Longueur sans frein de maintien	mm (in)	168,5 (6,63)	204,5 (8,05)	240,5 (9,47)	276,5 (10,89)
L	Longueur avec frein de maintien	mm (in)	199,5 (7,85)	235,5 (9,27)	271,5 (10,69)	307,5 (12,11)
В	Longueur de l'arbre	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)	50 (1,97)
С	Diamètre de l'arbre	mm (in)	19 (0,75)	19 (0,75)	19 (0,75)	24 (0,94)
D	Largeur de la clavette	mm (in)	6 (0,24)	6 (0,24)	6 (0,24)	8 (0,31)
E	Largeur de l'arbre avec clavette	mm (in)	21,5 (0,85)	21,5 (0,85)	21,5 (0,85)	27 (1,06)
F	Longueur de la clavette	mm (in)	30 (1,18)	30 (1,18)	30 (1,18)	40 (1,57)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M6	DIN 332-D M6	DIN 332-D M6	DIN 332-D M8
	Clavette		DIN 6885-A6x6x30	DIN 6885-A6x6x30	DIN 6885-A6x6x30	DIN 6885-A8x7x40

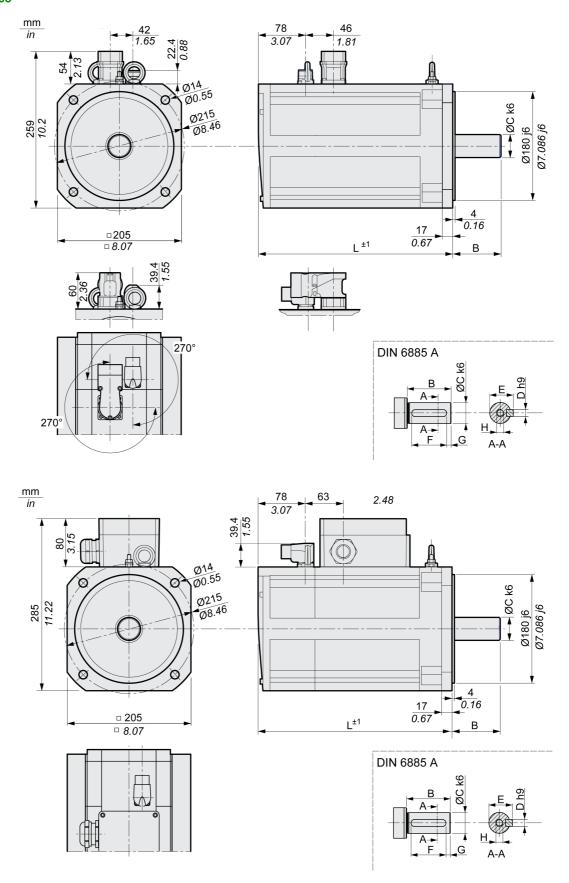
Version matérielle ≥RS02 :


BS	Н		1401	1402M, 1402P	1403M, 1403P	1404M
L	Longueur sans frein de maintien	mm (in)	217,5 (8,56)	272,5 (10,73)	327,5 (12,89)	382,5 (15,06)
L	Longueur avec frein de maintien	mm (in)	255,5 (10,06)	310,5 (12,22)	365,5 (14,39)	420,5 (16,56)
В	Longueur de l'arbre	mm (in)	50 (1,97)	50 (1,97)	50 (1,97)	50 (1,97)
С	Diamètre de l'arbre	mm (in)	24 (0,94)	24 (0,94)	24 (0,94)	24 (0,94)
D	Largeur de la clavette	mm (in)	8 (0,31)	8 (0,31)	8 (0,31)	8 (0,31)
E	Largeur de l'arbre avec clavette	mm (in)	28 (1,1)	28 (1,1)	28 (1,1)	28 (1,1)
F	Longueur de la clavette	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)	40 (1,57)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M8	DIN 332-D M8	DIN 332-D M8	DIN 332-D M8
J	Espacement de connecteurs 1 sans frein de maintien	mm (in)	38 (1,5)	38 (1,5)	38 (1,5)	38 (1,5)
J	Espacement de connecteurs 1 avec frein de maintien	mm (in)	35 (1,38)	35 (1,38)	35 (1,38)	35 (1,38)

BS	H		1401	1402M, 1402P	1403M, 1403P	1404M
К	Espacement de connecteurs 2 sans frein de maintien	mm (in)	45 (1,77)	45 (1,77)	45 (1,77)	45 (1,77)
К	Espacement de connecteurs 2 avec frein de maintien	mm (in)	38 (1,5)	38 (1,5)	38 (1,5)	38 (1,5)
	Clavette		DIN 6885-A8x7x40	DIN 6885-A8x7x40	DIN 6885-A8x7x40	DIN 6885-A8x7x40



BS	Н		1402T	1403T	1404P
L	Longueur sans frein de maintien	mm (in)	272,5 (10,73)	327,5 (12,89)	382,5 (15,06)
L	Longueur avec frein de maintien	mm (in)	310,5 (12,22)	365,5 (14,39)	420,5 (16,56)
В	Longueur de l'arbre	mm (in)	50 (1,97)	50 (1,97)	50 (1,97)
С	Diamètre de l'arbre	mm (in)	24 (0,94)	24 (0,94)	24 (0,94)
D	Largeur de la clavette	mm (in)	8 (0,31)	8 (0,31)	8 (0,31)
Е	Largeur de l'arbre avec clavette	mm (in)	28 (1,1)	28 (1,1)	28 (1,1)
F	Longueur de la clavette	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M8	DIN 332-D M8	DIN 332-D M8
J	Espacement de connecteurs sans frein de maintien	mm (in)	44 (1,73)	44 (1,73)	44 (1,73)
J	Espacement de connecteurs avec frein de maintien	mm (in)	35 (1,38)	35 (1,38)	35 (1,38)
	Clavette		DIN 6885-A8x7x40	DIN 6885-A8x7x40	DIN 6885-A8x7x40


Version matérielle <RS02 :

BS	H		1401	1402M, 1402P	1403M, 1403P	1404M
L	Longueur sans frein de maintien	mm (in)	217,5 (8,56)	272,5 (10,73)	327,5 (12,89)	382,5 (15,06)
L	Longueur avec frein de maintien	mm (in)	255,5 (10,06)	310,5 (12,22)	365,5 (14,39)	420,5 (16,56)
В	Longueur de l'arbre	mm (in)	50 (1,97)	50 (1,97)	50 (1,97)	50 (1,97)
С	Diamètre de l'arbre	mm (in)	24 (0,94)	24 (0,94)	24 (0,94)	24 (0,94)
D	Largeur de la clavette	mm (in)	8 (0,31)	8 (0,31)	8 (0,31)	8 (0,31)
Е	Largeur de l'arbre avec clavette	mm (in)	28 (1,1)	28 (1,1)	28 (1,1)	28 (1,1)
F	Longueur de la clavette	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)	40 (1,57)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M8	DIN 332-D M8	DIN 332-D M8	DIN 332-D M8
	Clavette		DIN 6885-A8x7x40	DIN 6885-A8x7x40	DIN 6885-A8x7x40	DIN 6885-A8x7x40

BS	н		1402T	1403T	1404P
L	Longueur sans frein de maintien	mm (in)	272,5 (10,73)	327,5 (12,89)	382,5 (15,06)
L	Longueur avec frein de maintien	mm (in)	310,5 (12,22)	365,5 (14,39)	420,5 (16,56)
В	Longueur de l'arbre	mm (in)	50 (1,97)	50 (1,97)	50 (1,97)
С	Diamètre de l'arbre	mm (in)	24 (0,94)	24 (0,94)	24 (0,94)
D	Largeur de la clavette	mm (in)	8 (0,31)	8 (0,31)	8 (0,31)
Е	Largeur de l'arbre avec clavette	mm (in)	28 (1,1)	28 (1,1)	28 (1,1)
F	Longueur de la clavette	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M8	DIN 332-D M8	DIN 332-D M8
	Clavette		DIN 6885-A8x7x40	DIN 6885-A8x7x40	DIN 6885-A8x7x40

0198441113838 01/2017

BS	Н		2051	2052	2053
L	Longueur sans frein de maintien	mm (in)	321 (12,64)	405 (15,94)	489 (19,25)
L	Longueur avec frein de maintien	mm (in)	370,5 (14,59)	454,5 (17,89)	538,5 (21,2)
В	Longueur de l'arbre	mm (in)	80 (3,15)	80 (3,15)	80 (3,15)
С	Diamètre de l'arbre	mm (in)	38 (1,5)	38 (1,5)	38 (1,5)
D	Largeur de la clavette	mm (in)	10 (0,39)	10 (0,39)	10 (0,39)
Е	Largeur de l'arbre avec clavette	mm (in)	43 (1,69)	43 (1,69)	43 (1,69)
F	Longueur de la clavette	mm (in)	70 (2,76)	70 (2,76)	70 (2,76)
G	Distance entre la clavette et le bout d'arbre d'entraînement	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Filet femelle de l'arbre		DIN 332-D M12	DIN 332-D M12	DIN 332-D M12
	Clavette		DIN 6885-A10x8x70	DIN 6885-A10x8x70	DIN 6885-A10x8x70

Données spécifiques à l'arbre

Le dépassement des forces maximales admissibles supportées par l'arbre du moteur peut entraîner une usure rapide des paliers ou la rupture de l'arbre.

▲ AVERTISSEMENT

FONCTIONNEMENT ANORMAL DU A LA DETERIORATION MECANIQUE DU MOTEUR

- Ne pas dépasser les forces axiales et radiales maximales admissibles au niveau de l'arbre du moteur.
- Protéger l'arbre du moteur contre les coups.
- Lors de l'emmanchement des éléments sur l'arbre du moteur, ne pas dépasser la force axiale maximale admissible.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

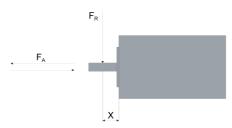
Force d'emmanchement

La force d'emmanchement ne doit pas dépasser la force axiale maximale admissible. L'application d'une pâte d'assemblage sur l'arbre et l'élément permet de réduire le frottement et de protéger la surface.

Si l'arbre est doté d'un filetage, utiliser ce dernier pour emmancher l'élément. Ainsi, aucune force axiale n'agit sur le roulement à rouleaux.

Alternativement, l'élément peut aussi être fretté, fixé par serrage ou collé.

Le tableau suivant montre la force axiale maximale admissible FA à l'arrêt.


BSH		040	055	070	100	140	205
Force axiale	N	20	40	80	160	300	740
maximale F _A à l'arrêt	(lbf)	(4,5)	(9)	(18)	(36)	(65)	(165)

Charge de l'arbre

Les conditions suivantes s'appliquent :

- La force admissible sur le bout d'arbre d'entraînement lors de l'emmanchement ne doit pas être dépassée
- Les charges limites radiales et axiales ne doivent pas être appliquées simultanément
- Durée de vie nominale du palier en heures de fonctionnement avec une probabilité de panne de 10 % (L_{10h} = 20000 heures)
- Vitesse de rotation moyenne n = 4000 1/min
- Température ambiante = 40 °C (104 °F)
- Couple crête = service type S3 S8, 10 % de durée d'enclenchement relative
- Couple nominal = service type S1, 100 % de durée d'enclenchement relative

Charge de l'arbre

Le point d'application des forces dépend de la taille du moteur :

BSH		040	055	0701, 0702	0703	1001, 1002, 1003	1004, 140	205
Valeur pour X	mm (in)	12,5 (0,49)	10 (0,39)	11,5 (0,45)	15 (0,59)	20 (0,76)	25 (0,98)	40 (1,57)

Les tableaux suivants montrent la charge radiale maximale de l'arbre F_{R} .

BSH		0401	0402	0551	0552	0553	0701	0702	0703	1001	1002
1000 1/min	N (lbf)	130 (29)	145 (32)	340 (76)	370 (83)	390 (88)	660 (148)	710 (160)	730 (164)	900 (202)	990 (223)
2000 1/min	N (lbf)	105 (24)	115 (26)	270 (61)	290 (65)	310 (70)	520 (117)	560 (126)	580 (130)	720 (162)	790 (178)
3000 1/min	N (lbf)	90 (20)	100 (22)	240 (54)	260 (58)	270 (61)	460 (103)	490 (110)	510 (115)	630 (142)	690 (155)
4000 1/min	N (lbf)	85 (19)	90 (20)	220 (49)	230 (52)	240 (54)	410 (92)	450 (101)	460 (103)	570 (128)	620 (139)
5000 1/min	N (lbf)	76 (17)	85 (19)	200 (45)	220 (49)	230 (52)	380 (85)	410 (92)	430 (97)	530 (119)	-
6000 1/min	N (lbf)	72 (16)	80 (80)	190 (43)	200 (45)	210 (47)	360 (81)	390 (88)	400 (90)	-	-
7000 1/min	N (lbf)	68 (15)	76 (17)	180 (40)	190 (43)	200 (45)	-	-	-	-	-
8000 1/min	N (lbf)	65 (15)	72 (16)	170 (38)	190 (43)	190 (43)	-	-	-	-	-
9000 1/min	N (lbf)	63 (14)	70 (16)	-	-	-	-	-	-	-	-
10000 1/min	N (lbf)	60 (13)	67 (15)	-	-	-	-	-	-	-	-

BSH		1003	1004	1401	1402	1403	1404	2051	2052	2053
1000 1/min	N	1050	1070	1930	2240	2420	2660	3730	4200	4500
	(lbf)	(236)	(241)	(434)	(504)	(544)	(598)	(839)	(944)	(1012)
2000 1/min	N	830	850	1530	1780	1920	2110	2960	3330	3570
	(lbf)	(187)	(191)	(344)	(400)	(432)	(474)	(665)	(749)	(803)
3000 1/min	N	730	740	1340	1550	1670	1840	2580	2910	3120
	(lbf)	(164)	(166)	(301)	(348)	(375)	(414)	(580)	(654)	(701)
4000 1/min	N (lbf)	660 (148)	-	-	-	-	-	-	-	-

Les tableaux suivants montrent la charge axiale maximale de l'arbre F_R .

BSH		0401	0402	0551	0552	0553	0701	0702	0703	1001	1002
1000 1/min	N (lbf)	26 (6)	29 (7)	68 (15)	74 (17)	78 (18)	132 (30)	142 (32)	146 (33)	180 (40)	198 (45)
2000 1/min	N (lbf)	21 (5)	23 (5)	54 (12)	58 (13)	62 (14)	104 (23)	112 (25)	116 (26)	144 (32)	158 (36)
3000 1/min	N (lbf)	18 (4)	20 (4)	48 (11)	52 (12)	54 (12)	92 (21)	98 (22)	102 (23)	126 (28)	138 (31)
4000 1/min	N (lbf)	17 (4)	18 (4)	44 (10)	46 (10)	48 (11)	82 (18)	90 (20)	92 (21)	114 (26)	124 (28)
5000 1/min	N (lbf)	16 (4)	17 (4)	40 (9)	44 (10)	46 (10)	76 (17)	82 (18)	86 (19)	106 (24)	-
6000 1/min	N (lbf)	15 (3)	16 (4)	38 (9)	40 (9)	42 (9)	72 (16)	78 (18)	80 (18)	-	-
7000 1/min	N (lbf)	14 (3)	15 (3)	36 (8)	38 (9)	40 (9)	-	-	-	-	-
8000 1/min	N (lbf)	13 (3)	14 (3)	34 (8)	38 (9)	38 (9)	-	-	-	-	-
9000 1/min	N (lbf)	12 (3)	13 (3)	-	-	-	-	-	-	-	-
10000 1/min	N (lbf)	11 (2)	12 (3)	-	-	-	-	-	-	-	-

BSH		1003	1004	1401	1402	1403	1404	2051	2052	2053
1000 1/min	N	210	214	386	448	484	532	746	840	900
	(lbf)	(47)	(48)	(87)	(101)	(109)	(120)	(168)	(189)	(202)
2000 1/min	N	166	170	306	356	384	422	592	666	714
	(lbf)	(37)	(38)	(69)	(80)	(86)	(95)	(133)	(150)	(161)
3000 1/min	N	146	148	268	310	334	368	516	582	624
	(lbf)	(33)	(33)	(60)	(70)	(75)	(83)	(116)	(131)	(140)
4000 1/min	N (lbf)	132 (30)	-	-	-	-	-	-	-	-

Données spécifiques au moteur

BSH040

BSH		0401	0402
Enroulement		Р	Р
Caractéristiques techniques - généralités ¹⁾			
Couple continu à l'arrêt ${\rm M_0}^{2)}$	Nm	0,21	0,39
Couple crête M _{max}	Nm	0,75	1,50
Nombre de paires de pôles moteur		5	
Pour une tension d'alimentation $U_n = 115 \text{ V}$	ac		
Vitesse nominale n _N	1/min	2000	2000
Couple nominal M _N	Nm	0,20	0,38
Courant nominal I _N	A _{rms}	1,03	1,45
Puissance nominale P _N	kW	0,042	0,078
Pour une tension d'alimentation U _n = 230 V	ac		
Vitesse nominale n _N	1/min	4000	4000
Couple nominal M _N	Nm	0,19	0,37
Courant nominal I _N	A _{rms}	1,01	1,42
Puissance nominale P _N	kW	0,080	0,152
Pour une tension d'alimentation U _n = 400 V	ac		
Vitesse nominale n _N	1/min	9000	9000
Couple nominal M _N	Nm	0,18	0,31
Courant nominal I _N	A _{rms}	1,02	1,27
Puissance nominale P _N	kW	0,170	0,292
Pour une tension d'alimentation U _n = 480 V	ac		
Vitesse nominale n _N	1/min	9000	9000
Couple nominal M _N	Nm	0,175	0,290
Courant nominal I _N	A _{rms}	1,04	1,26
Puissance nominale P _N	kW	0,165	0,275
A) 0 - 400			

¹⁾ Conditions pour les données de puissance : montage sur plaque en aluminium 185 mm (7,28 in) x 185 mm (7,28 in) x 8 mm (0,31 in).

2) M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de

rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH	BSH			
Enroulement	Р	Р		
Caractéristiques techniques - électriques				
Tension d'enroulement maximale U _{max}	Vac	480	480	
Tension d'enroulement maximale U _{max}	Vdc	680	680	
Tension maximale par rapport à la terre	Vac	280	280	
Intensité maximum I _{max}	A _{rms}	4,5	7,2	
Courant continu à l'arrêt I ₀	A _{rms}	1,12	1,50	
Constante de tension k _E u-v ¹⁾	V _{rms}	13,6	18,0	
Constante de couple k _t	Nm/A	0,190	0,260	
1) Valeur efficace à 1000 1/min et 20 °C (68 °F).				

BSH		0401	0402
Enroulement		Р	Р
Résistance d'enroulement R ₂₀ u-v	Ω	17,2	11,6
Inductance d'enroulement L _q u-v	mH	14,6	12,8
Inductance d'enroulement L _d u-v	mH	13,2	11,6
Caractéristiques techniques - mécaniques			
Vitesse de rotation maximale admissible n _{max}	1/min	10000	
Moment d'inertie du rotor sans frein de maintien J _M	kgcm ²	0,0232	0,0419
Moment d'inertie du rotor avec frein de maintien ${\sf J}_{\sf M}$	kgcm ²	0,0400	0,0588
Masse sans frein de maintien m	kg	0,43	0,57
Masse avec frein de maintien m	kg	0,58	0,72
Caractéristiques techniques - Références thermiqu	es	•	
Constante de temps thermique t _{th}	min	8	10
1) Valeur efficace à 1000 1/min et 20 °C (68 °F).			

BSH055

BSH		0551		0552			0553		
Enroulement		Р	Т	М	Р	Т	М	Р	Т
Caractéristiques techniques - généra	lités ¹⁾								
Couple continu à l'arrêt M ₀ ²⁾	Nm	0,5		0,8			1,2		
Couple crête M _{max}	Nm	1,5		2,5			3,5		
Nombre de paires de pôles moteur		3		1					
Pour une tension d'alimentation U _n =	115 V a	С							
Vitesse nominale n _N	1/min	2000	4000	1000	2000	4000	1000	2000	4000
Couple nominal M _N	Nm	0,50	0,50	0,77	0,77	0,75	1,14	1,13	1,10
Courant nominal I _N	A _{rms}	0,70	1,24	0,60	1,18	2,10	0,84	1,60	2,80
Puissance nominale P _N	kW	0,10	0,21	0,08	0,16	0,31	0,12	0,24	0,46
Pour une tension d'alimentation U _n =	230 V a	С							
Vitesse nominale n _N	1/min	8000	8000	2000	4000	8000	2000	4000	8000
Couple nominal M _N	Nm	0,50	0,48	0,77	0,75	0,72	1,13	1,10	1,05
Courant nominal I _N	A _{rms}	0,68	1,1	0,60	1,15	2,00	0,79	1,52	2,50
Puissance nominale P _N	kW	0,21	0,40	0,16	0,31	0,60	0,24	0,46	0,88
Pour une tension d'alimentation U _n =	400 V a	С							
Vitesse nominale n _N	1/min	8000	8000	4000	8000	8000	4000	8000	8000
Couple nominal M _N	Nm	0,48	0,48	0,75	0,72	0,72	1,10	1,05	1,05
Courant nominal I _N	A _{rms}	0,62	1,10	0,60	1,10	2,00	0,700	1,35	2,50
Puissance nominale P _N	kW	0,40	0,40	0,31	0,60	0,60	0,46	0,88	0,88
Pour une tension d'alimentation U _n =	480 V a	С							
Vitesse nominale n _N	1/min	9000	9000	4800	9000	9000	4800	9000	9000
Couple nominal M _N	Nm	0,47	0,47	0,75	0,71	0,71	1,1	1,03	1,03
Courant nominal I _N	A _{rms}	0,60	1,07	0,60	1,09	1,98	0,67	1,31	2,45
Puissance nominale P _N	kW	0,44	0,44	0,38	0,67	0,67	0,55	0,97	0,97

Conditions pour les données de puissance : montage sur plaque en acier 175 mm (6,89 in) x 175 mm (6,89 in) x 10 mm (0,39 in).
 M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation

M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		0551		0552			0553		
Enroulement		Р	Т	М	Р	Т	М	Р	Т
Caractéristiques techniques - électrique	s						•		•
Tension d'enroulement maximale U _{max}	Vac	480	480	480	480	480	480	480	480
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680	680	680	680
Tension maximale par rapport à la terre	Vac	280	280	280	280	280	280	280	280
Intensité maximum I _{max}	A _{rms}	2,90	5,40	2,60	4,80	8,80	3,40	6,50	11,90
Courant continu à l'arrêt I ₀	A _{rms}	0,73	1,40	0,60	1,20	2,20	0,90	1,70	3,10
Constante de tension k _E u-v ¹⁾	V _{rms}	40,00	22,00	74,00	40,00	22,00	79,00	41,00	22,00
Constante de couple k _t	Nm/A	0,68	0,36	1,33	0,70	0,36	1,33	0,70	0,39
Résistance d'enroulement R ₂₀ u-v	Ω	41,80	12,20	55,50	17,40	4,60	38,40	10,40	3,10
Inductance d'enroulement Lqu-v	mH	74,3	21,70	125,80	36,40	10,90	96,10	26,00	7,80
Inductance d'enroulement L _d u-v	mH	68,84	20,10	118,50	34,28	10,30	88,50	23,96	7,10
Caractéristiques techniques - mécaniques	i es - ave	c versior	n matérie	lle ≥RS0	2			1	
Vitesse de rotation maximale admissible n _{max}	1/min	9000							
Moment d'inertie du rotor sans frein de maintien J_M	kgcm ²	0,057		0,093			0,130		
Moment d'inertie du rotor avec frein de maintien J_M	kgcm ²	0,079		0,115			0,152		
Masse sans frein de maintien m	kg	1,20		1,50			1,70		
Masse avec frein de maintien m	kg	1,30		1,60			1,80		
Caractéristiques techniques - mécaniques	ies - ave	c versior	n matérie	lle <rs0< td=""><td>2</td><td></td><td></td><td></td><td></td></rs0<>	2				
Vitesse de rotation maximale admissible n _{max}	1/min	9000							
Moment d'inertie du rotor sans frein de maintien J_M	kgcm ²	0,057		0,093			0,130		
Moment d'inertie du rotor avec frein de maintien J_M	kgcm ²	0,080		0,117			0,155		
Masse sans frein de maintien m	kg	1,20		1,30			1,80		
Masse avec frein de maintien m	kg	1,30		1,60		•	2,10		•
Caractéristiques techniques - Référence	es therm	iques							
Constante de temps thermique t_{th}	min	21		26			33		
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)							
1) Valeur efficace à 1000 1/min et 20	°C (68 °F	-).							

BSH070

BSH		0701			0702			0703		
Enroulement		M P T			М	Р	Т	М	Р	Т
Caractéristiques techniques - général	lités ¹⁾	·								
Couple continu à l'arrêt M ₀ ²⁾	Nm	1,4			2,2			3,1		
Couple crête M _{max}	Nm	3,5			7,6			11,3		
Nombre de paires de pôles moteur		3						•		
Pour une tension d'alimentation U _n =	115 V a	C								
Vitesse nominale n _N	1/min	750	1500	3000	750	1500	3000	750	1500	3000
Couple nominal M _N	Nm	1,40	1,40	1,40	2,20	2,15	2,10	3,05	2,95	2,80
Courant nominal I _N	A _{rms}	0,98	1,76	3,00	1,50	2,90	4,80	2,10	3,90	6,30
Puissance nominale P _N	kW	0,11	0,22	0,44	0,17	0,34	0,66	0,24	0,46	0,88
Pour une tension d'alimentation U _n =	230 V a	C							•	
Vitesse nominale n _N	1/min	1500	3000	6000	1500	3000	6000	1500	3000	6000
Couple nominal M _N	Nm	1,40	1,40	1,30	2,15	2,10	1,90	2,95	2,80	2,30
Courant nominal I _N	A _{rms}	0,95	1,72	2,80	1,50	2,80	4,40	2,00	3,70	5,20
Puissance nominale P _N	kW	0,22	0,44	0,82	0,34	0,66	1,19	0,46	0,88	1,45
Pour une tension d'alimentation U _n =	400 V a	C	•						•	
Vitesse nominale n _N	1/min	3000	6000	6000	3000	6000	6000	3000	6000	6000
Couple nominal M _N	Nm	1,40	1,30	1,30	2,10	1,90	1,90	2,80	2,30	2,30
Courant nominal I _N	A _{rms}	0,90	1,60	2,80	1,50	2,60	4,40	1,90	3,00	5,20
Puissance nominale P _N	kW	0,44	0,82	0,82	0,66	1,19	1,19	0,88	1,45	1,45
Pour une tension d'alimentation U _n =	480 V a	C						•		
Vitesse nominale n _N	1/min	3600	7200	7200	3600	7200	7200	3600	7200	7200
Couple nominal M _N	Nm	1,35	1,26	1,26	2,07	1,80	1,80	2,72	2,05	2,05
Courant nominal I _N	A _{rms}	0,88	1,54	2,70	1,50	2,50	4,20	1,85	2,65	4,60
Puissance nominale P _N	kW	0,50	0,95	0,95	0,78	1,36	1,36	1,03	1,55	1,55

¹⁾ Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.

²⁾ M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		0701			0702			0703		
Enroulement		М	Р	Т	М	Р	Т	М	Р	Т
Caractéristiques techniques - électrique	s									
Tension d'enroulement maximale \mathbf{U}_{max}	Vac	480	480	480	480	480	480	480	480	480
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680	680	680	680	680
Tension maximale par rapport à la terre	Vac	280	280	280	280	280	280	280	280	280
Intensité maximum I _{max}	A _{rms}	3,10	5,70	10,10	6,00	11,80	19,90	8,70	17,00	29,20
Courant continu à l'arrêt I ₀	A _{rms}	1,00	1,80	3,20	1,50	2,90	4,90	2,10	4,10	7,00
Constante de tension k _E u-v ¹⁾	V _{rms}	85,00	46,00	26,00	95,90	48,00	28,00	95,00	49,00	29,00
Constante de couple k _t	Nm/A	1,40	0,80	0,44	1,47	0,77	0,45	1,48	0,78	0,44
Résistance d'enroulement R ₂₀ u-v	Ω	35,40	10,40	3,30	16,40	4,20	1,50	10,70	2,70	0,97
Inductance d'enroulement L _q u-v	mH	144,8 0	42,60	13,50	83,10	21,30	7,50	55,30	14,60	4,90
Inductance d'enroulement L _d u-v	mH	120,0 0	35,30	11,20	65,20	16,70	5,90	43,10	11,40	3,90
1) Valeur efficace à 1000 1/min et 20 °	°C (68 °F	-).								

BSH		0701			0702			0703	0703		
Enroulement		М	Р	Т	М	Р	Т	М	Р	Т	
Caractéristiques techniques - mécaniqu	es - ave	c version matérielle ≥RS02									
Vitesse de rotation maximale admissible n _{max}	1/min	8000									
Moment d'inertie du rotor sans frein de maintien J _M	kgcm ²	0,205			0,351			0,503			
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	0,318			0,464			0,616			
Masse sans frein de maintien m	kg	1,90			2,80			3,40			
Masse avec frein de maintien m	kg	2,10			3,00	3,00			3,50		
Caractéristiques techniques - mécaniqu	ies - ave	c versio	n maté	rielle <r< td=""><td>S02</td><td></td><td></td><td></td><td></td><td></td></r<>	S02						
Vitesse de rotation maximale admissible n _{max}	1/min	8000									
Moment d'inertie du rotor sans frein de maintien J _M	kgcm ²	0,205			0,351			0,503			
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	0,322			0,482			0,807			
Masse sans frein de maintien m	kg	2,20			2,90			3,50			
Masse avec frein de maintien m	kg	2,40			3,00			4,10			
Caractéristiques techniques - Référence	es therm	iques									
Constante de temps thermique t _{th}	min	35			38			51			
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)			•						
1) Valeur efficace à 1000 1/min et 20 °	°C (68 °F	·).									

BSH100

BSH		1001			1002			
Enroulement		М	Р	Т	М	Р	Т	
Caractéristiques techniques -								
Couple continu à l'arrêt M ₀ ²⁾	Nm	3,3			5,8			
Couple crête M _{max}	Nm	9,6			18,3			
Nombre de paires de pôles moteur		4						
Pour une tension d'alimentation	our une tension d'alimentation U _n = 115 V ac							
Vitesse nominale n _N	1/min	625	1250	2500	500	1000	2000	
Couple nominal M _N	Nm	3,20	3,15	3,00	5,70	5,50	5,20	
Courant nominal I _N	A _{rms}	1,75	3,50	6,60	2,45	4,55	8,85	
Puissance nominale P _N	kW	0,21	0,41	0,79	0,30	0,58	1,09	
Pour une tension d'alimentation	n U _n = 23	30 V ac						
Vitesse nominale n _N	1/min	1250	2500	5000	1000	2000	4000	
Couple nominal M _N	Nm	3,15	3,00	2,70	5,50	5,20	4,60	
Courant nominal I _N	A _{rms}	1,70	3,20	5,90	2,40	4,30	7,90	
Puissance nominale P _N	kW	0,41	0,79	1,41	0,58	1,09	1,93	

Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.
 M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation

inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		1001			1002			
Enroulement	Enroulement			Т	М	Р	Т	
Caractéristiques techniques - généralités ¹⁾								
Pour une tension d'alimenta	tion U _n = 4	00 V ac						
Vitesse nominale n _N	1/min	2500	5000	5000	2000	4000	4000	
Couple nominal M _N	Nm	3,00	2,70	2,70	5,20	4,60	4,60	
Courant nominal I _N	A _{rms}	1,60	2,80	5,90	2,30	3,80	7,90	
Puissance nominale P _N	kW	0,79	1,41	1,41	1,09	1,93	1,93	
Pour une tension d'alimenta	tion U _n = 4	80 V ac			'			
Vitesse nominale n _N	1/min	3000	6000	6000	2400	4800	4800	
Couple nominal M _N	Nm	2,95	2,60	2,60	5,10	4,40	4,40	
Courant nominal I _N	A _{rms}	1,60	2,60	5,60	2,25	3,60	7,50	
Puissance nominale P _N	kW	0,93	1,63	1,63	1,28	2,21	2,21	

- 1) Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de
- superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.

 2) M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		1001			1002						
Enroulement		М	Р	Т	М	Р	Т				
Caractéristiques techniques - électrique	s										
Tension d'enroulement maximale U _{max}	Vac	480	480	480	480	480	480				
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680	680				
Tension maximale par rapport à la terre	Vac	280	280	280	280	280	280				
Intensité maximum I _{max}	A _{rms}	6,30	12,00	25,10	9,00	17,10	35,40				
Courant continu à l'arrêt I ₀	A _{rms}	1,80	3,50	7,30	2,50	4,80	9,90				
Constante de tension k _E u-v ¹⁾	V _{rms}	115,00	60,00	29,00	146,00	77,00	37,00				
Constante de couple k _t	Nm/A	1,83	0,89	0,45	2,32	1,21	0,59				
Résistance d'enroulement R ₂₀ u-v	Ω	13,90	3,80	0,87	8,60	2,40	0,56				
Inductance d'enroulement L _q u-v	mH	69,40	19,00	4,30	48,60	13,50	3,10				
Inductance d'enroulement L _d u-v	mH	59,50	16,30	3,70	43,20	12,00	2,80				
Caractéristiques techniques - mécaniqu	ies - ave	c version r	natérielle ≥	RS02							
Vitesse de rotation maximale admissible n _{max}	1/min	6000									
Moment d'inertie du rotor sans frein de maintien ${\sf J}_{\sf M}$	kgcm ²	1,100			1,909						
Moment d'inertie du rotor avec frein de maintien ${\sf J}_{\sf M}$	kgcm ²	1,613			2,422						
Masse sans frein de maintien m	kg	4,40			6,00						
Masse avec frein de maintien m	kg	4,90			6,50						
Caractéristiques techniques - mécaniqu	ies - ave	c version r	natérielle <	RS02							
Vitesse de rotation maximale admissible n _{max}	1/min	6000									
Moment d'inertie du rotor sans frein de maintien ${\sf J}_{\sf M}$	kgcm ²	1,100			1,909						
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	2,018 2,928									
Masse sans frein de maintien m	kg	4,30 5,90									
Masse avec frein de maintien m	kg	5,00			6,60	5,00 6,60					

BSH	1001			1002	1002			
Enroulement		М	Р	Т	М	Р	Т	
Caractéristiques techniques - Référen	ces therm	niques						
Constante de temps thermique t _{th}	min	44			48			
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)						
1) Valeur efficace à 1000 1/min et 20	°C (68 °F	=).						

BSH		1003		1004				
Enroulement		М	Р	М	Р	Т		
Caractéristiques techniques - généra	alités ¹⁾							
Couple continu à l'arrêt M ₀ ²⁾	Nm	8		10				
Couple crête M _{max}	Nm	28,3		40,5				
Nombre de paires de pôles moteur		4		, , , , , , , , , , , , , , , , , , ,				
Pour une tension d'alimentation U _n = 115 V ac								
Vitesse nominale n _N	1/min	500	1000	375	750	1500		
Couple nominal M _N	Nm	7,80	7,50	10,00	9,90	9,50		
Courant nominal I _N	A _{rms}	3,34	6,30	3,20	6,25	12,60		
Puissance nominale P _N	kW	0,41	0,79	0,39	0,78	2,48		
Pour une tension d'alimentation U _n	230 V a	С						
Vitesse nominale n _N	1/min	1000	2000	750	1500	3000		
Couple nominal M _N	Nm	7,50	7,00	9,90	9,50	7,90		
Courant nominal I _N	A _{rms}	3,27	5,90	3,20	6,10	10,90		
Puissance nominale P _N	kW	0,79	1,47	0,78	1,49	2,48		
Pour une tension d'alimentation U _n	= 400 V a	С						
Vitesse nominale n _N	1/min	2000	4000	1500	3000	3000		
Couple nominal M _N	Nm	7,00	5,70	9,50	7,90	7,90		
Courant nominal I _N	A _{rms}	3,10	4,90	3,20	5,30	10,90		
Puissance nominale P _N	kW	1,47	2,39	1,49	2,48	2,48		
Pour une tension d'alimentation U _n	480 V a	С		-				
Vitesse nominale n _N	1/min	2400	4800	1800	3600	3600		
Couple nominal M _N	Nm	6,76	5,10	9,30	6,90	6,90		
Courant nominal I _N	A _{rms}	3,00	4,40	3,15	4,80	9,80		
Puissance nominale P _N	kW	1,70	2,56	1,75	2,60	2,60		

¹⁾ Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.

²⁾ M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		1003		1004				
Enroulement		М	Р	М	Р	Т		
Caractéristiques techniques - électrique	s		,	<u>'</u>	'	<u>'</u>		
Tension d'enroulement maximale U_{max}	Vac	480	480	480	480	480		
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680		
Tension maximale par rapport à la terre	Vac	280	280	280	280	280		
Intensité maximum I _{max}	A _{rms}	14,70	28,30	16,80	32,30	66,30		
Courant continu à l'arrêt I ₀	A _{rms}	3,40	6,60	3,20	6,20	12,70		
Constante de tension k _E u-v ¹⁾	V _{rms}	148,00	77,00	198,00	103,00	50,00		
Constante de couple k _t	Nm/A	2,35	1,22	3,13	1,62	0,79		
Résistance d'enroulement R ₂₀ u-v	Ω	5,30	1,43	6,70	1,81	0,45		
Inductance d'enroulement L _q u-v	mH	34,80	9,40	48,10	13,00	3,10		
Inductance d'enroulement L _d u-v	mH	30,00	8,10	39,60	10,70	2,50		
Caractéristiques techniques - mécaniqu	ies - ave	c version m	atérielle ≥RS	02				
Vitesse de rotation maximale admissible n _{max}	1/min	6000	6000					
Moment d'inertie du rotor sans frein de maintien ${\sf J}_{\sf M}$	kgcm ²	2,718		3,613	3,613			
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	3,521		4,416	4,416			
Masse sans frein de maintien m	kg	7,70		9,40	9,40			
Masse avec frein de maintien m	kg	8,40		10,30	10,30			
Caractéristiques techniques - mécanique	ies - ave	c version m	atérielle <rs< td=""><td>02</td><td></td><td></td></rs<>	02				
Vitesse de rotation maximale admissible n _{max}	1/min	6000						
Moment d'inertie du rotor sans frein de maintien ${\sf J}_{\sf M}$	kgcm ²	2,718		3,613				
Moment d'inertie du rotor avec frein de maintien J_M	kgcm ²	3,838		5,245				
Masse sans frein de maintien m	kg	7,50		9,10				
Masse avec frein de maintien m	kg	8,20		9,80				
Caractéristiques techniques - Référence	es therm	iques						
Constante de temps thermique t _{th}	min	56		58				
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)						
1) Valeur efficace à 1000 1/min et 20 °	°C (68 °F	·).						

BSH140

BSH		1401	1401		1402				
Enroulement		M P T		Т	М	Р	Т		
Caractéristiques techniques -	généralité	ės ¹⁾							
Couple continu à l'arrêt M ₀ ²⁾	Nm	11,1			19,5				
Couple crête M _{max}	Nm	27			60,1				
Nombre de paires de pôles moteur		5							
Pour une tension d'alimentation	on U _n = 1	15 V ac							
Vitesse nominale n _N	1/min	375	750	1500	375	750	1500		
Couple nominal M _N	Nm	11,00	10,95	10,60	19,10	18,60	17,10		
Courant nominal I _N	A _{rms}	4,00	7,80	13,60	6,70	12,80	20,40		
Puissance nominale P _N	kW	0,43	0,86	1,67	0,75	1,46	2,69		
Pour une tension d'alimentation U _n = 230 V ac									
Vitesse nominale n _N	1/min	750	1500	3000	750	1500	3000		
Couple nominal M _N	Nm	10,95	10,60	9,20	18,60	17,10	12,30		
Courant nominal I _N	A _{rms}	4,00	7,60	12,10	6,60	12,00	15,20		
Puissance nominale P _N	kW	0,86	1,67	2,89	1,46	2,69	3,86		
Pour une tension d'alimentation	n U _n = 40	00 V ac							
Vitesse nominale n _N	1/min	1500	3000	3000	1500	3000	3000		
Couple nominal M _N	Nm	10,60	9,20	9,20	17,10	12,30	12,30		
Courant nominal I _N	A _{rms}	4,00	6,80	12,10	6,30	8,90	15,20		
Puissance nominale P _N	kW	1,67	2,89	2,89	2,69	3,86	3,86		
Pour une tension d'alimentation	n U _n = 48	30 V ac							
Vitesse nominale n _N	1/min	1800	3600	3600	1800	3600	3600		
Couple nominal M _N	Nm	10,40	8,40	8,40	16,30	9,70	9,70		
Courant nominal I _N	A _{rms}	4,00	6,30	11,15	6,10	7,10	12,20		
Puissance nominale P _N	kW	1,96	3,17	3,17	3,07	3,66	3,66		

 ¹⁾ Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.
 2) M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation

²⁾ M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		1401	1401			1402		
Enroulement		М	Р	Т	М	Р	Т	
Caractéristiques techniques - électriques								
Tension d'enroulement maximale \mathbf{U}_{max}	Vac	480	480	480	480	480	480	
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680	680	
Tension maximale par rapport à la terre	Vac	280	280	280	280	280	280	
Intensité maximum I _{max}	A _{rms}	10,80	20,80	37,10	22,40	44,10	75,20	
Courant continu à l'arrêt I ₀	A _{rms}	4,00	7,80	13,90	6,70	13,20	22,50	
Constante de tension k _E u-v ¹⁾	V _{rms}	193,00	100,00	56,00	199,00	101,00	59,00	
Constante de couple k _t	Nm/A	2,78	1,43	0,80	2,91	1,47	0,87	
Résistance d'enroulement R ₂₀ u-v	Ω	5,30	1,41	0,44	2,32	0,60	0,21	
1) Valeur efficace à 1000 1/min et 20	°C (68 °F	=).	•	•	•	·		

BSH		1401			1402			
Enroulement		М	Р	Т	М	Р	Т	
Inductance d'enroulement L _q u-v	mH	60,90	16,30	5,10	29,80	7,70	2,70	
Inductance d'enroulement L _d u-v	mH	55,30	14,84	4,70	27,20	7,05	2,42	
Caractéristiques techniques - mécaniques	les - ave	c version m	atérielle ≥R	RS02	1	-1	- 1	
Vitesse de rotation maximale admissible n _{max}	1/min	4000						
Moment d'inertie du rotor sans frein de maintien J _M	kgcm ²	6,941			12,162			
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	8,542			14,824			
Masse sans frein de maintien m	kg	11,50			16,50			
Masse avec frein de maintien m	kg	12,90			18,10			
Caractéristiques techniques - mécaniques	ies - ave	c version m	atérielle <r< td=""><td>RS02</td><td></td><td></td><td></td></r<>	RS02				
Vitesse de rotation maximale admissible n _{max}	1/min	4000						
Moment d'inertie du rotor sans frein de maintien J _M	kgcm ²	6,941			12,162			
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	9,210			14,480			
Masse sans frein de maintien m	kg	11,20			16,10			
Masse avec frein de maintien m	kg	12,60			17,40			
Caractéristiques techniques - Référence	es therm	iques						
Constante de temps thermique t _{th}	min	64			74			
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)						
1) Valeur efficace à 1000 1/min et 20	°C (68 °F	₹).						

BSH		1403		1404			
Enroulement		М	Р	Т	М	Р	
Caractéristiques techniques - généra	lités ¹⁾						
Couple continu à l'arrêt M ₀ ²⁾	Nm	27,8			33,4		
Couple crête M _{max}	Nm	90,2			131,9		
Nombre de paires de pôles moteur		5			•		
Pour une tension d'alimentation U _n = 115 V ac							
Vitesse nominale n _N	1/min	375	750	1500	375	750	
Couple nominal M _N	Nm	26,30	24,70	21,20	31,90	30,20	
Courant nominal I _N	A _{rms}	8,70	15,90	17,00	10,40	19,60	
Puissance nominale P _N	kW	1,03	1,94	3,33	1,25	2,37	
Pour une tension d'alimentation U _n =	230 V a	С					
Vitesse nominale n _N	1/min	750	1500	3000	750	1500	
Couple nominal M _N	Nm	24,70	21,20	12,90	30,20	26,30	
Courant nominal I _N	A _{rms}	8,30	13,90	10,30	10,00	17,40	
Puissance nominale P _N	kW	1,94	3,33	4,05	2,37	4,13	

Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.
 M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation

²⁾ M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		1403		1404	1404			
Enroulement		М	Р	Т	М	Р		
Caractéristiques techniques - généralités ¹⁾								
Pour une tension d'alimentation	U _n = 400 V a	ıc						
Vitesse nominale n _N	1/min	1500	3000	3000	1500	3000		
Couple nominal M _N	Nm	21,20	12,90	12,90	26,30	16,10		
Courant nominal I _N	A _{rms}	7,30	8,70	10,30	9,00	11,00		
Puissance nominale P _N	kW	3,33	4,05	4,05	4,13	5,06		
Pour une tension d'alimentation	U _n = 480 V a	ıc						
Vitesse nominale n _N	1/min	1800	3600	3600	1800	3600		
Couple nominal M _N	Nm	19,70	9,10	9,10	24,50	11,10		
Courant nominal I _N	A _{rms}	6,90	6,20	7,30	8,50	7,70		
Puissance nominale P _N	kW	3,71	3,43	3,43	4,62	4,19		

- 1) Conditions pour les données de puissance : montage sur plaque en acier, (2,5 x dimension de bride)² de
- superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.

 2) M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		1403			1404		
Enroulement		М	Р	Т	М	Р	
Caractéristiques techniques - électrique	s	1				<u>'</u>	
Tension d'enroulement maximale U _{max}	Vac	480	480	480	480	480	
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680	
Tension maximale par rapport à la terre	Vac	280	280	280	280	280	
Intensité maximum I _{max}	A _{rms}	31,30	61,00	81,30	47,80	95,60	
Courant continu à l'arrêt I ₀	A _{rms}	9,00	17,60	22,30	10,70	21,30	
Constante de tension k _E u-v ¹⁾	V_{rms}	205,00	105,00	78,00	208,00	104,00	
Constante de couple k _t	Nm/A	3,09	1,58	1,25	3,12	1,57	
Résistance d'enroulement R ₂₀ u-v	Ω	1,52	0,40	0,22	1,12	0,28	
Inductance d'enroulement L _q u-v	mH	20,20	5,30	2,70	16,30	4,10	
Inductance d'enroulement L _d u-v	mH	18,40	4,84	3,00	14,80	3,69	
Caractéristiques techniques - mécaniqu	es - ave	c version m	atérielle ≥RS0	02		<u>'</u>	
Vitesse de rotation maximale admissible n _{max}	1/min	4000					
Moment d'inertie du rotor sans frein de maintien $\mathbf{J}_{\mathbf{M}}$	kgcm ²	17,383			22,604		
Moment d'inertie du rotor avec frein de maintien ${\sf J}_{\sf M}$	kgcm ²	21,559			26,794	26,794	
Masse sans frein de maintien m	kg	21,90			27,00		
Masse avec frein de maintien m	kg	24,00			29,30		
Caractéristiques techniques - mécaniqu	es - ave	c version m	atérielle <rs0< td=""><td>02</td><td></td><td></td></rs0<>	02			
Vitesse de rotation maximale admissible n _{max}	1/min	4000					
Moment d'inertie du rotor sans frein de maintien J _M	kgcm ²	17,383			22,604		
Moment d'inertie du rotor avec frein de maintien J _M	kgcm ²	23,440			29,200		
Masse sans frein de maintien m	kg	21,30			26,30		
Masse avec frein de maintien m	kg	23,20			28,40		
1) Valeur efficace à 1000 1/min et 20 °	C (68 °F).					

BSH		1403	1403				1404	
Enroulement		М	Р	Т		М	Р	
Caractéristiques techniques - Références thermiques								
Constante de temps thermique t _{th}	min	79 83						
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)						
1) Valeur efficace à 1000 1/min et 2	0 °C (68 °	F).						

BSH205

BSH	SH		2051		2052		2053		
Enroulement		М	M P		Р	M	Р		
Caractéristiques techniques -	généralité	és ¹⁾							
Couple continu à l'arrêt M ₀ ²⁾	Nm	36,90		64,90		94,40			
Couple crête M _{max}	Nm	110		220		330			
Nombre de paires de pôles moteur		5							
Pour une tension d'alimentation U _n = 115 V ac									
Vitesse nominale n _N	1/min	375	750	250	500	250	500		
Couple nominal M _N	Nm	34,40	31,90	63,50	61,60	89,90	84,90		
Courant nominal I _N	A _{rms}	10,50	18,80	13,00	25,40	16,30	30,80		
Puissance nominale P _N	kW	1,35	2,51	1,66	3,23	2,35	4,45		
Pour une tension d'alimentation U _n = 230 V ac									
Vitesse nominale n _N	1/min	750	1500	500	1000	500	1000		
Couple nominal M _N	Nm	31,90	27,00	61,60	56,00	84,90	74,40		
Courant nominal I _N	A _{rms}	10,10	16,50	12,60	24,00	16,00	27,90		
Puissance nominale P _N	kW	2,51	4,24	3,23	5,86	4,45	7,79		
Pour une tension d'alimentation	on U _n = 40	00 V ac							
Vitesse nominale n _N	1/min	1500	3000	1000	2000	1000	2000		
Couple nominal M _N	Nm	27,00	17,50	56,00	38,10	74,40	50,70		
Courant nominal I _N	A _{rms}	9,20	11,50	11,50	17,80	15,00	20,40		
Puissance nominale P _N	kW	4,24	5,50	5,86	7,98	7,79	10,62		
Pour une tension d'alimentation	on U _n = 48	30 V ac							
Vitesse nominale n _N	1/min	1800	3600	1200	2400	1200	2400		
Couple nominal M _N	Nm	25,10	13,80	53,10	28,40	70,00	40,20		
Courant nominal I _N	A _{rms}	8,80	9,40	10,90	13,80	14,50	16,70		
Puissance nominale P _N	kW	4,73	5,20	6,67	7,14	8,80	10,10		

¹⁾ Conditions pour les données de puissance : montage sur plaque en acier, $(2.5 \text{ x dimension de bride})^2$ de superficie, 10 mm (0,39 in) d'épaisseur, alésage centré.

2) M₀ = couple continu à l'arrêt à 20 1/min et 100% de durée d'enclenchement relative ; à des vitesses de rotation

inférieures à 20 1/min, le couple continu à l'arrêt tombe à 87%.

BSH		2051		2052		2053	
Enroulement		М	Р	М	Р	М	Р
Caractéristiques techniques - électrique	es				'	<u>'</u>	<u>'</u>
Tension d'enroulement maximale \mathbf{U}_{max}	Vac	480	480	480	480	480	480
Tension d'enroulement maximale U _{max}	Vdc	680	680	680	680	680	680
Tension maximale par rapport à la terre	Vac	280	280	280	280	280	280
Intensité maximum I _{max}	A _{rms}	45,20	87,20	49,60	96,80	68,00	136,10
Courant continu à l'arrêt I ₀	A _{rms}	10,90	21,00	13,20	25,70	16,60	33,20
Constante de tension k _E u-v ¹⁾	V _{rms}	200,00	104,00	314,00	161,00	344,00	172,00
Constante de couple k _t	Nm/A	3,10	1,60	5,04	2,58	5,50	2,76
Résistance d'enroulement R ₂₀ u-v	Ω	1,10	0,30	1,10	0,30	0,80	0,20
Inductance d'enroulement L _q u-v	mH	21,90	5,90	21,20	5,60	17,10	4,30
Inductance d'enroulement L _d u-v	mH	20,80	5,60	20,00	5,20	16,10	4,00
Caractéristiques techniques - mécaniques	ies - ave	c version r	natérielle <	RS02			
Vitesse de rotation maximale admissible n _{max}	1/min	3800					
Moment d'inertie du rotor sans frein de maintien ${\sf J}_{\sf M}$	kgcm ²	71,40		129	129		
Moment d'inertie du rotor avec frein de maintien J_M	kgcm ²	87,40		145		206	
Masse sans frein de maintien m	kg	35,00		50,00		67,00	
Masse avec frein de maintien m	kg	38,60		53,60		70,60	
Caractéristiques techniques - Référenc	es therm	iques					
Constante de temps thermique t_{th}	min	73		88		101	
Seuil de réponse du capteur de température (CTP) T _{TK}	°C (°F)	130 (266)					
1) Valeur efficace à 1000 1/min et 20	°C (68 °F	·).					

Codeur

Les moteurs sont équipés d'un codeur SinCos. Pour la mise en service, l'interface Hiperface met à la disposition du variateur la plaque signalétique électronique du moteur.

Les signaux remplissent les exigences en matière de TBTP.

SKS36 monotour

Lors de la mise en marche, ce codeur moteur mesure une valeur absolue en l'espace d'un tour et décompte de manière incrémentielle à partir de cette valeur.

Caractéristique	Valeur
Résolution en incréments	selon l'évaluation
Résolution par tour	128 périodes Sin/Cos
Plage de mesure absolue	1 tour
Précision de la valeur absolue numérique ¹⁾	±0,0889°
Précision de la position incrémentielle	±0,0222°
Forme du signal	sinusoïdal
Tension d'alimentation	7 à 12 V dc
Courant d'alimentation maximal	60 mA (sans charge)
Accélération angulaire maximale	200000 rad/s ²

¹⁾ En fonction de l'évaluation du variateur, il est possible d'augmenter la précision en traitant également la position incrémentielle en plus du calcul de la valeur absolue. Dans ce cas, la précision correspond à la position incrémentielle.

SKM36 multitour

Lors de la mise en marche, ce codeur moteur mesure une valeur absolue en l'espace de 4096 tours et décompte de manière incrémentielle à partir de cette valeur.

Caractéristique	Valeur				
Résolution en incréments	selon l'évaluation				
Résolution par tour	128 périodes Sin/Cos				
Plage de mesure absolue	4096 tours				
Précision de la valeur absolue numérique ¹⁾	±0,0889°				
Précision de la position incrémentielle	±0,0222°				
Forme du signal	sinusoïdal				
Tension d'alimentation	7 à 12 V dc				
Courant d'alimentation maximal	60 mA (sans charge)				
Accélération angulaire maximale	200000 rad/s ²				

¹⁾ En fonction de l'évaluation du variateur, il est possible d'augmenter la précision en traitant également la position incrémentielle en plus du calcul de la valeur absolue. Dans ce cas, la précision correspond à la position incrémentielle.

SEK37 monotour

Lors de la mise en marche, ce codeur moteur mesure une valeur absolue en l'espace d'un tour et décompte de manière incrémentielle à partir de cette valeur.

Caractéristique	Valeur
Résolution en incréments	selon l'évaluation
Résolution par tour	16 périodes Sin/Cos
Plage de mesure absolue	1 tour
Précision de la position	± 0,08°
Forme du signal	sinusoïdal
Tension d'alimentation	7 à 12 V dc
Courant d'alimentation maximal	50 mA (sans charge)

SEL37 multitour

Lors de la mise en marche, ce codeur moteur mesure une valeur absolue en l'espace de 4096 tours et décompte de manière incrémentielle à partir de cette valeur.

Caractéristique	Valeur
Résolution en incréments	selon l'évaluation
Résolution par tour	16 périodes Sin/Cos
Plage de mesure absolue	4096 tours
Précision de la position	± 0,08°
Forme du signal	sinusoïdal
Tension d'alimentation	7 à 12 V dc
Courant d'alimentation maximal	50 mA (sans charge)

Frein de maintien

Version matérielle ≥RS02 :

BSH		040	055	070	1001, 1002	1003, 1004	1401	1402	1403, 1404	205
Couple de maintien ¹⁾	Nm (lb•in)	0,4 (3,54)	0,8 (7,08)	3,0 (26,6)	5,5 (48,7)	10 (88,5)	18 (159)	23 (204)	33 (292)	80 (708)
Délai de serrage du frein de maintien	ms	24	16	80	70	90	100	100	200	200
Délai de desserrage du frein de maintien	ms	13	21	17	30	25	50	40	60	50
Tension nominale	Vdc	24 +15 % -15 %	24 +6 % -10 %	24 +5 % -15 %	24 +6 % -10 %					
Puissance nominale (puissance électrique au collage)	W	5,8	10	7	12	18	18	19	22,5	40
Vitesse de rotation maximale lors du freinage de charges déplacées	1/min	3000	3000	3000	3000	3000	3000	3000	3000	3000
Nombre maximal d'opérations de freinage pour le freinage de charges déplacées et 3000 1/min		500	500	500	500	500	500	500	500	500
Nombre maximal d'opérations de freinage pour le freinage de charges déplacées par heure (avec une répartition uniforme)		20	20	20	20	20	20	20	20	20
Énergie cinématique maximale susceptible d'être convertie en chaleur pour chaque décélération lors du freinage de charges déplacées	J	10	120	130	150	150	550	550	850	21000

Le frein de maintien est rodé départ usine. Si le frein de maintien n'est pas utilisé pendant une période prolongée, certaines pièces du frein de maintien peuvent se corroder. La corrosion a pour effet de réduire le couple de maintien.

Version matérielle <RS02 :

BSH		055	0701, 0702	0703	1001, 1002, 1003	1004	1401, 1402	1403, 1404	205
Couple de maintien ¹⁾	Nm (lb•in)	0,8 (7,08)	2 (17,7)	3 (26,6)	9 (79,7)	12 (106)	23 (204)	36 (319)	80 (708)
Délai de serrage du frein de maintien	ms	12	12	35	42	64	84	63	110
Délai de desserrage du frein de maintien	ms	6	6	15	38	37	61	73	140
Tension nominale	Vdc	24 +6 % -10 %	24 +6 % -10 %	24 +6 % -10 %	24 +6 % -10 %	24 +6 % -10 %	24 +6 % -10 %	24 +6 % -10 %	24 +6 % -10 %
Puissance nominale (puissance électrique au collage)	W	10	10	12	18	17	24	26	40

¹⁾ Le frein de maintien est rodé départ usine. Si le frein de maintien n'est pas utilisé pendant une période prolongée, certaines pièces du frein de maintien peuvent se corroder. La corrosion a pour effet de réduire le couple de maintien.

Certifications

Certifications produit

Certifié par	Numéro assigné
UL	File E208613

Conditions pour UL 1004-1, UL 1004-6 et CSA 22.2 No. 100

Alimentation en tension TBTP

Utiliser exclusivement des blocs d'alimentation autorisés pour la catégorie de surtension III.

Câblage

Utiliser au moins un conducteur en cuivre 60/75 °C (140/167 °F).

Chapitre 3 Installation

🛕 🛕 DANGER

CHOC ELECTRIQUE PAR UNE MISE A LA TERRE INSUFFISANTE

- Veiller au respect de toutes les prescriptions et réglementations applicables en matière de mise à la terre de l'ensemble du système d'entraînement.
- Mettre le système d'entraînement à la terre avant d'appliquer la tension.
- Ne pas utiliser de conduits comme conducteurs de protection, mais un conducteur à l'intérieur de la gaine.
- La section des conducteurs de protection doit être conforme aux normes applicables.
- Ne pas considérer les blindages de câble comme des conducteurs de protection.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

A A DANGER

CHOC ELECTRIQUE OU FONCTIONNEMENT ANORMAL

- Eviter la pénétration de corps étrangers comme des copeaux, des vis ou des chutes de fil dans le produit.
- Vérifier la mise en place correcte des joints et des passe-câbles pour éviter toute pollution due, par exemple, à des dépôts et à l'humidité.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Ce produit est conçu pour être utilisé hors des zones d'atmosphère explosive. Ne pas installer le produit dans une zone où une atmosphère explosive peut se former.

A DANGER

RISQUE D'EXPLOSION

Installer et exploiter le produit exclusivement dans des zones où aucune atmosphère explosive ne peut se former.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Les moteurs sont très lourds malgré leur taille. Le poids des moteurs peut entraîner des blessures et des dommages. Si le montage est incorrect, cela peut entraîner le déplacement du moteur, et le faire basculer et tomber.

AVERTISSEMENT

PIECES LOURDES ET/OU CHUTES DE PIECES

- Lors du montage du moteur, utiliser une grue appropriée ou d'autres engins de levage appropriés si le poids du moteur le nécessite.
- Utiliser l'équipement de protection individuel requis (par ex. des chaussures de sécurité, des lunettes de protection et des gants de protection).
- Procéder au montage (utilisation de vis avec application du couple de serrage approprié) de sorte que le moteur ne se détache pas, même en cas de fortes accélérations ou de secousses durables.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Les moteurs peuvent générer localement de puissants champs électriques et magnétiques. Cela peut entraîner la défaillance des appareils sensibles aux ondes électromagnétiques.

A AVERTISSEMENT

CHAMPS ELECTROMAGNETIQUES

- Tenir à distance du moteur les personnes portant des implants tels que des stimulateurs cardiaques électroniques.
- Ne placer à proximité du moteur aucun appareil sensible aux émissions électromagnétiques.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

En cours de service, les surfaces métalliques du produit peuvent chauffer jusqu'à plus de 70 °C (158 °F).

▲ AVERTISSEMENT

SURFACES CHAUDES

- Éviter tout contact non protégé avec les surfaces chaudes.
- Ne placer aucun composant inflammable ou sensible à la chaleur à proximité des surfaces chaudes.
- Procéder à un essai de fonctionnement avec charge maximale pour vérifier que la dissipation de chaleur est suffisante.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

A AVERTISSEMENT

APPLICATION DE FORCE NON CONFORME

- Ne pas utiliser le moteur comme marchepied pour monter sur la machine.
- Ne pas utiliser le moteur comme élément porteur.
- Placer des panneaux d'information et des dispositifs de protection sur votre machine pour empêcher toute application de force non conforme sur le moteur.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Contenu de ce chapitre

Ce chapitre contient les sous-chapitres suivants :

Sous-chapitre	Sujet	Page
3.1	Compatibilité électromagnétique (CEM)	57
3.2	Installation mécanique	59
3.3	Installation électrique	68

Sous-chapitre 3.1

Compatibilité électromagnétique (CEM)

Compatibilité électromagnétique (CEM)

Les mesures concernant la compatibilité électromagnétique (CEM) permettent de minimiser les perturbations électromagnétiques sur l'appareil ainsi que les perturbations dues à l'appareil sur son environnement. Ces mesures permettent notamment de réduire les couplages parasitaires et les émissions, ainsi que d'accroître l'immunité aux perturbations.

La compatibilité électromagnétique d'une installation dépend fortement des composants utilisés. Les mesures CEM décrites dans ce manuel peuvent permettre de respecter les exigences de la norme IEC 61800-3. Les prescriptions CEM du pays dans lequel le produit est exploité doivent être respectées. Noter que des prescriptions CEM particulières peuvent s'appliquer en fonction du lieu d'installation (par exemple : aéroport ou résidence).

Des signaux perturbés peuvent déclencher des réactions imprévisibles du système d'entraînement ainsi que d'autres appareils situés à proximité.

A AVERTISSEMENT

PERTURBATION DE SIGNAUX ET D'APPAREILS

- Procéder au câblage conformément aux mesures CEM décrites dans le présent document.
- Veiller au respect des prescriptions CEM décrites dans le présent document.
- Veiller au respect de toutes les prescriptions CEM du pays dans lequel le produit est exploité et de toutes les prescriptions CEM en vigueur sur le site d'installation.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Câble moteur et câble codeur

En termes de CEM, les câbles moteur sont particulièrement critiques car ils peuvent être à l'origine de perturbations importantes.

Lors de la planification du câblage, tenir compte de la nécessité d'installer séparément le câble moteur. Le câble moteur doit être posé séparément du câble de réseau et du câble de signal (fin de course par exemple). N'utiliser que des câbles préconfectionnés ou des câbles dotés des caractéristiques prescrites et appliquer les mesures suivantes en matière de CEM.

Mesures relatives à la CEM	Effet
Réduire la longueur des câbles au maximum possible. Ne pas former de boucles de câble inutiles. Réduire au maximum la longueur des câbles entre le point central de mise à la terre dans l'armoire de commande et la prise de terre extérieure.	Réduire les couplages parasites, capacitifs et inductifs.
Veiller à la mise à la terre du moteur entre la bride du moteur et la surface de montage au niveau de la machine (proscrire toute peinture, huile, graisse ou autres substances isolantes entre la bride du moteur et la surface de montage au niveau de la machine).	Réduire les émissions, augmenter l'immunité aux perturbations
Raccorder les blindages de câble à plat, utiliser des bandes de terre et des brides de câble.	Réduire les émissions
Ne pas monter d'éléments de commutation dans le câble moteur ou le câble codeur.	Réduire le couplage parasitaire.

(1) Si un câble de l'installation est sectionné, prévoir d'autres mesures au niveau du point de sectionnement pour assurer la continuité du blindage (par exemple un boîtier métallique). Des deux côtés du point de sectionnement, le blindage du câble doit être relié au corps en métal, et ce, sur une grande surface.

Mesures relatives à la CEM	Effet
Le câble moteur doit être posé séparément du câble de réseau et du câble de signal (fin de course par exemple), par exemple à l'aide d'une tôle de blindage ou en respectant une distance d'au moins 20 cm (5,08 in) entre les câbles.	Réduire le couplage parasitaire mutuel.
Poser le câble moteur et le câbles codeur sans point de sectionnement. 1)	Réduire les émissions parasites.

⁽¹⁾ Si un câble de l'installation est sectionné, prévoir d'autres mesures au niveau du point de sectionnement pour assurer la continuité du blindage (par exemple un boîtier métallique). Des deux côtés du point de sectionnement, le blindage du câble doit être relié au corps en métal, et ce, sur une grande surface.

Câble de raccordement prêt à l'emploi dans les accessoires

L'utilisation de câbles assemblés permet de réduire les risques d'erreur de câblage. Voir le chapitre Accessoires et pièces de rechange (voir page 85).

Conducteurs d'équipotentialité

Les différences de potentiel peuvent générer des courants d'intensité excessifs sur les blindages de câble. Utiliser des conducteurs d'équipotentialité pour réduire les courants sur les blindages de câble.

A AVERTISSEMENT

FONCTIONNEMENT INATTENDU DE L'EQUIPEMENT

- Utilisez des câbles blindés pour toutes les E/S rapides, les E/S analogiques et les signaux de communication.
- Reliez à la terre le blindage des câbles des E/S analogiques, des E/S rapides et des signaux de communication au même point¹.
- Séparez l'acheminement des câbles de communication et d'E/S de celui des câbles d'alimentation.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

¹La mise à la terre multipoint est autorisée si les connexions sont reliées à une terre équipotentielle dimensionnée pour éviter tout endommagement des blindages de câbles, en cas de court-circuit du système d'alimentation.

Sous-chapitre 3.2 Installation mécanique

Contenu de ce sous-chapitre

Ce sous-chapitre contient les sujets suivants :

Sujet	Page
Avant le montage	60
Spécification des câbles	62
Montage du moteur	65
Installation et raccordement du kit IP67 (accessoire)	67

Avant le montage

Vérification du produit

- Vérifier le modèle et la version du produit à l'aide du code de désignation indiqué sur la plaque signalétique. Voir le chapitre Plaque signalétique (voir page 13) et le chapitre Code de désignation (voir page 15).
- Avant le montage, vérifier que le produit ne présente aucune détérioration visible.

Les produits endommagés peuvent provoquer un choc électrique et entraîner un fonctionnement anormal.

A A DANGER

CHOC ELECTRIQUE OU FONCTIONNEMENT ANORMAL

- Ne pas utiliser de produits endommagés.
- Eviter la pénétration de corps étrangers comme des copeaux, des vis ou des chutes de fil dans le produit.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

En cas d'appareils endommagés, veuillez-vous adresser à votre distributeur Schneider Electric local.

Vérification du frein de maintien (option)

Voir le chapitre Vérification/rodage du frein de maintien (voir page 60).

Nettoyage de l'arbre

Les bouts d'arbre des moteurs sont enduits départ usine d'un produit anti-corrosion. En cas de rajout d'organes de transmission, il s'avère nécessaire d'éliminer le produit anti-corrosion et de nettoyer l'arbre. Si nécessaire, utiliser des produits de dégraissage conformément aux indications du fabricant de la colle. En l'absence d'indications de la part du fabricant de la colle, il est possible d'utiliser de l'acétone pour éliminer la graisse.

• Éliminer la protection anti-corrosion. Éviter tout contact direct de la peau et des matériaux d'étanchéité avec le produit anti-corrosion ou le produit de nettoyage utilisé.

Surface de montage pour la bride

La surface de montage doit être stable, propre, ébavurée et non soumise aux vibrations. S'assurer que la surface de montage est bien mise à la terre et qu'une liaison électrique conductrice existe entre la surface de montage et la bride.

A A DANGER

CHOC ELECTRIQUE PAR UNE MISE A LA TERRE INSUFFISANTE

- Veiller au respect de toutes les prescriptions et réglementations applicables en matière de mise à la terre de l'ensemble du système d'entraînement.
- Mettre le système d'entraînement à la terre avant d'appliquer la tension.
- Ne pas utiliser de conduits comme conducteurs de protection, mais un conducteur à l'intérieur de la gaine.
- La section des conducteurs de protection doit être conforme aux normes applicables.
- Ne pas considérer les blindages de câble comme des conducteurs de protection.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

S'assurer que la surface de montage respecte toutes les dimensions et tolérances indiquées dans ce document.

Sections de conducteur conformément au mode de pose

Ci-après sont décrites des sections de conducteur pour deux modes de pose usuels :

 Mode de pose B2 : câbles dans des conduits ou dans des systèmes de goulottes

 Mode de pose E : câbles sur chemins de câbles ouverts

Section en mm² (AWG)	Courant admissible pour le mode de pose B2 en A ¹⁾	Courant admissible pour le mode de pose E en A ¹⁾
0,75 (18)	8,5	10,4
1 (16)	10,1	12,4
1,5 (14)	13,1	16,1
2,5 (12)	17,4	22
4 (10)	23	30
6 (8)	30	37
10 (6)	40	52
16 (4)	54	70
25 (2)	70	88

¹⁾ Valeurs conformes CEI 60204-1 pour service continu, conducteur en cuivre et température ambiante de l'air de 40 °C (104 F); pour de plus amples informations voir la norme CEI 60204-1.

Respecter les facteurs de réduction pour groupage de câbles et les facteurs de correction pour d'autres conditions ambiantes (IEC 60204-1).

Les conducteurs doivent posséder une section suffisante pour pouvoir déclencher le fusible en amont.

Avec des câbles plus long, il peut s'avérer nécessaire de recourir à une section de conducteur plus importante afin de réduire les pertes d'énergie.

Spécification des câbles

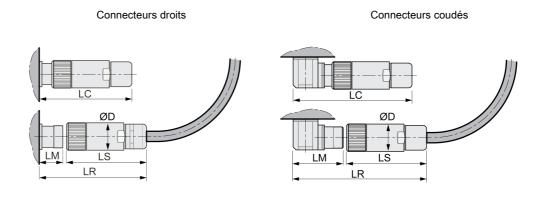
L'utilisation de câbles assemblés permet de réduire les risques d'erreur de câblage. Voir le chapitre Accessoires et pièces de rechange *(voir page 85)*.

Les accessoires d'origine présentent les caractéristiques suivantes :

Câble moteur avec connecteur

VW3		M5100R•••	M5101R•••	M5102R•••	M5103R•••	M5105R•••	M5104R•••
Gaine, isolation		PUR orange (RAL 2003), TPM	PUR orange (R	AL 2003), polypro	opylène (PP)		
Capacité des fils de puissance Fil/fil Fil/blindage	pF/m pF/m	80 145	80 135	80 150	90 150	85 150	100 160
Nombre de contacts (blindés)		(4 x 1 mm ² + 2 x (2 x 0,75 mm ²))	(4 x 1,5 mm ² + (2 x 1 mm ²))	(4 x 2,5 mm ² + (2 x 1 mm ²))	(4 x 4 mm ² + (2 x 1 mm ²))	(4 x 6 mm ² + (2 x 1 mm ²))	(4 x 10 mm ² + (2 x 1 mm ²))
Connecteurs côté moteur		Connecteur rond Y-TEC à 8 pôles		d M23 à 8 pôles		ond M40 à 8 pô	, ,,
Connecteurs côté entraînement		Ouvert					
Diamètre de câble	mm (in)	11 ± 0,3 (0,43 ± 0,01)	12 ± 0,2 (0,47 ± 0,01)	14,3 ± 0,3 (0,55 ± 0,01)	16,3 ± 0,3 (0,64 ± 0,01)	18,8 ± 0,4 (0,74 ± 0,02)	23,5 ± 0,6 (0,93 ± 0,02)
Rayon de courbure minimal en cas d'installation permanente		10 fois le diamètre du câble	5 fois le diamèt	re du câble			
Rayon de courbure minimal en cas d'installation flexible		10 fois le diamètre du câble	7,5 fois le diamètre du câble 10 fois le diamètre d			nètre du câble	
Tension nominale Phases moteur Frein de maintien	V V	1000 1000	600 300				
Longueur maximale disponible	m (ft)	25 (82)	75 (246)				
Plage de température admissible en cours de service dans le cas d'une installation permanente	°C (°F)	-40 80 (-40 176)					
Plage de température admissible en cours de service dans le cas d'une installation mobile	°C (°F)	-20 60 (-4 140)	-20 80 (-4	176)			
Certifications/Déclarati on de conformité		CE, DESINA					

Câble moteur sans connecteur


VW3		M5300R•••	M5301R•••	M5302R•••	M5303R•••	M5305R•••	M5304R•••
Gaine, isolation		PUR orange (RAL 2003), TPM	PUR orange (R	AL 2003), polypr	opylène (PP)		
Capacité des fils de puissance Fil/fil Fil/blindage	pF/m pF/m	80 145	80 135	80 150	90 150	85 150	100 160
Nombre de contacts (blindés)		(4 x 1 mm ² + 2 x (2 x 0,75 mm ²))	(4 x 1,5 mm ² + (2 x 1 mm ²))	(4 x 2,5 mm ² + (2 x 1 mm ²))	(4 x 4 mm ² + (2 x 1 mm ²))		(4 x 10 mm ² + (2 x 1 mm ²))
Connecteurs côté moteur		Ouvert					
Connecteurs côté entraînement		Ouvert					
Diamètre de câble	mm (in)	11 ± 0,3 (0,43 ± 0,01)	12 ± 0,2 (0,47 ± 0,01)	14,3 ± 0,3 (0,55 ± 0,01)	16,3 ± 0,3 (0,64 ± 0,01)	18,8 ± 0,4 (0,74 ± 0,02)	23,5 ± 0,6 (0,93 ± 0,02)
Rayon de courbure minimal en cas d'installation permanente		10 fois le diamètre du câble	5 fois le diamèti	re du câble			
Rayon de courbure minimal en cas d'installation flexible		10 fois le diamètre du câble	7,5 fois le diamètre du câble 10 fois le diamètre du câ			nètre du câble	
Tension nominale Phases moteur Frein de maintien	V	1000 1000	600 300				
Longueur maximale disponible	m (ft)	100 (328)					
Plage de température admissible en cours de service dans le cas d'une installation permanente	°C (°F)	-40 80 (-40 176)					
Plage de température admissible en cours de service dans le cas d'une installation mobile	°C (°F)	-20 60 (-4 140)	-20 80 (-4	176)			
Certifications/Déclaration de conformité		CE, c-UR-us, DESINA					

Câble codeur avec et sans connecteur

VW3		M8100R•••	M8102R•••	M8222R•••		
Gaine, isolation		PUR vert (RAL 6018), polypropylène (PP)				
Capacité	pF/m	environ 135 (fil/fil)				
Nombre de contacts (blindés)		(3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²)				
Connecteurs côté moteur		Connecteur rond Y- TEC à 12 pôles	Connecteur rond M23 à 12 pôles	Ouvert		
Connecteurs côté entraînement		RJ45 à 10 pôles	RJ45 à 10 pôles	Ouvert		
Diamètre de câble	mm (in)	6,8 ± 0,2 (0,27 ± 0,1)				
Rayon de courbure minimal mr (in		68 (2,68)				
Tension nominale V		300				
Longueur maximale disponible	m (ft)	25 (82)	75 (246)	100 (328)		

VW3		M8100R***	M8102R***	M8222R•••
Plage de température admissible en cours de service dans le cas d'une installation permanente	°C (°F)	-40 80 (-40 176)		
Plage de température admissible en cours de service dans le cas d'une installation mobile	°C (°F)	-20 80 (-4 176)		
Certifications/Déclaration de conformité		DESINA		c-UR-us, DESINA

Espace libre pour le connecteur

Dimensions		Connecteurs moteur droit	Connecteurs moteur droit		
		M23	M40	M23	
D	mm (in)	28 (1,1)	46 (1,81)	26 (1,02)	
LS	mm (in)	76 (2,99)	100 (3,94)	51 (2,01)	
LR	mm (in)	117 (4,61)	155 (6,1)	76 (2,99)	
LC	mm (in)	100 (3,94)	145 (5,71)	60 (2,36)	
LM	mm (in)	40 (1,57)	54 (2,13)	23 (0,91)	

Dimensions		Connecteurs moteur coudé			Connecteur de codeur coudé	
		Y-TEC	M23	M40	Y-TEC	M23
D	mm (in)	18,7 (0,74)	28 (1,1)	46 (1,81)	18,7 (0,74)	26 (1,02)
LS	mm (in)	42 (1,65)	76 (2,99)	100 (3,94)	42 (1,65)	51 (2,01)
LR	mm (in)	100 (3,94)	132 (5,2)	191 (7,52)	100 (3,94)	105 (4,13)
LC	mm (in)	89 (3,50)	114 (4,49)	170 (6,69)	89 (3,50)	89 (3,5)
LM	mm (in)	58 (2,28)	55 (2,17)	91 (3,58)	58 (2,28)	52 (2,05)

Montage du moteur

Les décharges électrostatiques (ESD) sur l'arbre peuvent entraîner une panne du système de codeur et générer des déplacements inattendus du moteur ainsi que l'endommagement des paliers.

▲ AVERTISSEMENT

DEPLACEMENT ACCIDENTEL DU AUX DECHARGES ELECTROSTATIQUES

Utiliser des éléments conducteurs comme par exemple des courroies antistatiques ou d'autres mesures appropriées pour éviter toute charge statique due au déplacement.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Si les conditions d'environnement ne sont pas respectées, des corps étrangers provenant de l'environnement peuvent pénétrer dans le produit et entraîner des déplacements accidentels ou des dommages matériels.

A AVERTISSEMENT

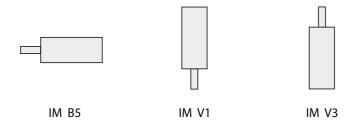
DEPLACEMENT ACCIDENTEL

- S'assurer que les conditions d'environnement sont bien respectées.
- Éviter toute utilisation à sec des joints.
- Eviter toute stagnation de fluides au niveau de la traversée de l'arbre.
- Ne pas exposer les joints à lèvres et les entrées de câbles du moteur au jet des nettoyeurs haute pression.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

En cours de service, les surfaces métalliques du produit peuvent chauffer jusqu'à plus de 70 °C (158 °F).

A AVERTISSEMENT


SURFACES CHAUDES

- Éviter tout contact non protégé avec les surfaces chaudes.
- Ne placer aucun composant inflammable ou sensible à la chaleur à proximité des surfaces chaudes.
- Procéder à un essai de fonctionnement avec charge maximale pour vérifier que la dissipation de chaleur est suffisante.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Position de montage

Positions de montage définies et autorisées par la norme IEC 60034-7 :

Montage

Lors du montage du moteur sur la surface de montage, aligner le moteur avec précision dans le sens axial et radial, et veiller à ce qu'il repose de manière uniforme sur la surface. Serrer toutes les vis de fixation selon le couple de serrage prescrit. Lors du serrage des vis de fixation, veiller à ne pas générer de charges mécaniques irrégulières. Pour plus d'informations sur les caractéristiques, les dimensions et les degrés de protection IP, voir chapitre Caractéristiques techniques (voir page 17).

Montage des organes de transmission

Les organes de transmission tels que la poulie ou l'accouplement doivent être montés avec les accessoires et les outils appropriés. Le moteur et l'organe de transmission doivent être alignés avec précision tant sur le plan radial qu'axial. Un alignement incorrect du moteur et de l'organe de transmission entraîne un fonctionnement irrégulier et une usure accrue.

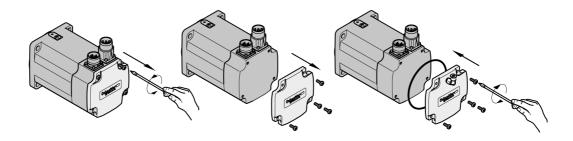
Les forces axiales et radiales maximales agissant sur l'arbre ne devant pas dépasser les valeurs définies pour la charge maximale de l'arbre, voir chapitre Données spécifiques à l'arbre (voir page 34).

Le dépassement des forces maximales admissibles supportées par l'arbre du moteur peut entraîner une usure rapide des paliers ou la rupture de l'arbre.

A AVERTISSEMENT

FONCTIONNEMENT ANORMAL DU A LA DETERIORATION MECANIQUE DU MOTEUR

- Ne pas dépasser les forces axiales et radiales maximales admissibles au niveau de l'arbre du moteur.
- Protéger l'arbre du moteur contre les coups.
- Lors de l'emmanchement des éléments sur l'arbre du moteur, ne pas dépasser la force axiale maximale admissible.


Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Installation et raccordement du kit IP67 (accessoire)

Le kit IP67 sert au raccordement de l'air comprimé au moteur. Le degré de protection IP65 est une condition pour la mise en œuvre du kit IP67. L'air comprimé génère une surpression permanente à l'intérieur du moteur. La surpression qui règne à l'intérieur du moteur permet d'atteindre le degré de protection IP67.

Procédure d'installation

Lors de l'installation du kit IP67, il faut remplacer le couvercle existant par le couvercle du kit IP67. Il faut également remplacer le joint torique (fourni avec le kit IP67).

Etape	Action
1	Desserrer les 4 vis de carter du couvercle.
2	Ôter le couvercle et retirer le joint torique.
3	Contrôler le positionnement correct du joint torique à l'intérieur du couvercle du kit IP67. Afin de faciliter le montage du nouveau joint torique, légèrement enduire le joint torique de graisse. Fixer le couvercle du kit IP 67 à l'aide des 4 vis de carter: Couple de serrage vis de carter M3 : 1 Nm (8,85 lb•in) Couple de serrage vis de carter M4 : 1,5 Nm (13,28 lb•in) Couple de serrage vis de carter M5 : 5 Nm (44,3 lb•in)
	Vérifier le couple de serrage du raccord d'air comprimé : ● Couple de serrage du raccord d'air comprimé : 0,6 Nm (5,31 lb•in)

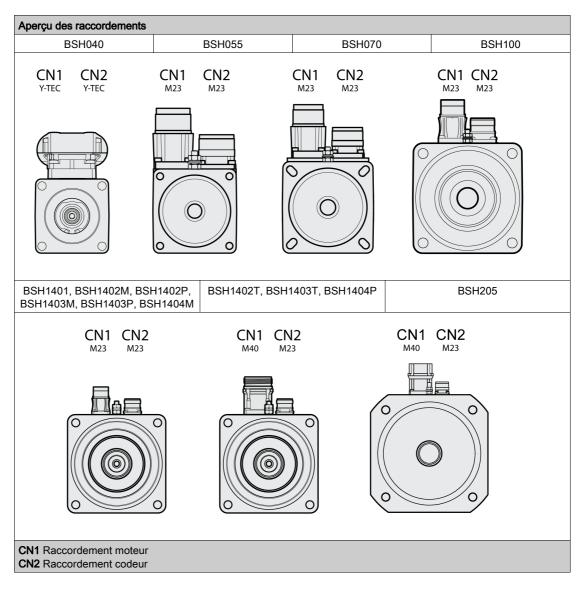
Raccordement de l'air comprimé

Le raccord d'air comprimé du raccord coudé est destiné au branchement de flexibles d'air comprimé en plastique conventionnel d'un diamètre nominal de 4 mm.

Surveillance de l'air comprimé

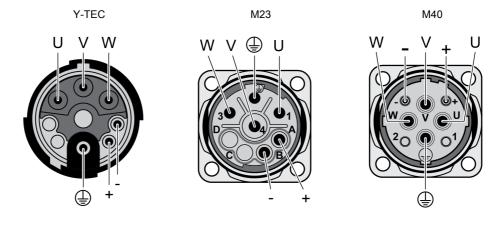
Pour la surveillance de l'air comprimé, utiliser un appareil de surveillance de l'air comprimé.

Sous-chapitre 3.3 Installation électrique


Contenu de ce sous-chapitre

Ce sous-chapitre contient les sujets suivants :

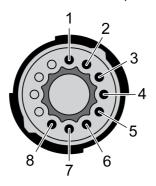
Sujet	Page	
Connecteurs et affectations des connecteurs	69	
Branchement de la puissance et du codeur		
Raccordement du frein de maintien		


Connecteurs et affectations des connecteurs

Aperçu des raccordements

Raccordement moteur CN1

Connecteurs moteur pour le raccordement des phases moteur et du frein de maintien.


Les connecteurs opposés adéquats sont indiqués au chapitre Connecteurs (voir page 87).

Les signaux du frein de maintien remplissent les exigences de TBTP.

Broche	Signification	Accessoires câble Couleur des fils et nombre de fils
U	Phase moteur U	BK, L1
V	Phase moteur V	BK, L2
W	Phase moteur W	BK, L3
PE	Conducteur de protection	GN/YE
+	Tension d'alimentation du frein de maintien 24 V dc	WH ou BK 5
-	Potentiel de référence frein de maintien 0 V dc	GY ou BK 6
SHLD	Blindage (sur le boîtier de connecteur)	-

Raccordement codeur CN2 Y-TEC

Connecteur de codeur pour le branchement du codeur SinCos (monotour et multitour)

Les connecteurs opposés adéquats sont indiqués au chapitre Connecteurs *(voir page 87)*. Les signaux remplissent les exigences en matière de TBTP.

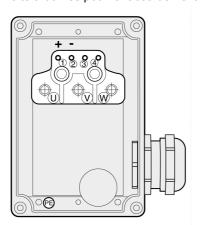
Broche	Signal	Signification	Paire ¹⁾	Accessoires câble Couleur du fil
1	COS_OUT	Signal cosinus	2	GN
2	REFCOS_OUT	Référence pour signal cosinus, 2,5 V	2	YE
3	SIN_OUT	Signal sinus	1	WH
4	REFSIN_OUT	Référence pour signal sinus, 2,5 V	1	BN
5	DATA+	Données de réception, données de transmission	3	GY
6	DATA-	Données de réception, données de transmission, inversées	3	PK
7	ENC+10V	Tension d'alimentation 7 12 V	4	RD
8	ENC_0V	Potentiel de référence ²⁾	4	BL
	SHLD	Blindage (sur le boîtier de connecteur)		

¹⁾ Paires de signal torsadées

²⁾ Le raccordement ENC_0V de la tension d'alimentation n'a aucune liaison avec le boîtier du codeur.

Raccordement codeur CN2 M23

Connecteur de codeur pour le branchement du codeur SinCos (monotour et multitour)


Les connecteurs opposés adéquats sont indiqués au chapitre Connecteurs *(voir page 87)*. Les signaux remplissent les exigences en matière de TBTP.

Broche	Signal	Signification	Paire ¹⁾	Accessoires câble Couleur du fil
1	PTC	Capteur de température	6	ВК
2	PTC	Capteur de température	5	GY/PK
4	REFSIN_OUT	Référence pour signal sinus, 2,5 V	3	BN
5	REFCOS_OUT	Référence pour signal cosinus, 2,5 V	2	YE
6	DATA+	Données de réception, données de transmission	1	GY
7	DATA-	Données de réception, données de transmission, inversées	1	PK
8	SIN_OUT	Signal sinus	3	WH
9	COS_OUT	Signal cosinus	2	GN
10	ENC+10V	Tension d'alimentation 7 12 V	4	RD
11	ENC_0V	Potentiel de référence ²⁾	4	BL
	SHLD	Blindage (sur le boîtier de connecteur)		

- 1) Paires de signal torsadées
- Le raccordement ENC_0V de la tension d'alimentation n'a aucune liaison avec le boîtier du codeur.

Raccordement moteur boîte à bornes

Boîte à bornes pour le raccordement des phases moteur et du frein de maintien.

Les signaux du frein de maintien remplissent les exigences de TBTP.

Broche	Affectation	Signification
U	U	Phase moteur U
	PE	Conducteur de protection
W	W	Phase moteur W
V	V	Phase moteur V
1	BR+	Tension d'alimentation du frein de maintien 24 V dc
2	BR-	Potentiel de référence du frein de maintien
3	Réservé	Réservé
4	Réservé	Réservé
	SHLD	Blindage (sur le boîtier)

Branchement de la puissance et du codeur

Des tensions élevées peuvent apparaître de façon inattendue sur le raccordement moteur. Le moteur produit une tension en cas de rotation de l'arbre. Des tensions alternatives peuvent se coupler sur des conducteurs inutilisés dans le câble moteur.

A DANGER

CHOC ELECTRIQUE

- Vérifier que le système d'entraînement est hors tension avant de procéder à des travaux sur le système d'entraînement.
- Protéger l'arbre du moteur contre tout entraînement externe avant d'effectuer des travaux sur le système d'entraînement.
- Isoler les conducteurs inutilisés aux deux extrémités du câble moteur.
- Ne pas toucher l'arbre du moteur ni les organes de transmission liés si tous les raccords ne sont pas exempts de tension.
- Veiller au respect de toutes les règles applicables en matière de mise à la terre du système d'entraînement.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Le moteur est conçu pour être utilisé en association avec un variateur. Un branchement direct du moteur à une tension alternative entraîne une détérioration du moteur et peut provoquer un incendie et une explosion.

DANGER

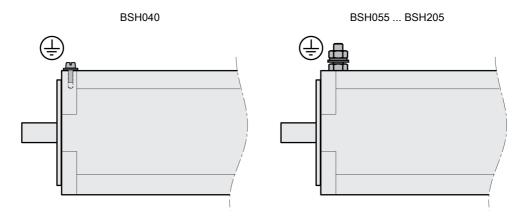
RISQUE D'EXPLOSION

Ne brancher le moteur qu'à un variateur approprié et homologué et uniquement de la manière décrite dans ce document.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

L'utilisation de combinaisons non autorisées de variateur et de moteur peut entraîner des déplacements accidentels. Même un moteur similaire présente un risque dû à un réglage différent du système codeur. Même si les connecteurs pour le raccordement moteur et le raccordement du codeur sont compatibles mécaniquement, cela ne signifie pas que le moteur peut être utilisé.

A AVERTISSEMENT


DEPLACEMENT ACCIDENTEL

N'utiliser que des combinaisons autorisées de variateur et de moteur.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

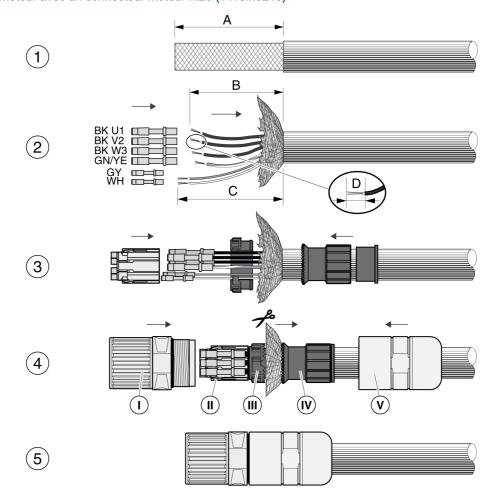
Les variateurs autorisés sont indiqués au chapitre Variateurs autorisés (voir page 22).

Raccord du conducteur de protection

Mettre le moteur à la terre par l'intermédiaire d'une vis de mise à la terre si la mise à la terre via la bride et le conducteur de protection du câble moteur s'avère insuffisante. Utiliser des pièces avec une protection adéquate contre la corrosion. Respecter le couple de serrage nécessaire ainsi que la classe de résistance de la vis de mise à la terre, voir chapitre Couples de serrage et classe de résistance des vis utilisées (voir page 19).

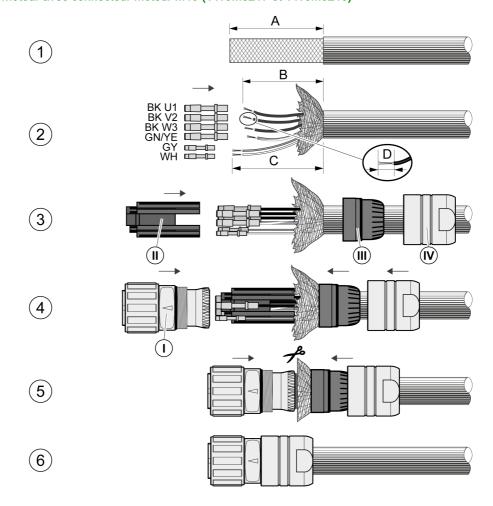
Assemblage des câbles

Isoler un par un les conducteurs non utilisés.


- Respecter les prescriptions CEM pour câbles moteur et câbles codeur, voir chapitre Compatibilité électromagnétique (CEM) (voir page 57).
- Établir la liaison équipotentielle avec des conducteurs d'équipotentialité.

Assemblage des câbles moteur avec connecteur de moteur Y-TEC (VW3M8219)

Voir la notice de montage pour Série 915 Interconnect


www.intercontec.com

Assemblage des câbles moteur avec un connecteur moteur M23 (VW3M8215)

Etape	Action
1	Dénuder le câble. ● Longueur dénudée A : 40 mm (1,57 in)
2	Défaire la tresse de blindage et la glisser vers l'arrière sur la gaine extérieure du câble. Raccourcir la gaine intérieure du câble. Raccourcir les fils à la longueur indiquée et les sertir sur le connecteur. Si possible, brancher également les fils non utilisés. Cela améliore les caractéristiques CEM. Les fils non raccordés doivent être isolés des deux côtés. • Longueur dénudée B : 36 mm (1,42 in) • Longueur dénudée C : 40 mm (1,57 in) • Longueur dénudée D : 8 mm (0,31 in) pour phases moteur ; 4,5 mm (0,18 in) pour frein de maintien • Contact à sertir : SF-7QS2000 pour phases moteur ; SF-6AS2000 pour frein de maintien • Pince à sertir : SF-Z0025
3	Glisser la pièce (V) et la pièce (IV) sur le câble. Clipser les contacts dans la pièce (II). Ouvrir la pièce (III) sur le côté et envelopper les fils.
4	Glisser la pièce (III) derrière la tresse de blindage et introduire la pièce (II) et la pièce (III) dans la pièce (I). Redresser la tresse de blindage. Comprimer les pièces (I) et (IV) ensemble et raccourcir la tresse de blindage.
5	Visser la pièce (VII) sur la pièce (I) jusqu'en butée.

Assemblage des câbles moteur avec connecteur moteur M40 (VW3M8217 et VW3M8218)



Etape	Action
1	Dénuder le câble. • Longueur dénudée A : 40 mm (1,57 in)
2	Défaire la tresse de blindage et la glisser vers l'arrière sur la gaine extérieure du câble. Raccourcir la gaine intérieure du câble. Raccourcir les fils à la longueur indiquée et les sertir sur le connecteur. Si possible, brancher également les fils non utilisés. Cela améliore les caractéristiques CEM. Les fils non raccordés doivent être isolés des deux côtés. • Longueur dénudée B : 36 mm (1,42 in) • Longueur dénudée C : 40 mm (1,57 in) • Longueur dénudée D : 10 mm (0,39 in) pour phases moteur ; 4,5 mm (0,18 in) pour frein de maintien • Contact à sertir : SM-36KS002 pour phases moteur 4 mm² ; SM-36KS004 pour phases moteur 6 mm² et 10 mm² ; SF-7NS2000 pour frein de maintien • Contact à sertir : SF-Z0025 pour phases moteur 4 mm² et frein de maintien ; SF-Z0026 pour phases moteur 6 mm² et 10 mm²
3	Glisser la pièce (IV) et la pièce (III) sur le câble. Clipser les contacts sur le côté dans la pièce (II).
4	Glisser la pièce (III) derrière la tresse de blindage et introduire la pièce (II) et la pièce (III) dans la pièce (I).
5	Redresser la tresse de blindage. Comprimer les pièces (I) et (IV) ensemble et raccourcir la tresse de blindage.
6	Visser la pièce (VII) sur la pièce (I) jusqu'en butée.

Assemblage des câbles codeur avec connecteur codeur Y-TEC (VW3M8220)

Voir la notice de montage pour Série 615 Interconnect <u>www.intercontec.com</u>

Assemblage des câbles codeur avec connecteur codeur M23 (VW3M8214)

Etape	Action
1	Dénuder le câble. ● Longueur dénudée A : 28 mm (1,1 in)
2	Défaire la tresse de blindage et la glisser vers l'arrière sur la gaine extérieure du câble. Raccourcir la gaine intérieure du câble. Raccourcir les fils à la longueur indiquée (voir tableau suivant) et les sertir sur le connecteur. Si possible, brancher également les fils non utilisés. Cela améliore les caractéristiques CEM. Les fils non raccordés doivent être isolés des deux côtés. Longueur dénudée B: 28 mm (1,1 in) Longueur dénudée C: 4,5 mm (0,18 in) Contact à sertir : RC-12S2000 Pince à sertir : RC-Z2514
3	Glisser la pièce (VII) et la pièce (VI) sur le câble. Le passe-câble contient des joints en caoutchouc de tailles différentes pour différents diamètres de câble. Adapter les joints en caoutchouc au diamètre du câble. Envelopper le blindage avec la pièce (IV). Clipser les contacts dans la pièce (II). Ouvrir la pièce (III) sur le côté et envelopper la pièce (II) ainsi que la partie arrière des contacts. Glisser la pièce (II) dans la pièce (I).
4	Glisser la pièce (V) derrière la tresse de blindage. Faire passer la pièce (VI) par dessus la pièce (I).
5	Visser la pièce (VII) sur la pièce (I) jusqu'en butée.

Branchement des câbles

Une installation incorrecte du câble peut endommager l'isolation. Des conducteurs de câble endommagés ou des connecteurs mal branchés peuvent entraîner la formation d'arcs électriques à l'intérieur du câble.

A A DANGER

CHOC ELECTRIQUE, ECLAIR D'ARC ELECTRIQUE, EXPLOSION ET INCENDIE

- Avant de brancher ou de débrancher le connecteur, mettre hors tension tous les branchements.
- Avant de brancher les câbles, vérifier le brochage des connecteurs conformément aux indications de ce chapitre.
- Avant d'appliquer la tension, vérifier que les connecteurs sont correctement branchés et verrouillés.
- Eviter toute application de force ou tout mouvement du câble au niveau des passe-câbles.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

- Enficher le connecteur femelle du câble moteur sur le connecteur moteur et serrer l'écrou-raccord.
 Procéder de même avec le câble de raccordement du système de codeur.
 Lors du serrage de l'écrou-raccord, éviter toute torsion du câble de raccordement.
- Relier le câble moteur et le câble codeur au variateur selon le schéma de câblage du variateur.
- Mettre le blindage à la terre sur une grande surface. Les informations sur le raccordement du blindage figurent dans le manuel produit du variateur.

Raccordement du frein de maintien

Le serrage du frein de maintien lorsque le moteur tourne entraîne une usure rapide et une perte de la force de freinage.

A AVERTISSEMENT

PERTE DE LA FORCE DE FREINAGE PAR L'USURE OU LA HAUTE TEMPERATURE

- Ne pas utiliser le frein de maintien comme frein de service.
- Ne pas dépasser le nombre maximal de décélérations ni l'énergie cinétique maximale lors du freinage de charges en mouvement.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Les caractéristiques techniques concernant le freinage des charges déplacées sont indiquées au chapitre Frein de maintien (voir page 52).

Le desserrage du frein de maintien peut provoquer un déplacement accidentel, par exemple l'affaissement de la charge au niveau des axes verticaux.

▲ AVERTISSEMENT

DEPLACEMENT ACCIDENTEL

- Veiller à ce que personne ni aucun obstacle ne se trouve dans la zone de travail avant de tester le frein de maintien.
- Prendre les mesures nécessaires pour éviter que l'affaissement de la charge ou tout autre déplacement accidentel ne provoque des dommages.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

En cas de tension inappropriée, le frein de maintien ne peut pas être desserré, ce qui provoque une usure. En présence d'une tension supérieure à la tension spécifiée, le frein de maintien peut se refermer. En cas de polarité incorrecte, le frein de maintien n'est pas desserré.

A AVERTISSEMENT

DYSFONCTIONNEMENT DU FREIN DE MAINTIEN DU A UNE TENSION INAPPROPRIEE

- Lors du raccordement du frein de maintien, vérifier que la tension spécifiée est appliquée.
- Pour la mesure, utiliser un voltmètre dimensionné en conséquence.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Un moteur avec frein de maintien nécessite une commande de frein de maintien correspondante chargée de desserrer le frein de maintien lors de l'activation de l'étage de puissance et de fixer l'arbre moteur lors de la désactivation de l'étage de puissance.

Chapitre 4 Mise en service

Mise en service

🛕 🕰 DANGER

CHOC ELECTRIQUE OU FONCTIONNEMENT ANORMAL

- Eviter la pénétration de corps étrangers comme des copeaux, des vis ou des chutes de fil dans le produit.
- Vérifier la mise en place correcte des joints et des passe-câbles pour éviter toute pollution due, par exemple, à des dépôts et à l'humidité.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Un branchement incorrect ou toute autre erreur peut provoquer un déplacement accidentel des systèmes d'entraînement.

A AVERTISSEMENT

DEPLACEMENT ACCIDENTEL

- S'assurer que le câblage est correct.
- Ne jamais démarrer le système si une personne ou un obstacle se trouve dans la zone d'exploitation.
- Effectuer les premiers déplacements tests sans charges accouplées.
- Ne pas toucher l'arbre du moteur ni les organes de transmission liés si tous les raccords ne sont pas exempts de tension.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

L'utilisation de combinaisons non autorisées de variateur et de moteur peut entraîner des déplacements accidentels. Même un moteur similaire présente un risque dû à un réglage différent du système codeur. Même si les connecteurs pour le raccordement moteur et le raccordement du codeur sont compatibles mécaniquement, cela ne signifie pas que le moteur peut être utilisé.

A AVERTISSEMENT

DEPLACEMENT ACCIDENTEL

N'utiliser que des combinaisons autorisées de variateur et de moteur.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

La liste des variateurs autorisés est fournie au chapitre Variateurs autorisés (voir page 22).

Les pièces rotatives peuvent provoquer des blessures et happer les vêtements ou les cheveux. Les pièces mal fixées ou déséquilibrées peuvent être éjectées.

A AVERTISSEMENT

PIECES MOBILES NON PROTEGEES

Veiller à ce que les pièces rotatives ne risquent pas de provoquer des blessures ou des dommages matériels.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

En cours de service, les surfaces métalliques du produit peuvent chauffer jusqu'à plus de 70 °C (158 °F).

A AVERTISSEMENT

SURFACES CHAUDES

- Éviter tout contact non protégé avec les surfaces chaudes.
- Ne placer aucun composant inflammable ou sensible à la chaleur à proximité des surfaces chaudes.
- Procéder à un essai de fonctionnement avec charge maximale pour vérifier que la dissipation de chaleur est suffisante.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Les moteurs peuvent générer localement de puissants champs électriques et magnétiques. Cela peut entraîner la défaillance des appareils sensibles aux ondes électromagnétiques.

AVERTISSEMENT

CHAMPS ELECTROMAGNETIQUES

- Tenir à distance du moteur les personnes portant des implants tels que des stimulateurs cardiaques électroniques.
- Ne placer à proximité du moteur aucun appareil sensible aux émissions électromagnétiques.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

A AVERTISSEMENT

APPLICATION DE FORCE NON CONFORME

- Ne pas utiliser le moteur comme marchepied pour monter sur la machine.
- Ne pas utiliser le moteur comme élément porteur.
- Placer des panneaux d'information et des dispositifs de protection sur votre machine pour empêcher toute application de force non conforme sur le moteur.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Avant la mise en service, vérifier que l'installation a été effectuée correctement.

Etape	Action
1	Vérifier l'installation mécanique.
2	 Vérifier l'installation électrique. Tous les conducteurs de protection sont-ils raccordés ? Tous les câbles et connecteurs sont-ils bien branchés et correctement posés ? Les presse-étoupe sont-ils bien serrés ?
3	Vérifier que les conditions ambiantes sont respectées. • Les conditions ambiantes prescrites sont-elles respectées ?
4	Vérifier les organes de transmission. • Les organes de transmission montés sont-ils équilibrés et alignés avec précision ?
5	 Vérifier la clavette sur l'extrémité de l'arbre du moteur. Si vous utilisez un moteur à rainure de clavette et clavette, lors de la mise en service, la clavette ne doit pas être insérée sans organe de transmission ou elle doit être bloquée de manière appropriée.
6	Vérifier le fonctionnement du frein de maintien. • Le frein de maintien peut-il retenir la charge maximale ? • Le frein de maintien se desserre-t-il avant le démarrage d'un mouvement ?

NOTE: Tenir compte des informations relatives à la mise en service dans le manuel produit du variateur.

Chapitre 5

Diagnostic et élimination d'erreurs

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Problèmes mécaniques	84
Problèmes électriques	84

Problèmes mécaniques

Problème	Cause	Recherche d'erreurs
Échauffement important	Surcharge	Réduire la charge
	Frein de maintien non ouvert	Vérifier la commande du frein de maintien
	Encrassement important	Nettoyer le moteur
Sifflements ou cognements	Palier à roulement	Contacter l'agence commerciale locale
Bruits de frottement	Un organe de transmission rotatif frotte	Aligner l'organe de transmission
Vibration radiale	Alignement insuffisant de l'organe de transmission	Aligner l'organe de transmission
	Balourd de l'organe de transmission	Équilibrer l'organe de transmission
	Arbre tordu	Contacter l'agence commerciale locale
	Résonance avec le banc de machine	Empêcher les résonances
Vibration axiale	Alignement insuffisant de l'organe de transmission	Aligner l'organe de transmission
	Endommagement de l'organe de transmission	Réparer ou remplacer l'organe de transmission
	Résonance avec le banc de machine	Empêcher les résonances

Problèmes électriques

Problème	Cause	Élimination des erreurs
Le moteur démarre	Surcharge	Réduire la charge
difficilement ou pas du tout	Réglages du variateur incompatibles	Corriger les réglages du variateur.
	Câbles endommagés	Remplacer les câbles endommagés.
Échauffement important	Surcharge	Réduire la puissance.
Echauffement au niveau des bornes ou des connecteurs	Mauvais contact	Serrer les bornes et connecteurs au couple de serrage prescrit

Chapitre 6

Accessoires et pièces de rechange

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Kit IP67	86
Connecteur	87
Câbles moteur	88
Câbles codeur	91

Kit IP67

Le degré de protection IP65 (joint à lèvres) est la condition à la mise en œuvre du kit IP67 Version matérielle ≥RS02 :

Description	Référence
Kit IP67 pour taille 055, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2300
Kit IP67 pour taille 070, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2301
Kit IP67 pour taille 100, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2302
Kit IP67 pour taille 140, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2303
Kit IP67 pour taille 205, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2304

Version matérielle <RS02 :

Description	Référence
Kit IP67 pour taille 055, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2305
Kit IP67 pour taille 070, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2306
Kit IP67 pour taille 100, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2307
Kit IP67 pour taille 140, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2308
Kit IP67 pour taille 205, couvercle avec raccord air comprimé, joint torique, 4 vis	VW3M2304

Connecteur

Description	Référence
Connecteurs pour câble moteur, côté moteur Y-TEC, 1 mm², 5 exemplaires	VW3M8219
Connecteurs pour câble moteur, côté moteur M23, 1,5 à 2,5 mm², 5 exemplaires	VW3M8215
Connecteurs pour câble moteur, côté moteur M40, 4 mm², 5 exemplaires	VW3M8217
Connecteurs pour câble moteur, côté moteur M40, 6 à 10 mm², 5 exemplaires	VW3M8218
Connecteurs pour câble codeur, Y-TEC, 5 exemplaires	VW3M8220
Connecteurs pour câble codeur, côté moteur M23, 5 exemplaires	VW3M8214
Connecteurs pour câble codeur, côté variateur RJ45 (à 10 pôles), 5 exemplaires	VW3M2208

Les outils nécessaires à l'assemblage sont fournis directement par le fabricant.

 Pince à sertir pour connecteur de puissance Y-TEC : Intercontec C0.201.00 ou C0.235.00 www.intercontec.com

• Pince à sertir pour connecteur de puissance M23/M40 : Coninvers SF-Z0025, SF-Z0026

www.coninvers.com

 Pince à sertir pour connecteur codeur Y-TEC : Intercontec C0.201.00 ou C0.235.00 <u>www.intercontec.com</u>

• Pince à sertir pour connecteur codeur M23 : Coninvers RC-Z2514

www.coninvers.com

 Pinces à sertir pour connecteur codeur RJ45 à 10 pôles : Yamaichi Y-ConTool-11, Y-ConTool-20, Y-ConTool-30 www.yamaichi.com

Câbles moteur

Câble moteur 1,0 mm²

Description	Référence
Câble moteur 3 m (9,84 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) blindé ; côté moteur, connecteur rond 8 pôles Y-TEC, autre extrémité de câble libre	VW3M5100R30
Câble moteur 5 m (16,4 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) blindé ; côté moteur, connecteur rond 8 pôles Y-TEC, autre extrémité de câble libre	VW3M5100R50
Câble moteur 10 m (32,8 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) blindé ; côté moteur, connecteur rond 8 pôles Y-TEC, autre extrémité de câble libre	VW3M5100R100
Câble moteur 15 m (49,2 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) blindé ; côté moteur, connecteur rond 8 pôles Y-TEC, autre extrémité de câble libre	VW3M5100R150
Câble moteur 25 m (82 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) blindé ; côté moteur, connecteur rond 8 pôles Y-TEC, autre extrémité de câble libre	VW3M5100R250
Câble moteur 100 m (328 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) blindé ; les deux extrémités de câble libres	VW3M5300R1000

Câble moteur 1,5 mm²

Description	Référence
Câble moteur 1,5 m (4,92 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R15
Câble moteur 3 m (9,84 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R30
Câble moteur 5 m (16,4 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R50
Câble moteur 10 m (32,8 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R100
Câble moteur 15 m (49,2 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R150
Câble moteur 20 m (65,6 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R200
Câble moteur 25 m (82 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R250
Câble moteur 50 m (164 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R500
Câble moteur 75 m (246 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5101R750
Câble moteur 25 m (82 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5301R250
Câble moteur 50 m (164 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5301R500
Câble moteur 100 m (328 ft), (4 x 1,5 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5301R1000

Câble moteur 2,5 mm²

Description	Référence	
Câble moteur 3 m (9,84 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R30	
Câble moteur 5 m (16,4 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R50	
Câble moteur 10 m (32,8 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R100	
Câble moteur 15 m (49,2 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R150	
Câble moteur 20 m (65,6 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R200	
Câble moteur 25 m (82 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R250	
Câble moteur 50 m (164 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R500	
Câble moteur 75 m (246 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M23, autre extrémité de câble libre	VW3M5102R750	
Câble moteur 25 m (82 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5302R250	
Câble moteur 50 m (164 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5302R500	
Câble moteur 100 m (328 ft), (4 x 2,5 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5302R1000	

Câble moteur 4 mm²

Description	Référence
Câble moteur 3 m (9,84 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R30
Câble moteur 5 m (16,4 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R50
Câble moteur 10 m (32,8 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R100
Câble moteur 15 m (49,2 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R150
Câble moteur 20 m (65,6 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R200
Câble moteur 25 m (82 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R250
Câble moteur 50 m (164 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R500
Câble moteur 75 m (246 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5103R750
Câble moteur 25 m (82 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5303R250
Câble moteur 50 m (164 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5303R500
Câble moteur 100 m (328 ft), (4 x 4 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5303R1000

Câble moteur 6 mm²

Description	Référence
Câble moteur 3 m (9.84 ft) , $(4 \times 6 \text{ mm}^2 + (2 \times 1 \text{ mm}^2))$ blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R30
Câble moteur 5 m (16,4 ft), (4 x 6 mm 2 + (2 x 1 mm 2)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R50
Câble moteur 10 m (32,8 ft), (4 x 6 mm 2 + (2 x 1 mm 2)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R100
Câble moteur 15 m (49,2 ft), (4 x 6 mm 2 + (2 x 1 mm 2)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R150
Câble moteur 20 m (65,6 ft), $(4 \times 6 \text{ mm}^2 + (2 \times 1 \text{ mm}^2))$ blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R200
Câble moteur 25 m (82 ft), (4 x 6 mm² + (2 x 1 mm²)) blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R250
Câble moteur 50 m (164 ft), $(4 \times 6 \text{ mm}^2 + (2 \times 1 \text{ mm}^2))$ blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R500
Câble moteur 75 m (246 ft), $(4 \times 6 \text{ mm}^2 + (2 \times 1 \text{ mm}^2))$ blindé ; côté moteur, connecteur rond 8 pôles M40, autre extrémité de câble libre	VW3M5105R750
Câble moteur 25 m (82 ft), (4 x 6 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5305R250
Câble moteur 50 m (164 ft), (4 x 6 mm² + (2 x 1 mm²)) blindé ; les deux extrémités de câble libres	VW3M5305R500
Câble moteur 100 m (328 ft), (4 x 6 mm 2 + (2 x 1 mm 2)) blindé ; les deux extrémités de câble libres	VW3M5305R1000

Câbles codeur

Description	Référence	
Câbles codeur 3 m (9,84 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond 12 pôles Y-TEC, côté appareil connecteur RJ45 10 pôles	VW3M8100R30	
Câbles codeur 5 m (16,4 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond 12 pôles Y-TEC, côté appareil connecteur RJ45 10 pôles	VW3M8100R50	
Câble codeur 10 m (32,8 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond Y-TEC à 12 pôles, côté appareil connecteur RJ45 à 10 pôles	VW3M8100R100	
Câbles codeur 15 m (49,2 ft), (3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²) blindé ; côté moteur connecteur rond à 12 pôles Y-TEC, côté appareil connecteur RJ45 à 10 pôles	VW3M8100R150	
Câbles codeur 25 m (82 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond à 12 pôles Y-TEC, côté appareil connecteur RJ45 à 10 pôles	VW3M8100R250	
Câble codeur 1,5 m (4,92 ft), (3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R15	
Câbles codeur 3 m (9,84 ft), (3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²) blindé ; côté moteur connecteur rond 12 pôles M23, côté appareil connecteur RJ45 10 pôles	VW3M8102R30	
Câble codeur 5 m (16,4 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R50	
Câbles codeur 10 m (32,8 ft), (3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R100	
Câbles codeur 15 m (49,2 ft), (3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R150	
Câbles codeur 20 m (65,6 ft), (3 x 2 x 0,14 mm ² + 2 x 0,34 mm ²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R200	
Câble codeur 25 m (82 ft), $(3 \times 2 \times 0.14 \text{ mm}^2 + 2 \times 0.34 \text{ mm}^2)$ blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R250	
Câble codeur 50 m (164 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R500	
Câble codeur 75 m (246 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; côté moteur connecteur rond à 12 pôles M23, côté appareil connecteur RJ45 à 10 pôles	VW3M8102R750	
Câble codeur 25 m (82 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; les deux extrémités du câble libres	VW3M8222R250	
Câble codeur 50 m (164 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) blindé ; les deux extrémités du câble libres	VW3M8222R500	
Câble codeur 100 m (328 ft), (3 x 2 x 0,14 mm 2 + 2 x 0,34 mm 2) blindé ; les deux extrémités du câble libres	VW3M8222R1000	

Chapitre 7

Entretien, maintenance et mise au rebut

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Adresses SAV	94
Maintenance	94
Remplacement du moteur	97
Expédition, stockage, mise au rebut	

Adresses SAV

Schneider Electric Automation GmbH

Schneiderplatz 1

97828 Marktheidenfeld, Allemagne Téléphone: +49 (0) 9391 / 606 - 0 Télécopie: +49 (0) 9391 / 606 - 4000

E-mail: info-marktheidenfeld@schneider-electric.com

Internet: http://www.schneider-electric.com

Machine Solutions Service

Schneiderplatz 1

97828 Marktheidenfeld, Allemagne Téléphone : +49 (0) 9391 / 606 - 3265 Télécopie : +49 (0) 9391 / 606 - 3340

E-mail: automation.support.de@schneider-electric.com

Internet: http://www.schneider-electric.com

Autres adresses de contact

Vous trouverez d'autres adresses de contact sur la page Web :

http://www.schneider-electric.com

Maintenance

Plan de maintenance

Le moteur ne contient aucun composant pouvant être entretenu par l'utilisateur.

Remplacez le moteur complet ou adressez-vous directement à Schneider Electric.

Ne confier les réparations qu'à un centre de service assistance client Schneider Electric.

A AVERTISSEMENT

FONCTIONNEMENT ANORMAL

- Utiliser avec ce produit exclusivement des logiciels et des matériels homologués par Schneider Electric.
- Ne confier la maintenance qu'à un centre de service Schneider Electric agréé.
- Actualiser le programme d'application lors de chaque modification de la configuration matérielle physique.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Utiliser uniquement les accessoires et pièces rapportées indiqués dans la documentation et aucun appareil ou composant d'autres fabricants n'ayant pas été expressément autorisé par Schneider Electric. Les appareils ne doivent pas être modifiés.

Consignez les points suivants dans le plan de maintenance de votre machine.

Branchements et fixation

- Inspecter régulièrement tous les câbles de raccordement et les connexions pour détecter tout dommage. Remplacer immédiatement les câbles endommagés.
- Vérifier régulièrement le bon serrage de tous les organes de transmission.
- S'assurer régulièrement que toutes les liaisons boulonnées mécaniques et électriques sont bien serrées selon le couple de serrage préconisé.

Regraisser le joint à lèvres

Sur les moteurs avec joint à lèvres, il faut appliquer du lubrifiant à l'aide d'un outil approprié et non métallique entre la lèvre d'étanchéité du joint à lèvres et l'arbre. L'utilisation à sec des joints à lèvres raccourcit sensiblement la durée de vie des bagues d'étanchéité.

Nettoyage

Si les conditions d'environnement ne sont pas respectées, des corps étrangers provenant de l'environnement peuvent pénétrer dans le produit et entraîner des déplacements accidentels ou des dommages matériels.

A AVERTISSEMENT

DEPLACEMENT ACCIDENTEL

- S'assurer que les conditions d'environnement sont bien respectées.
- Éviter toute utilisation à sec des joints.
- Eviter toute stagnation de fluides au niveau de la traversée de l'arbre (par exemple en position de montage IM V3).
- Ne pas exposer les joints à lèvres et les entrées de câbles du moteur au jet des nettoyeurs haute pression.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Nettoyer régulièrement le produit pour éliminer la poussière et la saleté. Une dissipation insuffisante de chaleur dans l'air ambiant peut entraîner des températures anormalement élevées.

Les moteurs ne sont pas conçus pour être nettoyés avec un nettoyeur haute pression. La haute pression peut entraîner la pénétration d'eau à l'intérieur du moteur.

Veiller à ne pas utiliser de produits nettoyants contenant des agents actifs pouvant endommager les plastiques et les cordons de soudure. Lors de l'utilisation de solvants ou de détergents, veiller à ne pas endommager les câbles, les joints des passe-câbles, les joints toriques ni la peinture du moteur.

AVIS

CORROSION DUE AUX PRODUITS NETTOYANTS

- Avant d'utiliser un produit nettoyant, vérifier qu'il est approprié pour la pièce à nettoyer.
- Ne pas utiliser de détergents alcalins.
- Ne pas utiliser de détergents contenant du chlore.
- Ne pas utiliser de détergents contenant de l'acide sulfurique.

Le non-respect de ces instructions peut provoquer des dommages matériels.

Vérification/rodage du frein de maintien

Le frein de maintien est rodé départ usine. Si le frein de maintien n'est pas utilisé pendant une période prolongée, certaines pièces du frein de maintien peuvent se corroder. La corrosion a pour effet de réduire le couple de maintien.

Si le couple de maintien du frein de maintien ne correspondant pas à celui spécifié dans les caractéristiques techniques, un nouveau rodage s'avère nécessaire :

- Si le moteur est monté, démonter le moteur.
- Mesurer le couple de maintien du frein de maintien à l'aide d'une clé dynamométrique.
- Si le couple de maintien du frein de maintien diffère considérablement des valeurs indiquées, tourner l'arbre du moteur à la main de 25 tours dans les deux sens. Les valeurs sont indiquées au chapitre Frein de maintien (voir page 52).
- Répéter la procédure jusqu'à 3 fois, jusqu'à ce que le couple de maintien soit rétabli.
 Si le couple de maintien ne peut pas être rétabli, adressez-vous à votre agence de vente locale.

Remplacement du palier à roulement

En cas de remplacement du roulement à rouleaux, le moteur est partiellement démagnétisé et perd de sa puissance.

AVIS

APPAREIL INOPERANT

Ne pas remplacer le roulement à rouleaux.

Le non-respect de ces instructions peut provoquer des dommages matériels.

Pour toute question relative à la maintenance, adressez-vous à votre agence commerciale locale.

Remplacement du moteur

En cas de remplacement du moteur, la position absolue du codeur n'est plus valable.

A AVERTISSEMENT

DEPLACEMENT ACCIDENTEL SUITE A UNE POSITION ABSOLUE INCORRECTE

Après tout remplacement du moteur, redéterminer la position absolue du capteur.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Etape	Action
1	Couper toutes les tensions d'alimentation. Vérifier qu'aucune tension n'est appliquée.
2	Repérer tous les branchements et démonter le produit.
3	Noter le numéro d'identification et le numéro de série figurant sur la plaque signalétique du produit pour une identification ultérieure.
4	Installer le nouveau produit conformément au chapitre Installation (voir page 55).
5	Procéder à la mise en service conformément au chapitre Mise en service (voir page 81).

Expédition, stockage, mise au rebut

Expédition

Protéger le produit contre les chocs durant le transport. Toujours utiliser l'emballage d'origine pour expédier le produit.

Stockage

Ne stocker le produit que dans les conditions ambiantes admissibles mentionnées dans les instructions. Protéger le produit de la poussière et de l'encrassement.

Mise au rebut

Le produit se compose de différents matériaux pouvant être réutilisés. Éliminer le produit conformément aux prescriptions locales.

À l'adresse <u>http://www.schneider-electric.com/green-premium</u>, vous trouverez des informations et des documents relatifs à la protection de l'environnement selon ISO 14025, notamment :

- EoLi (Product End-of-Life Instructions)
- PEP (Product Environmental Profile)

Glossaire

C

CEM

Compatibilité électromagnétique

Collet de centrage

Collet centralisé sur la bride du moteur destiné à favoriser un montage précis.

D

Degré de protection

Le degré de protection est une détermination normalisée utilisée pour les équipements électriques et destinée à décrire la protection contre la pénétration de solides et de liquides (exemple IP20).

DOM

Date of manufacturing: La date de fabrication du produit figure sur la plaque signalétique au format JJ.MM.AA ou JJ.MM.AAAA. Par exemple :

31.12.11 correspond au 31 décembre 2011 31.12.2011 correspond au 31 décembre 2011

F

Forces axiales

Forces de traction ou de compression qui agissent sur l'arbre dans le sens longitudinal

Forces radiales

Forces agissant de manière radiale sur l'arbre

L

Longueur

La longueur est définie dans le code de désignation via le nombre de piles.

S

Système d'entraînement

Système comprenant commande, variateur et moteur.

Т

Taille

La taille est définie dans le code de désignation via la taille de la bride.

TBTP

Très Basse Tension de Protection, basse tension avec isolation. Pour de plus amples informations : IEC 60364-4-41.

Index

Α

Adresses SAV, 94

V

Variateurs autorisés, 22

C

Câble codeur
Consignes CEM, 57
Câble moteur
Consignes CEM, 57
Caractéristiques générales, 18
CEM, 57
Câble moteur et câble codeur, 57
Charge de l'arbre, 34
Code de désignation, 15
Codeur, 50
Conducteurs d'équipotentialité, 58

D

Données spécifiques à l'arbre, 34

Ε

Expédition, 98

F

Force d'emmanchement, *34* Frein de maintien, *52*

ı

Installation, 55

M

Maintenance, 94 Mise au rebut, 98, 98

P

Plaque signalétique, *13* Position de montage, *65*

R

Raccordement du frein de maintien, 79 Remplacement du moteur, 97

S

SEK37 monotour, *51*SEL37 multitour, *51*SKM36 multitour, *50*SKS36 monotour, *50*Spécifications des câbles, *62*Stockage, *98*