Pact Series

ComPact NSX MicroLogic 5/6/7 Déclencheurs électroniques

Guide utilisateur

Pact Series offre des disjoncteurs et interrupteurs de première qualité

DOCA0141FR-03 08/2022

Mentions légales

La marque Schneider Electric et toutes les marques de commerce de Schneider Electric SE et de ses filiales mentionnées dans ce guide sont la propriété de Schneider Electric SE ou de ses filiales. Toutes les autres marques peuvent être des marques de commerce de leurs propriétaires respectifs. Ce guide et son contenu sont protégés par les lois sur la propriété intellectuelle applicables et sont fournis à titre d'information uniquement. Aucune partie de ce guide ne peut être reproduite ou transmise sous quelque forme ou par quelque moyen que ce soit (électronique, mécanique, photocopie, enregistrement ou autre), à quelque fin que ce soit, sans l'autorisation écrite préalable de Schneider Electric.

Schneider Electric n'accorde aucun droit ni aucune licence d'utilisation commerciale de ce guide ou de son contenu, sauf dans le cadre d'une licence non exclusive et personnelle, pour le consulter tel quel.

Les produits et équipements Schneider Electric doivent être installés, utilisés et entretenus uniquement par le personnel qualifié.

Les normes, spécifications et conceptions sont susceptibles d'être modifiées à tout moment. Les informations contenues dans ce guide peuvent faire l'objet de modifications sans préavis.

Dans la mesure permise par la loi applicable, Schneider Electric et ses filiales déclinent toute responsabilité en cas d'erreurs ou d'omissions dans le contenu informatif du présent document ou pour toute conséquence résultant de l'utilisation des informations qu'il contient.

En tant que membre d'un groupe d'entreprises responsables et inclusives, nous actualisons nos communications qui contiennent une terminologie non inclusive. Cependant, tant que nous n'aurons pas terminé ce processus, notre contenu pourra toujours contenir des termes standardisés du secteur qui pourraient être jugés inappropriés par nos clients.

Table des matières

Consignes de sécurité	5
À propos de ce manuel	7
Utilisation des déclencheurs MicroLogic	9
Gamme de déclencheurs MicroLogic	
Description des déclencheurs MicroLogic 5 et 6	
Description du déclencheur MicroLogic 7 avec protection différentielle	
intégrée	18
Alimentation des déclencheurs MicroLogic	22
Principes de navigation	26
Mode lecture	28
Mode de réglage	33
Ecrans de mesure	37
Ecrans relatifs aux fonctions de protection	39
Logiciel EcoStruxure Power Commission	45
Gestion des mots de passe	46
Mise à jour du firmware	48
Fonction de protection	49
Application de distribution électrique	50
Protection de la distribution électrique	51
Protection long retard	56
Protection court retard	60
Protection instantanée	
Protection contre les défauts à la terre	
Protection différentielle	
Protection du neutre	
Sélectivité logique (ZSI)	75
Utilisation de la fonction ZSI avec les disjoncteurs ComPact	
NSX	
Application de départ-moteur	
Protection des départs-moteurs	
Protection long retard	
Protection court retard Protection instantanée	
Protection installable: Protection contre les défauts à la terre	
Protection contre le déséquilibre de phase	
Protection Blocage rotor	
Protection du moteur contre les sous-charges	
Protection du moteur contre le démarrage long	
Fonction de mesure	
Techniques de mesure	
MicroLogic Mesures en temps réel des E	
Calcul des valeurs Demand ((MicroLogic E)	
Mesure de puissance (MicroLogic E)	
Algorithme de calcul des puissances	
Mesure de l'énergie (MicroLogic E)	
Courants harmoniques	
Mesure des indicateurs de qualité de l'énergie (MicroLogic E)	

Mesure du facteur de puissance FP et de cos φ (MicroLogic E	125
Tableaux des précisions des mesures	129
Précision des mesures	130
MicroLogic A - Mesures en temps réel	131
MicroLogic E - Mesures en temps réel	132
MicroLogic E - Mesures de valeur de demande	137
MicroLogic E - Mesure de l'énergie	138
Alarmes	139
Alarmes associées aux mesures	140
Alarmes sur événement de déclenchement, de défaillance et de	
maintenance	144
Tableaux des alarmes	145
Fonctionnement des sorties des modules SDx et SDTAM affectées à des	S
alarmes	150
Assistance à l'exploitation	154
État du voyant	
Indication sur l'afficheur MicroLogic	
Exemples d'utilisation des alarmes	
Surveillance du cos φ et du facteur de puissance par alarme	
Communications des disjoncteurs	
Historiques et informations horodatées	
Indicateurs de maintenance	
Annexes	
Autres caractéristiques	
ComPact NSX100-250 - Protection de la distribution	
ComPact NSX100-250 - Protection des départs-moteurs	
ComPact NSX400-630 - Protection de la distribution	
ComPact NSX400-630 - Protection des départs-moteurs	
ComPact NSX100-630 - Déclenchement réflexe	
ComPact NSX100-630 - Courbes de limitation	

Consignes de sécurité

Informations importantes

Lisez attentivement ces instructions et examinez le matériel pour vous familiariser avec l'appareil avant de tenter de l'installer, de le faire fonctionner, de le réparer ou d'assurer sa maintenance. Les messages spéciaux suivants que vous trouverez dans cette documentation ou sur l'appareil ont pour but de vous mettre en garde contre des risques potentiels ou d'attirer votre attention sur des informations qui clarifient ou simplifient une procédure.

La présence de ce symbole sur une étiquette "Danger" ou "Avertissement" signale un risque d'électrocution qui provoquera des blessures physiques en cas de non-respect des consignes de sécurité.

Ce symbole est le symbole d'alerte de sécurité. Il vous avertit d'un risque de blessures corporelles. Respectez scrupuleusement les consignes de sécurité associées à ce symbole pour éviter de vous blesser ou de mettre votre vie en danger.

A DANGER

DANGER signale un risque qui, en cas de non-respect des consignes de sécurité, **provoque** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** la mort ou des blessures graves.

A ATTENTION

ATTENTION signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** des blessures légères ou moyennement graves.

AVIS

AVIS indique des pratiques n'entraînant pas de risques corporels.

Remarque Importante

L'installation, l'utilisation, la réparation et la maintenance des équipements électriques doivent être assurées par du personnel qualifié uniquement. Schneider Electric décline toute responsabilité quant aux conséquences de l'utilisation de ce matériel.

Une personne qualifiée est une personne disposant de compétences et de connaissances dans le domaine de la construction, du fonctionnement et de l'installation des équipements électriques, et ayant suivi une formation en sécurité leur permettant d'identifier et d'éviter les risques encourus.

Avis concernant la cybersécurité

AAVERTISSEMENT

RISQUES POUVANT AFFECTER LA DISPONIBILITÉ, L'INTÉGRITÉ ET LA CONFIDENTIALITÉ DU SYSTÈME

- Modifiez les mots de passe par défaut à la première utilisation, afin d'empêcher tout accès non autorisé aux réglages, contrôles et informations des appareils.
- Désactivez les ports et services inutilisés, ainsi que les comptes par défaut, pour réduire le risque d'attaques malveillantes.
- Protégez les appareils en réseau par plusieurs niveaux de cyberdéfense (pare-feu, segmentation du réseau, détection des intrusions et protection du réseau).
- Respectez les bonnes pratiques de cybersécurité (par exemple : moindre privilège, séparation des tâches) pour réduire les risques d'intrusion, la perte ou l'altération des données et journaux, ou l'interruption des services.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

À propos de ce manuel

Gamme principale Pact Series

Pérennisez votre installation grâce aux Pact Series basse et moyenne tension de Schneider Electric. Fondée sur l'innovation légendaire de Schneider Electric, la Pact Series comprend des disjoncteurs, des interrupteurs, des relais différentiels et des fusibles, adaptés à toutes les applications standard et spécifiques. Bénéficiez de performances fiables avec la Pact Series sur les tableaux de distribution compatibles EcoStruxure, de 16 à 6300 A en basse tension et jusqu'à 40,5 kV en moyenne tension.

Objectif du document

L'objectif de ce guide est de fournir aux utilisateurs, aux installateurs et au personnel de maintenance les informations techniques nécessaires à l'exploitation des déclencheurs MicroLogic™ dans les disjoncteurs ComPact ™ NSX.

Champ d'application

Ce document s'applique aux déclencheurs suivants :

- MicroLogic 5.2 A, 5.3 A, 5.2 E, et 5.3 E
- MicroLogic 6.2 A, 6.3 A,6.2 E, et 6.3 E
- MicroLogic 6.2 E-M et 6.3 E-M
- MicroLogic 7.2 E et 7.3 E avec différentiel intégré
- MicroLogic 7.2 E-AL et 7.3 E-AL avec différentiel intégré

Pour plus d'informations sur les autres déclencheurs de la gamme MicroLogic et les déclencheurs magnéto-thermiques des disjoncteurs ComPact NSX, consultez la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur

Les informations indiquées dans ce guide peuvent être mises à jour à tout moment. Schneider Electric recommande de disposer en permanence de la version la plus récente, disponible sur le site www.se.com.

Informations en ligne

Les informations indiquées dans ce guide peuvent être mises à jour à tout moment. Schneider Electric recommande de disposer en permanence de la version la plus récente, disponible sur le site www.se.com/ww/en/download.

Les caractéristiques techniques des équipements décrits dans ce guide sont également fournies en ligne. Pour accéder aux informations en ligne, accédez à la page d'accueil Schneider Electric à l'adresse www.se.com.

Les caractéristiques présentées dans ce manuel devraient être identiques à celles fournies en ligne. Toutefois, en application de notre politique d'amélioration continue, nous pouvons être amenés à réviser le contenu du document afin de le rendre plus clair et plus précis. Si vous constatez une différence entre le manuel et les informations fournies en ligne, utilisez ces dernières en priorité.

Documents à consulter

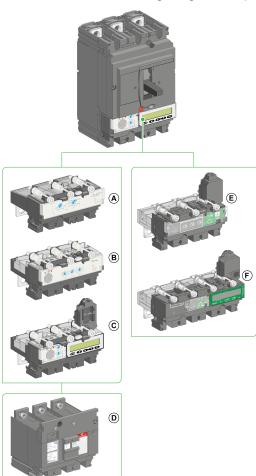
Titre de documentation	Référence
ComPact NSX & NSXm - Catalogue	LVPED217032EN
ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs 100–630 A - Guide utilisateur	DOCA0140FR
ComPact NSX - Guide de la communication Modbus	DOCA0091FR

Titre de documentation	Référence
Enerlin'X IO – Module d'interface d'entrée/sortie pour un disjoncteur CEI - Guide utilisateur	DOCA0055FR
Enerlin'X IFE - Interface Ethernet pour un disjoncteur IEC - Guide de l'utilisateur	DOCA0142FR
Enerlin'X IFE - Serveur de tableau Ethernet - Guide de l'utilisateur	DOCA0084FR
Enerlin'X FDM121 - Afficheur de tableau pour un disjoncteur - Guide utilisateur	DOCA0088FR
Système ULP (norme CEI) – Système ULP (Universal Logic Plug) – Guide utilisateur	DOCA0093FR
ComPacT NSX - MicroLogic 5/6 Trip Unit - Firmware Release Notes	DOCA0153EN
ComPacT NSX - MicroLogic 7 Trip Unit - Firmware Release Notes	DOCA0154EN
MicroLogic Trip Units and Control Units - Firmware History	DOCA0155EN

Vous pouvez télécharger ces publications et d'autres informations techniques depuis notre site Web à l'adresse : www.se.com/ww/en/download/.

Utilisation des déclencheurs MicroLogic

Contenu de cette partie


Gamme de deciencheurs MicroLogic	10
Description des déclencheurs MicroLogic 5 et 6	15
Description du déclencheur MicroLogic 7 avec protection différentielle	
intégrée	18
Alimentation des déclencheurs MicroLogic	
Principes de navigation	26
Mode lecture	28
Mode de réglage	33
Ecrans de mesure	37
Ecrans relatifs aux fonctions de protection	39
Logiciel EcoStruxure Power Commission	45
Gestion des mots de passe	46
Mise à jour du firmware	48

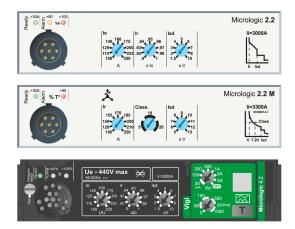
Gamme de déclencheurs MicroLogic

Présentation

Les déclencheurs MicroLogic sont utilisés sur les disjoncteurs ComPact NSX. La gamme de déclencheurs MicroLogic regroupe plusieurs familles de déclencheurs électroniques :

- Déclencheurs MicroLogic 1, 2, sans afficheur
- Déclencheurs MicroLogic Vigi 4 avec protection différentielle, sans afficheur
- · Déclencheurs MicroLogic 5, 6, avec afficheur
- Déclencheurs MicroLogic Vigi 7 avec protection différentielle et afficheur

- A Déclencheur TM-D, TM-G ou MA
- **B** Déclencheur MicroLogic 1 ou 2
- **C** Déclencheur MicroLogic 5 ou 6
- **D** VigiPacT Add-on pour protection différentielle supplémentaire ou VigiPacT Add-on Alarm
- **E** Déclencheur MicroLogic 4 avec protection différentielle intégrée
- **F** Déclencheur MicroLogic 7 avec protection différentielle intégrée


Description des déclencheurs MicroLogic 1, 2, et Vigi 4

Les déclencheurs MicroLogic sont regroupés par application. Il convient en effet de faire la distinction entre les applications de distribution d'électricité et les applications de protection de moteur :

- Dans une application de distribution d'électricité :
 - Les déclencheurs MicroLogic 2.2 et 2.3 sont conçus pour protéger les conducteurs dans les installations de distribution électrique commerciales et industrielles.
 - Les déclencheurs MicroLogic 4.2 et 4.3 avec protection différentielle intégrée sont conçus pour protéger les conducteurs électriques, les biens et les personnes dans les installations de distribution électrique commerciales et industrielles (les déclencheurs MicroLogic 4.2 AL et 4.3 AL avec protection différentielle intégrée sont conçus pour mesurer le courant de fuite à la terre).
- Dans une application de protection de moteur :
 - les déclencheurs MicroLogic 1.3 M sont adaptés à la protection contre les courts-circuits des départs-moteurs;
 - les déclencheurs MicroLogic 2.2 M et 2.3 M sont adaptés à la protection des départs-moteurs sur des applications standard. Les courbes de déclenchement thermique sont calculées pour des moteurs autoventilés.

Les commutateurs rotatifs de réglage et les signalisations sont en face avant.

Pour plus d'informations sur les déclencheurs MicroLogic 1, 2 et 4, consultez la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.

Description des déclencheurs MicroLogic 5, 6, et Vigi 7

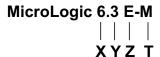
Les déclencheurs MicroLogic5, 6 et Vigi 7 conviennent aux applications de distribution d'alimentation électrique et de protection de moteur :

- Dans l'application de distribution d'alimentation électrique, les déclencheurs MicroLogic 5.2, 5.3, 6.2, 6.3, Vigi 7.2 et Vigi 7.3 sont destinés à protéger les conducteurs, les biens et les personnes dans les installations de distribution électrique commerciales et industrielles.
- Dans l'application de protection de moteur, les déclencheurs MicroLogic 6.2 M et 6.3 M sont adaptés à la protection des départs-moteurs sur des applications standard. Les courbes de déclenchement thermique sont calculées pour des moteurs autoventilés.

Les déclencheurs MicroLogic5, 6 et Vigi 7 fournissent les fonctionnalités suivantes :

- Fonctions de déclenchement réglables sur les disjoncteurs à déclenchement électronique
- Protection du système de distribution électrique ou d'applications spécifiques
- Mesure des valeurs instantanées et de demande

- · Mesure des kilowatts-heures
- Informations liées à l'exploitation (pics de demande, alarmes personnalisées, compteurs d'opérations)
- Communication

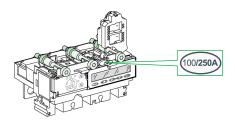

Les déclencheurs MicroLogic peuvent être configurés pour communiquer avec d'autres appareils. Pour plus d'informations sur les modules de maintenance et de communication, consultez les documents suivants :

- LVPED217032EN ComPact NSX & NSXm Catalogue
- DOCA0140FR ComPact NSX Disjoncteurs et interrupteurs-sectionneurs 100–630 A - Guide utilisateur

Pour plus d'informations sur les modèles de disjoncteurs, les tailles de châssis, les valeurs nominales d'interruption et les déclencheurs disponibles, consultez la documentation LVPED217032EN *ComPact NSX & NSXm - Catalogue*.

Identification

Le nom de produit précise la protection assurée par le déclencheur.


Identification des déclencheurs électroniques MicroLogic

Exemples	Type de protection (X)	Boîtier (Y)	Type de mesure (Z)	Application (T)
_	1 SI 2 LS ₀ I 4 LS ₀ IR 5 LSI 6 LSIG 7 LSIR	2 ComPact NSX 100/160/ 250 3 ComPact NSX 400/630	A Ampèremètre E Energie	Distribution G Générateur AB Abonné M Moteur Z 16 Hz 2/3 AL Alarme sans déclenchement pour la protection différentielle
MicroLogic 1.3 M	SI	400 ou 630 A	-	Moteur
MicroLogic 2.2 G	LS ₀ I	100, 160 ou 250 A	-	Générateur
MicroLogic 2.3	LS ₀ I	400 ou 630 A	-	Distribution
MicroLogic 2.3 M	LS ₀ I	400 ou 630 A	-	Moteur
MicroLogic Vigi 4.2	LS ₀ IR	100, 160 ou 250 A	-	Distribution avec déclenchement sur fuite à la terre
MicroLogic Vigi 4.3 AL	LS ₀ I	400 ou 570 A	-	Distribution avec alarme sur fuite à la terre
MicroLogic 5.2 A	LSI	100, 160 ou 250 A	Ampèremètre	Distribution
MicroLogic 5.3 E	LSI	400 ou 630 A	Energie	Distribution
MicroLogic 6.3 E-M	LSIG	400 ou 630 A	Energie	Moteur
MicroLogic Vigi 7.2 E-AL	LSI	100, 160 ou 250 A	Energie	Distribution avec alarme sur fuite à la terre

Exemples	Type de protection (X)	Boîtier (Y)	Type de mesure (Z)	Application (T)
MicroLogic Vigi 7.3 E	LSIR	400 ou 600 A	Energie	Distribution avec déclenchement sur fuite à la terre
Type de protection :			S Court retard	
I Instantanée			S Court retain	
			G Défaut à la terre	
L Long retard			R Fuite à la terre (résid	tuelle)
S ₀ Court retard (le délai n'e	st pas réglable)		TT also a la tollo (rook	, , , , , , , , , , , , , , , , , , , ,

Calibre In

La valeur In du déclencheur est visible sur la face avant du disjoncteur lorsque le déclencheur est installé. Le calibre In du déclencheur (en ampères) est la valeur maximum du déclencheur.

Exemple: Déclencheur MicroLogic 5.2 E 250 A:

Plage de réglages : 100-250 A

Calibre In = 250 A

Intégration des déclencheurs MicroLogic à la gamme de disjoncteurs ComPact NSX

Les déclencheurs pour distribution électrique MicroLogic peuvent être utilisés sur n'importe quel disjoncteur ComPact NSX.

Le tableau suivant indique les configurations disponibles en fonction du calibre In du déclencheur de distribution et du calibre du disjoncteur :

Calibre MicroLogic In	40	100	160	250	400	630
ComPact NSX100	✓	✓	_	-	_	-
ComPact NSX160	✓	✓	✓	-	_	-
ComPact NSX250	✓	✓	✓	✓	_	-
ComPact NSX400	_	_	_	√ (1)	✓	-
ComPact NSX630	-	-	-	√ (1)	✓	✓
(1) MicroLogic 2.3 uniquement						

Les déclencheurs MicroLogic2 M ou 6 E-M peuvent être utilisés sur n'importe quel disjoncteur ComPact NSX.

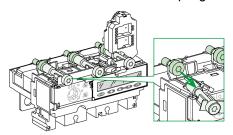
Le tableau suivant indique les configurations disponibles en fonction du calibre In du déclencheur de protection moteur et du calibre du disjoncteur :

Calibre MicroLogic M In	25	50	80	100	150	220	320	500
ComPact NSX100	✓	✓	√ (1)	√ (2)	-	-	-	-
ComPact NSX160	✓	✓	√ (1)	√ (2)	✓	-	-	-
ComPact NSX250	✓	✓	√ (1)	√ (2)	✓	✓	-	-

Calibre MicroLogic M In	25	50	80	100	150	220	320	500
ComPact NSX400	_	-	_	_	-	-	✓	_
ComPact NSX630	-	-	-	-	-	-	✓	✓

⁽¹⁾ MicroLogic 6 E-M uniquement

Les déclencheurs MicroLogic1.3 M peuvent être utilisés sur les disjoncteurs ComPact NSX400 et ComPact NSX630.


Le tableau suivant indique les configurations disponibles en fonction du calibre In du déclencheur de protection moteur et du calibre du disjoncteur :

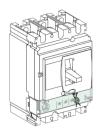
Calibre de MicroLogic 1.3 M In	320	500
ComPact NSX400	✓	_
ComPact NSX630	✓	✓

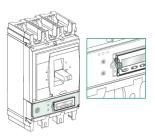
Interchangeabilité des déclencheurs MicroLogic

Le remplacement de déclencheurs sur site est une opération simple :

- · Aucun raccordement à effectuer
- Aucun outil spécial (par exemple, clé dynamométrique étalonnée)
- · Compatibilité des déclencheurs assurée par détrompeur mécanique
- La vis à limitation de couple garantit un serrage correct (voir schéma ci-après)

La simplicité de la procédure de remplacement signifie qu'il est facile de faire les ajustements nécessaires à mesure que les processus d'exploitation et de maintenance évoluent.

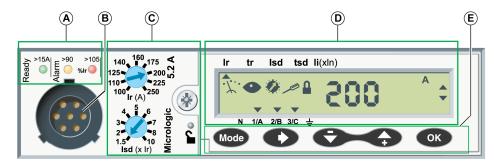

NOTE: La tête de vis est accessible lorsque le déclencheur est installé, de sorte que ce dernier peut être retiré.


NOTE: Sur les disjoncteurs ComPact NSX à performances de coupure R, HB1 et HB2, les déclencheurs ne sont pas interchangeables.

Plombage de la protection

Fermez le capot transparent des déclencheurs MicroLogic pour empêcher toute modification des réglages de protection et tout accès à la prise de test.

Sur les déclencheurs MicroLogic 5, 6 et Vigi 7, il est possible d'utiliser le clavier et de lire les réglages et mesures à l'écran même si le capot est scellé.


⁽²⁾ MicroLogic 2 M uniquement

Description des déclencheurs MicroLogic 5 et 6

Face avant du déclencheur

Utilisez l'écran d'affichage et le clavier du déclencheur pour régler les options de ce dernier et vérifier les mesures du système. Reportez-vous aux principes de navigation pour plus d'informations, page 26.

Face avant d'un déclencheur MicroLogic 5.2 E pour disjoncteur tripolaire

- A Voyants LED de signalisation
- B Prise de test
- **C** Commutateurs rotatifs pour le préréglage des fonctions de protection et microswitch pour le verrouillage des réglages de protection
- **D** Écran LCD
- E Clavier de navigation

Voyants LED de signalisation

Les voyants LED de signalisation indiquent l'état opérationnel du déclencheur.

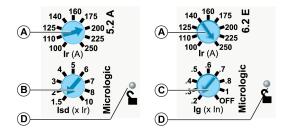
Les voyannts de signalisation ont des significations différentes en fonction du type de déclencheur.

Type de déclencheur MicroLogic	Description
Distribution Page 2 Page 3 Page 3 Page 4 Page 4	 Le voyant Ready (vert) clignote lentement lorsque les fonctions de protection standard du déclencheur électronique sont opérationnelles. Le voyant de pré-alarme de surcharge (orange) s'allume lorsque la charge dépasse 90 % du réglage lr. Le voyant d'alarme de surcharge (rouge) s'allume lorsque la charge dépasse 105 % du réglage lr.
Woteur	 Le voyant Ready (vert) clignote lentement lorsque les fonctions de protection standard du déclencheur électronique sont opérationnelles. Le voyant d'alarme de température de surcharge (rouge) s'allume lorsque l'image thermique du moteur dépasse 95 % du réglage lr.

Prise de test

Les déclencheurs MicroLogic disposent d'une prise de test spécifique pour les opérations de maintenance.

Utilisez la prise de test pour :


 Connecter une batterie de poche en vue de tester localement le déclencheur MicroLogic

- Connectez Service Interface pour tester, régler le déclencheur MicroLogic, mettre à jour le firmware de MicroLogic ou pour effectuer des diagnostics d'installation à l'aide du logiciel EcoStruxure Power Commission
- · Connectez l'interface de maintenance USB :
 - Pour le test push-to-trip ou les diagnostics d'installation avec l'interface de maintenance USB autonome
 - Pour le test et les diagnostics d'installation, le réglage du déclencheur MicroLogic, la mise à jour du firmware de MicroLogic avec l'interface de maintenance USB connectée à un PC

Pour plus d'informations, consultez la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.

Commutateurs rotatifs et microswitch

La face avant du déclencheur présente deux commutateurs rotatifs pour le réglage des fonctions de protection et un microswitch pour le verrouillage et le déverrouillage des réglages de protection effectués à l'aide du clavier. Pour les déclencheurs de distribution, les commutateurs rotatifs servent à régler la protection long retard et la protection instantanée.

- A Commutateur de réglage du seuil de déclenchement de la protection long retard (Ir)
- B Commutateur de réglage du seuil de déclenchement de la protection court retard (Isd) (MicroLogic 5 uniquement)
- C Commmutateur de réglage du seuil de déclenchement de la protection de terre (Ig) (MicroLogic 6 uniquement)
- **D** Microswitch de verrouillage/ déverrouillage du réglage des paramètres de protection

Écran LCD

L'écran LCD fournit les informations nécessaires pour utiliser le déclencheur. La liste des fonctions de protection varie en fonction du type de déclencheur MicroLogic.

Elé- ment	Description		
Α	5 pictogrammes :		
	: Mesure : Lecture : Protection : Réglage : Verrouillage		
	La combinaison de pictogrammes définit le mode.		
В	Le pointeur haut désigne la fonction de protection en cours de réglage		
С	Liste des fonctions de protection en fonction du type de déclencheur MicroLogic :		
	MicroLogic 5 : Ir tr Isd tsd Ii(xIn) MicroLogic 6 : Ir CI. ♣ Isd Iunbal tunbal Ijam tjam Ig tg MicroLogic 6 E-M :		
D	Valeur de la grandeur mesurée		
E	Unité de la grandeur mesurée		
F	Flèches de navigation		
G	Les pointeurs bas désignent les phases sélectionnées, le neutre ou la terre		
Н	Phases (1/A, 2/B, 3/C), neutre (N) et terre		

Rétroéclairage de l'écran LCD

Lorsque le déclencheur MicroLogic est alimenté par une source 24 VCC externe, son afficheur présente un rétroéclairage blanc qui est :

- · de faible intensité en permanence,
- de forte intensité durant 1 minute après l'activation d'une touche du clavier.

Le rétroéclairage de l'écran est :

- désactivé lorsque la température dépasse 65 °C (149 °F).
- réactivé dès que la température est redescendue sous 60 °C (140 °F).

Sur les déclencheurs alimentés par la batterie de poche, l'afficheur n'est pas rétroéclairé.

Clavier de navigation

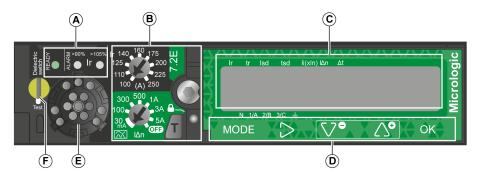
Le clavier de navigation comprend 5 touches.

Touche	Description	
Mode	Sélection du mode	
•	Navigation par défilement	
0	Navigation arrière (mesure) ou - (réglage des fonctions de protection)	
•	Navigation avant (mesure) ou + (réglage des fonctions de protection)	
OK	Confirmation	

Description du déclencheur MicroLogic 7 avec protection différentielle intégrée

Présentation

Le déclencheur électronique MicroLogic Vigi 7 existe en deux versions pour la détection des fuites à la terre :


- La version Déclenchement se déclenche lorsqu'une fuite à la terre est détectée.
- La version Alarme mesure le courant de fuite et indique un défaut de fuite à la terre sur l'écran d'affichage.

Lorsque le contact de signalisation SDx est présent, il signale un défaut de fuite à la terre de manière distante.

Face avant du déclencheur

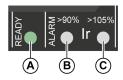
Utilisez l'écran d'affichage et le clavier du déclencheur pour régler les options de ce dernier et vérifier les mesures du système. Reportez-vous aux principes de navigation pour plus d'informations, page 26.

Face avant d'un déclencheur MicroLogic Vigi 7 (version déclenchement) :

A Voyants LED de signalisation

B Commutateurs pour le préréglage des fonctions de protection, microswitch pour le verrouillage des réglages de protection et bouton de test pour tester la protection différentielle

C Ecran d'affichage LCD

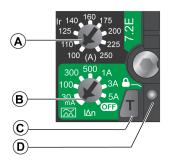

D Clavier de navigation

E Prise de test

F Commutateur diélectrique

Voyants LED de signalisation

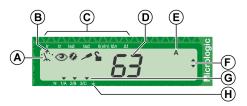
Les voyants LED de signalisation indiquent l'état opérationnel du déclencheur.


A Le voyant **Ready** (vert) clignote lentement lorsque les fonctions de protection standard du déclencheur électronique sont opérationnelles.

B Le voyant de pré-alarme de surcharge (orange) s'allume lorsque la charge dépasse 90 % du réglage Ir.

C Le voyant d'alarme de surcharge (rouge) s'allume lorsque la charge dépasse 105 % du réglage Ir.

Commutateurs de réglage, microswitch et bouton de test


La face avant du déclencheur présente deux commutateurs rotatifs permettant de prérégler les fonctions de protection, un microswitch permettant de verrouiller/ déverrouiller les réglages de protection et un bouton de test permettant de tester la protection différentielle.

- A Commutateur de réglage du seuil de déclenchement de la protection long retard (Ir)
- **B** Commutateur de réglage du seuil de déclenchement de la protection différentielle $(I\Delta n)$
- C Bouton de test de la protection différentielle
- **D** Microswitch de verrouillage/déverrouillage des réglages de protection

Écran LCD

L'écran LCD fournit les informations nécessaires pour utiliser le déclencheur. La liste des fonctions de protection varie en fonction du type de déclencheur MicroLogic.

Elé- ment	Description	
Α	5 pictogrammes :	
	: Mesure : Lecture : Protection : Réglage : Verrouillage	
	La combinaison de pictogrammes définit le mode.	
В	Le pointeur haut désigne la fonction de protection en cours de réglage	
С	Liste des fonctions de protection du déclencheur MicroLogic Vigi 7 :	

Elé- ment	Description	
	Ir tr Isd tsd li(xln) lΔn Δt	
D	Valeur de la grandeur mesurée	
E	Unité de la grandeur mesurée	
F	Flèches de navigation	
G	Les pointeurs bas désignent les phases sélectionnées, le neutre ou la terre	
Н	Phases (1/A, 2/B, 3/C), neutre (N) et terre	

Rétroéclairage de l'écran LCD

Lorsque le déclencheur MicroLogic est alimenté par une source 24 VCC externe, son afficheur présente un rétroéclairage blanc qui est :

- · de faible intensité en permanence,
- de forte intensité durant 1 minute après l'activation d'une touche du clavier.

Le rétroéclairage de l'écran est :

- désactivé lorsque la température dépasse 65 °C (149 °F).
- réactivé dès que la température est redescendue sous 60 °C (140 °F).

Sur les déclencheurs alimentés par la batterie de poche, l'afficheur n'est pas rétroéclairé.

Clavier de navigation

Le clavier de navigation comprend 5 touches.

Touche	Description
MODE	Sélection du mode
	Navigation par défilement
∇^{\bullet}	Navigation arrière (mesure) ou - (réglage des fonctions de protection)
$\nabla_{\!ullet}$	Navigation avant (mesure) ou + (réglage des fonctions de protection)
OK∳	Confirmation

Prise de test

Les déclencheurs MicroLogic disposent d'une prise de test spécifique pour les opérations de maintenance.

Utilisez la prise de test pour :

- Connecter une batterie de poche en vue de tester localement le déclencheur MicroLogic
- Connectez Service Interface pour tester, régler le déclencheur MicroLogic, mettre à jour le firmware de MicroLogic ou pour effectuer des diagnostics d'installation à l'aide du logiciel EcoStruxure Power Commission

- · Connectez l'interface de maintenance USB :
 - Pour le test push-to-trip ou les diagnostics d'installation avec l'interface de maintenance USB autonome
 - Pour le test et les diagnostics d'installation, le réglage du déclencheur MicroLogic, la mise à jour du firmware de MicroLogic avec l'interface de maintenance USB connectée à un PC

Pour plus d'informations, consultez la documentation DOCA0140FR *ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.*

Commutateur diélectrique

Le commutateur diélectrique déconnecte des phases l'alimentation du déclencheur. Il est utilisé pour effectuer un test diélectrique de panneau.

Pour plus d'informations sur l'utilisation du commutateur diélectrique, consultez la documentation DOCA0140FR *ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.*

Alimentation des déclencheurs MicroLogic

Alimentation interne pour les déclencheurs MicroLogic 5 et 6

Les fonctions de protection et de test des déclencheurs MicroLogic 5 et 6 fonctionnent avec le courant traversant les transformateurs de courant (CT) internes.

Lorsque le courant de charge est supérieur à 20 % du courant nominal In, l'alimentation en courant interne assure l'ensemble du fonctionnement du déclencheur MicroLogic. Ceci inclut :

- · L'écran d'affichage et les voyants MicroLogic
- · Les fonctions de maintenance et de diagnostic

Pour fournir une alimentation au déclencheur MicroLogic 5 ou 6 lorsque la charge est inférieure à 20 % du courant nominal In et assurer le fonctionnement complet du déclencheur MicroLogic, il est possible d'utiliser l'une des alimentations optionnelles suivantes :

- Alimentation 24 VCC externe, page 23 raccordée en permanence au déclencheur MicroLogic
- Alimentation raccordée temporairement à la prise de test du déclencheur MicroLogic :
 - Batterie de poche, page 24
 - Service Interface, page 25 connecté à une alimentation
 - Interface de maintenance USB, page 25 connectée à une alimentation ou à un PC

Alimentation interne pour déclencheurs MicroLogic 7 à protection différentielle intégrée

Les fonctions de protection et de test des déclencheurs MicroLogic Vigi 7 fonctionnent avec le courant traversant les transformateurs de courant (CT) internes et l'alimentation en tension interne.

Lorsque le courant de charge est inférieur à 20 % du courant nominal In, l'alimentation en tension interne fournit l'alimentation des fonctions minimales suivantes du déclencheur MicroLogic :

- · Fonctions de protection
- · Voyants LED de signalisation
- · Test de protection différentielle

Lorsque le courant de charge est supérieur à 20 % du courant nominal In, l'alimentation en courant interne assure le fonctionnement complet du déclencheur MicroLogic. En plus des fonctions minimales, cela inclut les fonctions suivantes :

- L'écran d'affichage et les voyants de signalisation MicroLogic
- · Les fonctions de maintenance et de diagnostic

Pour assurer le fonctionnement complet déclencheur MicroLogic 7 lorsque la charge est inférieure à 20 % du courant nominal In, l'une des alimentations optionnelles suivantes peut être utilisée :

- Alimentation 24 VCC externe, page 23 raccordée en permanence au déclencheur MicroLogic
- Alimentation raccordée temporairement à la prise de test du déclencheur MicroLogic :
 - Batterie de poche, page 24
 - Service Interface, page 25 connecté à une alimentation
 - Interface de maintenance USB, page 25 connectée à une alimentation ou à un PC

Alimentation 24 Vcc externe

L'alimentation 24 Vcc assure le fonctionnement des fonctions du déclencheur MicroLogic en toutes circonstances, y compris en cas de faible charge (inférieure à 20 %) et lorsque le disjoncteur est ouvert et non alimenté.

L'alimentation 24 Vcc est essentielle pour permettre au déclencheur MicroLogic d'afficher la cause du déclenchement.

L'alimentation 24 Vcc externe est fournie au déclencheur MicroLogic une fois qu'il est connecté à un autre module du système ULP (par exemple, l'interface Modbus-SL IFM pour un disjoncteur).

Lorsque le déclencheur MicroLogic n'est pas connecté à un module ULP, il peut être raccordé directement à une alimentation 24 Vcc externe à l'aide du bornier d'alimentation 24 Vcc en option.

Une alimentation 24 Vcc permet d'alimenter plusieurs déclencheurs MicroLogic ou autres modules ULP.

Alimentations 24 Vcc recommandées

Les alimentations 24 Vcc disponibles comprennent les gammes Phaseo ABL8 et AD. Pour plus d'informations, consultez la documentation LVPED217032EN *ComPact NSX & NSXm - Catalogue*.

Caractéristique	Alimentation Phaseo ABL8	Alimentation AD
Illustration	Management of the state of the	Segments Accountments Account
Catégorie de surtension définie par la norme IEC 60947-1	Category II	Category IV pour la norme IEC 62477-1 (modèle Vca) Category III pour la norme IEC 62477-1 (modèle Vcc) Category III pour la norme UL 61010-1
Tension d'alimentation d'entrée CA	110-120 Vca200-500 Vca	110-130 Vca 200-240 Vca
Tension d'alimentation d'entrée CC	-	24-30 VCC48-60 Vcc100-125 Vcc
Tenue diélectrique	 Entrée/sortie : 4 kV eff durant 1 minute Entrée/terre : 3 kV eff durant 1 minute Sortie/terre : 0,5 kV eff durant 1 minute 	Entrée/sortie : • 3 kV eff durant 1 minute (modèles 110-130 Vca et 200-240 Vca) • 3 kV eff durant 1 minute (modèle 110-125 Vcc) • 2 kV eff durant 1 minute (modèles 24-30 Vcc et 48-60 Vcc)
Température	50 °C (122 °F) 60 °C (140 °F) avec 80 % maximum de la charge nominale	70 °C (158 °F)
Courant de sortie	3 A, 5 A ou 10 A	1 A

Caractéristique	Alimentation Phaseo ABL8	Alimentation AD
Ondulation	200 mV crête à crête	200 mV crête à crête
Réglage de tension de sortie pour compensation de perte sur ligne	24-28,8 VCC	22,8-25,2 VCC

NOTE: Pour les applications exigeant une catégorie de surtension supérieure à II, installez un limiteur de tension lors de l'utilisation d'une alimentation 24 Vcc ABL8.

Consommation des modules ULP

Le tableau ci-dessous indique la consommation des modules ULP :

Module	Consommation typique (24 Vcc à 20 °C/68 °F)	Consommation maximale (19,2 Vcc à 60 °C/140 °F)
Déclencheur MicroLogic pour disjoncteur ComPact NSX	30 mA	55 mA
Module de contrôle d'état de disjoncteur BSCM pour disjoncteurs ComPact NSX	9 mA	15 mA
Serveur de tableau Ethernet IFE	100 mA	140 mA
Interface Ethernet IFE pour un disjoncteur	100 mA	140 mA
Interface Modbus-SL IFM pour un disjoncteur	21 mA	30 mA
Module d'interface d'entrée/sortie IO pour un disjoncteur	100 mA	130 mA
Module d'affichage en face avant FDM121 pour un disjoncteur	21 mA	30 mA
Service Interface	0 mA (Service Interface dispose de sa propre alimentation)	0 mA (Service Interface dispose de sa propre alimentation)
Interface de maintenance USB	0 mA (l'interface de maintenance USB a sa propre alimentation)	0 mA (l'interface de maintenance USB a sa propre alimentation)

Pour plus d'informations sur les alimentations, consultez le document DOCA0093FR Système ULP (norme CEI) - Guide utilisateur.

Batterie de poche

Utilisez la batterie de poche pour fournir une alimentation temporaire au déclencheur MicroLogic.

La batterie de poche permet d'utiliser l'écran d'affichage et le clavier MicroLogic pour le réglage et l'affichage en cas de coupure de l'alimentation du déclencheur MicroLogic.

La batterie de poche peut être raccordée à l'aide du connecteur pour déclencheur (fourni avec la batterie) qu'il suffit de connecter à la prise de test du déclencheur MicroLogic.

Vérifiez le niveau de charge de la batterie de poche en faisant glisser le commutateur jusqu'à la position Test. La LED verte de la batterie s'allume pour indiquer son état.

Pour plus d'informations sur la batterie de poche, consultez la documentation DOCA0140FR *ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs* 100–630 A - Guide utilisateur.

Service Interface

Utilisez Service Interface pour fournir une alimentation temporaire pendant les périodes de réglage, de mise en service, de test et de maintenance.

Service Interface est connectée à la prise de test du déclencheur MicroLogic et à un PC exécutant le logiciel EcoStruxure Power Commission.

Service Interface doit être alimentée en 24 VCC par le port de l'adaptateur d'alimentation 24 V. Un adaptateur (110-230 VCA à 24 VCC) est fourni avec Service Interface.

Pour plus d'informations sur Service Interface, consultez le document DOCA0170FR Service Interface - Guide utilisateur.

Interface de maintenance USB

Utilisez l'interface de maintenance USB pour fournir une alimentation temporaire pendant les périodes de réglage, de mise en service, de test et de maintenance.

L'interface de maintenance USB est connectée à la prise de test du déclencheur MicroLogic.

L'interface de maintenance USB doit être connectée à l'alimentation secteur ou à un PC

Pour plus d'informations sur l'interface de maintenance USB, consultez le document .

ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur

Principes de navigation

Verrouillage/déverrouillage des réglages

Les réglages de protection sont verrouillés lorsque le capot transparent est fermé et scellé pour interdire l'accès aux commutateurs de réglage et au microswitch de verrouillage/déverrouillage.

Un pictogramme sur l'afficheur indique si les réglages de protection sont verrouillés :

- Cadenas verrouillé

 : Les réglages de protection sont verrouillés.
- Cadenas déverrouillé
 : Les réglages de protection sont déverrouillés.

Pour déverrouiller les réglages de protection :

- 1. Ouvrez le capot transparent
- 2. Appuyez sur le microswitch de verrouillage/déverrouillage ou actionnez un des commutateurs rotatifs de réglage

Pour verrouiller les réglages de protection, il faut appuyer à nouveau sur le microswitch de verrouillage/déverrouillage.

Les réglages de protection se verrouillent aussi automatiquement cinq minutes après la dernière action sur une touche du clavier ou sur l'un des commutateurs rotatifs du déclencheur MicroLogic.

Modes du déclencheur

Les informations affichées sur le déclencheur MicroLogic dépendent du mode de fonctionnement de ce dernier.

Les modes disponibles dépendent des éléments suivants :

- Verrouillage ou déverrouillage des réglages
- Version du déclencheur (tripolaire ou tétrapolaire).

La combinaison de pictogrammes définit le mode.

Les tableaux suivants décrivent les modes possibles :

Pictogrammes	Mode accessible avec cadenas verrouillé	
.%. ◆ ■	 Lecture des mesures instantanées Lecture et remise à zéro des compteurs d'énergies 	
\(\times \) \ \ \times \) \ \ \times \) \ \ \text{Lecture} et remise à zéro des pics de demande \\ \text{Max Reset ? Ok} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
● Ø 1	Lecture des fonctions de protection	
<i>X</i> .◆ U	Lecture de l'état du neutre (déclencheur MicroLogic tripolaire)	

Pictogrammes		Mode accessible avec cadenas déverrouillé
.%•	-	 Lecture des mesures instantanées Lecture et remise à zéro des compteurs d'énergies
Lecture et remise à zéro des pics de demande Max Reset ? Ok		

Pictogrammes Mode accessible avec cadenas déverrouillé	
% ∕₌ſ	Réglage des fonctions de protection
<i>\\</i> . \ ∎	Réglage de l'état du neutre (déclencheur MicroLogic tripolaire)

Sélection d'un mode

La sélection d'un mode se fait par pressions successives de la touche

- Le défilement des modes est cyclique.
- Appuyez sur le microswitch de verrouillage/déverrouillage pour basculer entre le mode de lecture et le mode de réglage.

Ecran de veille

L'écran de veille affiche le courant instantané de la phase la plus chargée (mode Lecture des mesures instantanées).

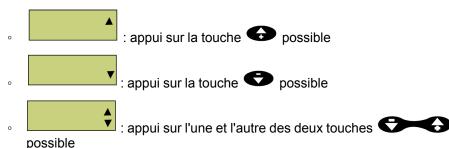
L'afficheur MicroLogic revient automatiquement à l'écran de veille dans les cas suivants:

- En mode cadenas verrouillé : 20 secondes après la dernière action sur une touche du clavier
- En mode cadenas déverrouillé : 5 minutes après la dernière action au moyen du clavier ou des commutateurs rotatifs

Mode lecture

Lecture des mesures

Les déclencheurs MicroLogic5 et 6 et les déclencheurs MicroLogic 7 avec protection différentielle intégrée présentent les cinq mêmes touches de navigation. L'aspect de ces touches diffère, comme le décrit le tableau suivant :

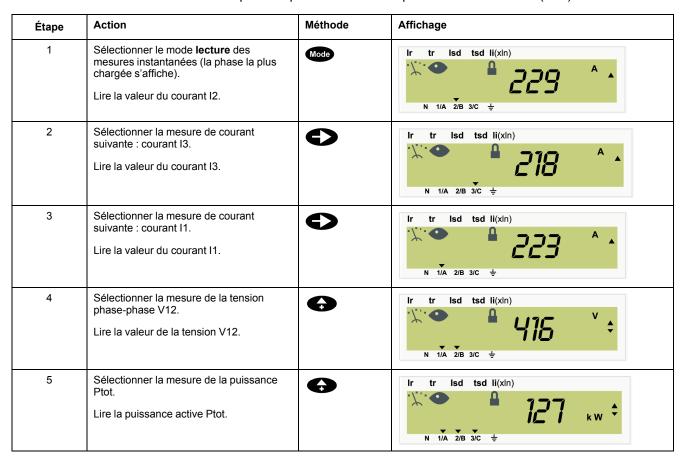

Déclencheur MicroLogic 5 et 6	Déclencheur MicroLogic Vigi 7
Mode	MODE
•	
↔	$\triangle_{ullet} \nabla_{ullet} \nabla_{ullet$
ОК	ОК

Les exemples suivants utilisent les touches des déclencheurs MicroLogic 5 et 6 pour illustrer la navigation dans les modes de lecture et de réglage. Pour les déclencheurs MicroLogic Vigi 7, la navigation s'effectue de la même manière.

La lecture d'une mesure se fait à l'aide des touches et .

Les touches permettent de sélectionner la mesure à afficher à l'écran. Les pointeurs de navigation associés indiquent les possibilités de navigation:

- Pour les grandeurs mesurées de courant et tension, la touche de navigation permet de sélectionner l'écran de mesure pour chacune des phases :
 - Le pointeur bas indique la phase associée à la valeur de la mesure affichée.


Exemples d'applications:

Grandeur mesurée sur la phase 2 N 1/A 2/B 3/C Grandeur mesurée sur les 3 phases N 1/A 2/B 3/C ±

Pour faire défiler les écrans de mesure, procéder par pressions successives de la touche la . Le défilement est cyclique.

Exemple de lecture de mesure (MicroLogic E)

Le tableau suivant indique les valeurs de lecture des 3 courants de phase, de la tension phase à phase V12 et de la puissance active totale (Ptot) :

Lecture des compteurs d'énergie (MicroLogic E)

Les compteurs d'énergie changent d'unité de mesure automatiquement :

- Pour l'énergie active Ep, affichage en kWh de 0 jusqu'à 9999 kWh puis en MWh
- Pour l'énergie réactive Eq, affichage en kVARh de 0 jusqu'à 9999 kVARh puis en MVARh
- Pour l'énergie apparente Es, affichage en kVAh de 0 jusqu'à 9999 kVAh puis en MVAh

Lorsque les énergies sont indiquées en MWh, en MkVARh ou en MVAh, les valeurs sont affichées sur 4 chiffres. Le déclencheur MicroLogic intègre la possibilité d'une lecture complète des compteurs d'énergie.

NOTE: La remise à zéro des compteurs d'énergie peut se faire cadenas verrouillé ou cadenas déverrouillé.

Lecture des valeurs d'énergie complètes (MicroLogic E)

Le tableau ci-dessous présente la lecture complète du compteur d'énergie active Ep.

Étape	Valeur lue	Action	Méthode	Affichage
1	Courant dans la phase la plus lourdement chargée	Sélectionner le mode Lecture et remise à zéro des compteurs d'énergie (affichage de l'écran principal).	Mode	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ÷
2	Energie avec option de remise à zéro	Sélectionner le compteur d'énergie active Ep. La valeur affichée dans cet exemple est 11.3 MWh, ce qui correspond à 10 MWh +1300 kWh (approximativement).	◆	Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C ÷
3	Mesure d'énergie spécifique	Spécifier la mesure. La valeur affichée est 1318 kWh pour cet exemple : la valeur du compteur d'énergie totale est 11318 kWh.	•	Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C ÷
4	Affichage normal de l'énergie	Revenir à l'affichage normal du compteur d'énergie. Le retour se fait automatiquement au bout de 5 minutes.	•	Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C ÷

Remise à zéro du compteur d'énergie

Les compteurs d'énergie peuvent être réinitialisés avec le cadenas verrouillé $\stackrel{\frown}{=}$ ou déverrouillé $\stackrel{\frown}{=}$ $\stackrel{\frown}{=}$.

Éta- pe	Valeur lue	Action	Méthode	Affichage
1	Courant dans la phase la plus lourdement chargée	Sélectionner le mode de lecture des mesures et de remise à zéro des compteurs d'énergie (affichage de l'écran principal).	Mode	Ir tr Isd tsd Ii(xln) N 1/A 2/B 3/C ±
2	Energie avec option de remise à zéro	Sélectionner le compteur d'énergie à remettre à zéro.	◆	Ir tr Isd tsd Ii(xln) Reset ? OK N 1/A 2/B 3/C ±
3	Option de remise à zéro allumée	Valider la remise à zéro. Le pictogramme OK clignote.	OK	Ir tr Isd tsd Ii(xln) Reset ? OK 1458 k Wh
4	ОК	Confirmer la remise à zéro. Le pictogramme de confirmation OK s'affiche pendant 2 s.	ОК	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ±

Réinitialisation des valeurs de pic de demande

Il est possible de réinitialiser les valeurs de pic de demande avec le cadenas verrouillé

ou déverrouillé

∩.

Étape	Valeur lue	Action	Méthode	Affichage
1	Ecran d'accueil	Sélectionner le mode de lecture et remise à zéro des valeurs de pic de demande (affichage de l'écran principal).	Mode	Ir tr Isd tsd Ii(xIn) Max Reset ? OK N 1/A 2/B 3/C
2	Affichage du pic de demande (maximètre) et de l'option de remise à zéro.	Sélectionner le maximètre à remettre à zéro.	•••	Ir tr Isd tsd Ii(xln) Max Reset ? OK N 1/A 2/B 3/C +
3	Option de remise à zéro allumée	Valider la remise à zéro. Le pictogramme OK clignote.	OK	Ir tr Isd tsd Ii(xIn) Max Reset ? OK LIA 2/B 3/C
4	ОК	Confirmer la remise à zéro. Le pictogramme de confirmation OK s'affiche pendant 2 s.	OK	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ‡

Lecture des fonctions de protection

La sélection d'une fonction de protection se fait à l'aide de la touche élection n'est possible qu'en mode **Lecture**, c'est-à-dire lorsque le cadenas est verrouillé.

- · Le défilement est cyclique.
- Le pointeur haut indique la fonction de protection sélectionnée.
 Pour les fonctions de protection du neutre, le pointeur bas désignant N remplace le pointeur haut.

Exemple : Seuil Ir sélectionné

Exemple de lecture de fonction de protection

Lecture des valeurs de réglage pour le seuil de déclenchement Ir de la protection long retard , la temporisation tr et le seuil de déclenchement Isd de la protection court retard :

Étape	Valeur lue	Action	Méthode	Affichage
1	Valeur du seuil de déclenchement Ir de la protection long retard en ampères	Sélectionner le mode de lecture des fonctions de protection (affichage de l'écran principal). La valeur du seuil de déclenchement lr de la protection long retard s'affiche en ampères.	Mode	Ir tr Isd tsd Ii(xln)
2	Valeur de temporisation tr de la protection long retard en secondes	Sélectionner le délai de temporisation tr de la protection long retard. La valeur de la temporisation tr de la protection long retard s'affiche en secondes.	•	Ir tr Isd tsd Ii(xln)
3	Valeur du seuil de déclenchement Isd de la protection court retard en ampères	Sélectionner le seuil de déclenchement lsd de la protection court retard. La valeur du seuil de déclenchement lsd de la protection court retard s'affiche en ampères.	•	Ir tr Isd tsd Ii(xIn)

Lecture de l'état du neutre (déclencheur tripolaire)

Le mode **lecture** de l'état neutre est dédié à cette fonction. La navigation est de ce fait réduite à la touche Mode.

Étape	Valeur lue	Action	Méthode	Affichage
1	L'état neutre est affiché.	Sélectionnez le mode mesure de l'état neutre. La valeur de l'état neutre s'affiche : N : Protection du neutre active (déclencheur tripolaire avec option ENCT déclarée) noN : Protection du neutre non active (déclencheur tripolaire sans option ENCT ou avec option ENCT non déclarée)	Mode	Ir tr Isd tsd li(xln) N 1/A 2/B 3/C

Mode de réglage

Réglage des fonctions de protection

AAVERTISSEMENT

RISQUE DE DÉCLENCHEMENT INTEMPESTIF OU D'ÉCHEC DE DÉCLENCHEMENT

Seul un personnel qualifié doit effectuer les réglages des protections.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Les paramètres des fonctions de protection peuvent être définis de plusieurs manières :

- A l'aide des commutateurs rotatifs de préréglage avec réglage fin au clavier pour les fonctions de protection principales
- A l'aide du clavier pour toutes les fonction de protection

Le pointeur haut sur l'écran indique la fonction de protection en cours de réglage.

Réglage d'une fonction de protection par commutateur rotatif

Vous pouvez utiliser un commutateur rotatif de réglage pour les fonctions de protection suivantes :

- Seuils Ir et Isd pour les déclencheurs MicroLogic 5
- Seuils Ir et lg pour les déclencheurs MicroLogic 6
- Seuils Ir et I∆n pour les déclencheurs MicroLogic 7 à protection différentielle intégrée

L'action sur un commutateur entraîne simultanément les événements suivants :

- Sélection de l'écran correspondant à la fonction de protection affectée au commutateur
- Déverrouillage (éventuellement) du cadenas (l'interface de navigation est en mode de réglage des fonctions de protection)
- Réglage de la fonction de protection affectée au commutateur à la valeur indiquée sur le commutateur et à l'écran.

Réglage d'une fonction de protection à l'aide du clavier

Le clavier permet d'effectuer un réglage fin de la fonction de protection sélectionnée :

- La valeur de réglage ne peut pas excéder celle indiquée par le commutateur.
- Tous les réglages des fonctions de protection sont accessibles depuis le clavier

Pour faire défiler les écrans des fonctions de protection, procédez par pressions successives de la touche Mode. Le défilement est cyclique.

- Utilisez la touche pour sélectionner la fonction à régler :
 - Le pointeur haut indique la fonction sélectionnée.
 - Le pointeur bas indique la phase. Plusieurs pointeurs bas indiquent que le réglage est fait à la même valeur pour toutes les phases (sauf pour le réglage de la protection du neutre).
 - Le défilement est cyclique.
- Réglez les fonctions de protection depuis le clavier à l'aide des touches

Les pointeurs de navigation associés indiquent les possibilités de réglage :

- : appui sur la touche possible (augmentation de la valeur de réglage)
- · : appui sur la touche possible (diminution de la valeur de réglage)
- : appui sur l'une et l'autre des deux touches

Confirmation du réglage

La valeur de réglage au clavier d'une fonction de protection doit être :

- 1. validée par une première pression sur la touche (le pictogramme **OK** clignote sur l'afficheur)
- 2. confirmée par une seconde pression sur la touche s'affiche pendant 2 s). (le texte **OK**

NOTE: Le réglage par commutateur ne requiert pas d'action de validation/confirmation.

Exemple de préréglage d'une fonction de protection par commutateur

Le tableau suivant illustre le préréglage et le réglage du seuil de déclenchement de la protection long retard Ir sur un déclencheur MicroLogic 5.2 de calibre 250 A.

Appuyez sur la touche pour naviguer entre les écrans de mesures.

Appuyez sur les touches de navigation et et pour sélectionner l'écran de mesure pour chacune des phases.

Etape	Action	Méthode	Signification
1	Mettre le commutateur Ir à la valeur maximum (le cadenas se déverrouille automatiquement). Les pointeurs bas indiquent les trois phases (le réglage est identique sur chaque phase).	100 100 177 175 2000 110 2000	Ir tr Isd tsd Ii(xIn)
2	Tourner le commutateur Ir jusqu'à la valeur souhaitée par excès.	160, 160, 175 175, 175 176, 175, 175 176, 175, 175, 175, 175, 175, 175, 175, 175	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ÷
3	Le préréglage est terminé :	1	

Etape	Action	Méthode	Signification
	Si la valeur de réglage du seuil de déclenchement est correcte (175 A dans cet exemple), quitter la procédure de réglage (aucune validation requise).		
	 Le seuil de déclenchement lr de la pro Si la valeur de réglage du seuil ne con 	· ·	e fin doit être effectué depuis le clavier.
4	Régler au clavier la valeur exacte de Ir nécessaire (par pas de 1 A).	~	Ir tr Isd tsd Ii(xIn) OK N 1/A 2/B 3/C →
5	Valider le réglage (le pictogramme OK clignote).	OK	Ir tr Isd tsd Ii(xIn) OK N A \$\frac{170}{20.382} \div \div
6	Confirmer le réglage. Le pictogramme de confirmation OK s'affiche pendant 2 s.	ОК	Ir tr Isd tsd Ii(x n)

Exemple de réglage d'une fonction de protection à l'aide du clavier

Le tableau suivant illustre le réglabe de la temporisation de la protection long retard tr sur un déclencheur MicroLogic 5.2.

Appuyez sur la touche pour faire défiler les écrans.

Appuyez sur les touches de navigation , et pour sélectionner l'écran pour chaque phase.

Etape	Action	Méthode	Signification
1	Si le pictogramme est affiché, déverrouiller les réglages de protection.	•	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ÷
2	Sélectionner le mode Réglage des fonctions de protection.	Mode	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ÷
3	Sélectionner la fonction tr : le pointeur haut se place sous tr.	•	Ir tr Isd tsd Ii(XIn)
4	Régler depuis le clavier la valeur tr requise.	○	Ir tr Isd tsd Ii(xIn) OK N 1/A 2/B 3/C =

Etape	Action	Méthode	Signification
5	Valider le réglage (le pictogramme OK clignote).	OK	Ir tr Isd tsd li(xln) OK S Final 2 B s/c ±
6	Confirmer le réglage. Le pictogramme de confirmation OK s'affiche pendant 2 s.	ОК	Ir tr Isd tsd Ii(xIn) N 1/A 2/B 3/C ±

Vérification du réglage des fonctions de protection

En mode de **réglage** des fonctions de protection, un réglage peut être une valeur relative.

En mode de **lecture** des fonctions de protection, le réglage est une valeur réelle (en ampères par exemple).

Ainsi, pour connaître la valeur réelle d'une fonction en cours de réglage en valeur relative avant de valider le réglage :

- 1. Appuyez une fois sur le microswitch de verrouillage/déverrouillage (l'afficheur passe en mode **Lecture** sur la fonction en cours de réglage et indique la valeur réelle du réglage).
- 2. Appuyez de nouveau sur le microswitch (l'affichage revient au mode **Réglage** sur la fonction en cours de réglage).

Exemple de vérification du réglage d'une fonction de protection

Le tableau suivant illustre la vérification du réglage du seuil de déclenchement de la protection court retard lsd sur un déclencheur MicroLogic 5.2 en cours de réglage :

Etape	Action	Méthode	Signification	
2	L'écran est en mode réglage sur la fonction lsd : Le pictogramme ■ est affiché. La valeur du seuil lsd est un multiple de lr. Verrouiller le réglage : L'afficheur passe en mode lecture sur la fonction lsd (le pictogramme est affiché).	-	Ir tr Isd tsd Ii(xln) OK	
3	 Le réglage du seuil Isd est une valeur (715 A dans cet exemple). Déverrouiller le réglage : L'écran revient en mode réglage sur la fonction Isd. Le pictogramme est affiché. 	°C	N 1/A 2/B 3/C ± Ir tr isd tsd li(xin) OK N 1/A 2/B 3/C ±	

Ecrans de mesure

MicroLogic A (ampèremètre)

Mode	Description de l'affichage	Unité	Pointeurs
%. ◆ ¶ on L	Lecture en valeur efficace instantanée : Courants triphasés I1/A, I2/B et I3/C	A	Le pointeur bas indique le conducteur (phase, neutre ou terre) correspondant à la
	Courant de défaut à la terre (MicroLogic 6)	% Ig	valeur affichée.
	Courant neutre IN (tétrapolaire ou tripolaire avec option ENCT)	A	
\(\subseteq \text{Ou } \textstyle \text{Ou } \text{Ou } \textstyle \text{Ou } Ou	Lecture et remise à zéro : Il MAX maximum pour les courants triphasés	A	Le pointeur bas indique le conducteur (phase, neutre ou terre) sur lequel le maximum a
	Courant de défaut à la terre maximal (MicroLogic 6)	% Ig	été mesuré.
	IN MAX maximum pour le courant neutre (tétrapolaire ou tripolaire avec option ENCT)	А	

MicroLogic E (Energie)

Mode	Description de l'affichage	Unité	Pointeurs
ℋ• ∎ou∎	Lecture en valeur efficace instantanée : Courants triphasés I1/A, I2/B et I3/C	А	Le pointeur bas indique le conducteur (phase, neutre ou terre) correspondant à la
	Courant de défaut à la terre (MicroLogic 6)	% Ig	valeur affichée.
	Courant de fuite à la terre (MicroLogic 7)	Α	
	Courant neutre IN (tétrapolaire ou tripolaire avec option ENCT)	A	
	Lecture en valeur efficace instantanée :	V	Les pointeurs bas indiquent les
	Tensions phase-phase V12, V23 et V31		conducteurs (phases ou neutre) correspondant à la
	Tensions phase-neutre V1N, V2N et V3N(tétrapolaire ou tripolaire avec option ENVT).		valeur affichée.
	Lecture de la puissance active totale Ptot	kW	Les pointeurs bas indiquent les 3 conducteurs de phases.
	Lecture de la puissance apparente totale Stot	kVA	- 3 conducteurs de phases.
	Lecture de la puissance réactive totale Qtot	kVAR	
∵. • Lou ₽	Lecture et remise à zéro du compteur d'énergie active Ep	kWh, MWh	
Reset ? Ok	Lecture et remise à zéro du compteur d'énergie apparente Es	kVAh, MVAh	
	Lecture et remise à zéro du compteur d'énergie réactive Eq	kVARh, MVARh	
J on L	Lecture de la rotation des phases	-	
∵ • Δou ∎ Max Reset ? Ok	Lecture et remise à zéro : Ii MAX maximum pour les courants triphasés	А	Le pointeur bas indique le conducteur (phase, neutre ou terre) sur lequel a été mesuré
	Courant de défaut à la terre maximal (MicroLogic 6)	% Ig	le maximum.
	Courant de fuite à la terre (différentiel) maximal (MicroLogic 7)	A	
	IN MAX maximum pour le courant neutre (tétrapolaire ou tripolaire avec option ENCT)	А	

Mode	Description de l'affichage	Unité	Pointeurs
	Lecture et remise à zéro : Vij MAX maximum pour les 3 tensions phase-phase Vin MAX maximum pour les 3 tensions phase-neutre (tétrapolaire ou tripolaire avec option ENVT)	V	Les pointeurs bas indiquent les phases entre lesquelles a été mesuré le maximum de tension phase-phase ou phase-neutre.
	Lecture et remise à zéro du maximum P MAX de la puissance active	kW	Les pointeurs bas indiquent les 3 conducteurs de phases.
	Lecture et remise à zéro du maximum S MAX de la puissance apparente	kVA	-
	Lecture et remise à zéro du maximum Q MAX de la puissance réactive	kVAR	

Ecrans relatifs aux fonctions de protection

MicroLogic 5 LSI: Ecrans de lecture des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
◆ ∅ û	Ir : Réglage du seuil de déclenchement de la protection long retard pour les phases	A	Le pointeur haut indique la fonction Ir. Les pointeurs bas indiquent les 3 phases.
	Ir(IN): Réglage du seuil de déclenchement de la protection long retard pour le neutre (déclencheur 4P ou 3P avec option ENCT et protection neutre)	A	Le pointeur haut indique la fonction Ir. Le pointeur bas indique le neutre.
	tr : Temporisation de la protection long retard (à 6 lr)	s	Le pointeur haut indique la fonction tr.
	Isd : Réglage du seuil de déclenchement de la protection court retard pour les phases	A	Le pointeur haut indique la fonction Isd. Les pointeurs bas indiquent les 3 phases.
	Isd(IN): Valeur du seuil de déclenchement de la protection court retard pour le neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	A	Le pointeur haut indique la fonction Isd. Le pointeur bas indique le neutre.
	tsd : Valeur de temporisation de la protection court retard La temporisation est associée à la fonction protection à courbe de temps inverse l²t : ON : Fonction l²t active OFF : Fonction l²t inactive	s	Le pointeur haut indique la fonction tsd.
	li : Réglage du seuil de déclenchement de la protection instantanée des phases et du neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	А	Le pointeur haut indique la fonction li. Les pointeurs bas indiquent les 3 phases.
U	Etat du neutre (déclencheur tripolaire avec option ENCT) : • N : Protection du neutre active	_	-
	noN : Protection du neutre inactive		

MicroLogic 5 LSI: Ecrans de réglage des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
0/s	Ir : Réglage du seuil de déclenchement de la protection long retard pour les phases	А	Le pointeur haut indique la fonction Ir. Les pointeurs bas indiquent
	Préréglage par commutateur		les 3 phases.
	tr : Réglage de la temporisation de la protection long retard	s	Le pointeur haut indique la fonction tr.
	Isd : Réglage du seuil de déclenchement de la protection court retard pour les phases	Isd/Ir	Le pointeur haut indique la fonction Isd.
	Préréglage par commutateur		Les pointeurs bas indiquent les 3 phases.
	tsd : Réglage de la temporisation de la protection court retard	s	Le pointeur haut indique la fonction tsd.
	Activation de la protection court retard à courbe de temps inverse l²t		Toriction tsa.
	ON : Fonction I ² t active		
	OFF : Courbe de temps de la fonction I²t inactive		
	IN : Réglage du seuil de déclenchement de la protection du neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	IN/Ir	Le pointeur bas indique le neutre.
	li : Réglage du seuil de déclenchement de la protection instantanée pour les phases et pour le neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	li/ln	Le pointeur haut indique la fonction li. Les pointeurs bas indiquent les 3 phases.
\\\\\	Activation de l'état du neutre (déclencheur tripolaire avec option ENCT)	_	-
	N : Protection du neutre active		
	noN : Protection du neutre inactive		

MicroLogic 6 LSIG: Ecrans de lecture des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
◆ ∅ 1	Ir : Seuil de déclenchement de la protection long retard pour les phases	A	Le pointeur haut indique la fonction Ir. Les pointeurs bas indiquent les 3 phases.
<i>X</i> . ◆ 1	Ir(IN): Seuil de déclenchement de la protection long retard pour le neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	A	Le pointeur haut indique la fonction Ir. Le pointeur bas indique le neutre.
	tr : Temporisation de la protection long retard (à 6 lr)	s	Le pointeur haut indique la fonction tr.
	Isd : Seuil de déclenchement de protection court retard pour les phases	A	Le pointeur haut indique la fonction Isd. Les pointeurs bas indiquent les 3 phases.
	Isd(IN): Valeur du seuil de déclenchement de la protection court retard pour le neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	A	Le pointeur haut indique la fonction Isd. Le pointeur bas indique le neutre.
	tsd : Valeur de temporisation de la protection court retard La temporisation est associée à la fonction de protection à courbe de temps inverse l²t ON : Fonction l²t active OFF : Fonction l²t inactive	s	Le pointeur haut indique la fonction tsd.
	li : Réglage du seuil de la protection instantanée pour les phases et le neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	A	Le pointeur haut indique la fonction li. Les pointeurs bas indiquent les 3 phases.
	lg : Seuil de déclenchement de la protection contre les défauts à la terre	А	Le pointeur haut indique la fonction Ig.

Mode	Description de l'affichage	Unité	Pointeurs
			Les pointeurs bas indiquent les 3 phases.
	tg : Valeur de temporisation de la protection contre les défauts à la terre	s	Le pointeur haut indique la fonction tg.
	La temporisation est associée à la fonction de protection à courbe de temps inverse l²t		
	ON : Fonction I²t active		
	OFF : Fonction I ² t inactive		
	Etat du neutre (déclencheur tripolaire avec option ENCT) :	_	_
	N : Protection du neutre active		
	noN : Protection du neutre inactive		

MicroLogic 6 LSIG : Ecrans de réglage des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
0/P	Ir : Réglage du seuil de déclenchement de la protection long retard pour les phases Préréglage par commutateur	A	Le pointeur haut indique la fonction Ir. Les pointeurs bas indiquent les 3 phases.
	tr : Réglage de la temporisation de la protection long retard	s	Le pointeur haut indique la fonction tr.
	Isd : Réglage du seuil de déclenchement de la protection court retard pour les phases	lsd/lr	Le pointeur haut indique la fonction Isd. Les pointeurs bas indiquent les 3 phases.
	tsd : Réglage de la temporisation de la protection court retard Activation de la protection court retard à courbe de temps inverse l²t ON : Fonction l²t active OFF : Fonction l²t inactive	s	Le pointeur haut indique la fonction tsd.
	IN : Réglage du seuil de déclenchement de la protection du neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	IN/Ir	Le pointeur bas indique le neutre.
	li : Seuil de déclenchement de la protection instantanée pour les phases et pour le neutre (déclencheur tétrapolaire ou tripolaire avec option ENCT et protection du neutre active)	li/In	Le pointeur haut indique la fonction li. Les pointeurs bas indiquent les 3 phases.
	Ig : Réglage du seuil de déclenchement de la protection contre les défauts à la terre Préréglage par commutateur	lg/In	Le pointeur haut indique la fonction lg. Les pointeurs bas indiquent les 3 phases.
	tg : Réglage de la temporisation de de la protection contre les défauts à la terre Activation de la protection contre les défauts à la terre à courbe de temps inverse l²t ON : Fonction l²t active	s	Le pointeur haut indique la fonction tg.
	OFF : Fonction I²t inactive		
\(\alpha\)	Activation de l'état du neutre (déclencheur tripolaire avec option ENCT)	-	-
	 N : Protection du neutre active noN : Protection du neutre inactive 		

MicroLogic 6 E-M LSIG : Ecrans de lecture des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
◆ ∅ <u>∩</u>	Ir : Seuil de déclenchement de la protection long retard pour les phases	A	Le pointeur haut indique la fonction Ir. Les pointeurs bas indiquent les 3 phases.
	CI : Classe de déclenchement de la protection long retard (valeur à 7,2 lr)	s	Le pointeur haut indique la fonction Cl.
	Y: Type de ventilation Auto: Ventilation naturelle par le moteur Moto: Ventilation forcée par un moteur dédié	_	Le pointeur haut indique la fonction Y .
	Isd : Seuil de déclenchement de la protection court retard pour les phases	A	Le pointeur haut indique la fonction lsd. Les pointeurs bas indiquent les 3 phases.
	lunbal : Seuil de déclenchement de la protection contre le déséquilibre de phase (exprimée en pourcentage du courant moteur moyen)	%	Le pointeur haut indique la fonction lunbal. Les pointeurs bas indiquent les 3 phases.
	tunbal : Valeur de temporisation de la protection contre le déséquilibre de phase	s	Le pointeur haut indique la fonction tunbal.
	Ijam : Seuil de déclenchement de la protection Rotor bloqué (si l'indication est OFF, la protection Rotor bloqué n'est pas active)	A	Le pointeur haut indique la fonction Ijam. Les pointeurs bas indiquent les 3 phases.
	tjam : Valeur de temporisation de la protection Rotor bloqué	S	Le pointeur haut indique la fonction tjam.
	lg : Seuil de déclenchement de la protection contre les défauts à la terre	A	Le pointeur haut indique la fonction lg. Les pointeurs bas indiquent les 3 phases.
	tg : Valeur de temporisation de la protection contre les défauts à la terre	s	Le pointeur haut indique la fonction tg.
	OFF est toujours indiqué : la fonction de protection à courbe de temps inverse l²t n'est pas disponible sur les déclencheurs MicroLogic 6 E-M.		

MicroLogic 6 E-M LSIG : Ecrans de réglage des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
७ ∕₌	Ir : Réglage du seuil de la protection long retard pour les 3 phases Préréglage par commutateur	A	Le pointeur haut indique la fonction lr. Les pointeurs bas indiquent les 3 phases.
	CI : Sélection de la classe de déclenchement de la protection long retard	S	Le pointeur haut indique la fonction Cl.
	Y : Choix du type de ventilation Auto : La ventilation naturelle par le moteur est active Moto : La ventilation forcée par un moteur dédié est active	_	Le pointeur haut indique la fonction Y.
	Isd : Réglage du seuil de la protection court retard pour les 3 phases	lsd/Ir	Le pointeur haut indique la fonction lsd. Les pointeurs bas indiquent les 3 phases.
	lunbal : Réglage du seuil de déclenchement de la protection contre le déséquilibre de phase (exprimé en pourcentage du courant moteur moyen)	%	Le pointeur haut indique la fonction lunbal. Les pointeurs bas indiquent les 3 phases.
	tunbal : Réglage de la temporisation de la protection contre le déséquilibre de phase	S	Le pointeur haut indique la fonction tunbal.

Mode	Description de l'affichage	Unité	Pointeurs
	Ijam : Réglage du seuil de déclenchement de la protection Rotor bloqué (si l'indication est OFF, la protection Rotor bloqué n'est pas active)	ljam/lr	Le pointeur haut indique la fonction ljam. Les pointeurs bas indiquent les 3 phases.
	tjam : Réglage de la temporisation de la protection Rotor bloqué	S	Le pointeur haut indique la fonction tjam.
	lg : Réglage du seuil de déclenchement de la protection contre les défauts à la terre	lg/ln	Le pointeur haut indique la fonction lg.
	Préréglage par commutateur		
	tg : Réglage de la temporisation de de la protection contre les défauts à la terre	s	Le pointeur haut indique la fonction tg. Les pointeurs bas indiquent les 3 phases.

MicroLogic 7 LSIV : Ecrans de lecture des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
●∅ 1	Ir : Seuil de déclenchement de la protection long retard pour les phases	А	Le pointeur haut indique la fonction lr. Les pointeurs bas indiquent les 3 phases.
	Ir(IN) : Seuil de déclenchement de la protection long retard pour le neutre (tétrapolaire avec protection du neutre active)	A	Le pointeur haut indique la fonction lr. Le pointeur bas indique le neutre.
	tr : Valeur de temporisation de la protection long retard (à 6 lr)	s	Le pointeur haut indique la fonction tr.
	Isd : Seuil de déclenchement de la protection court retard pour les phases	А	Le pointeur haut indique la fonction lsd. Les pointeurs bas indiquent les 3 phases.
	Isd(IN) : Seuil de déclenchement de la protection court retard pour le neutre (tétrapolaire avec protection du neutre active)	A	Le pointeur haut indique la fonction lsd. Le pointeur bas indique le neutre.
	tsd : Valeur de temporisation de la protection court retard La temporisation est associée à la fonction de protection à courbe de temps inverse l²t ON : Fonction l²t active OFF : Fonction l²t inactive	s	Le pointeur haut indique la fonction tsd.
	Ii : Réglage du seuil de déclenchement de la protection instantanée pour les phases et le neutre (tétrapolaire avec protection du neutre active)	А	Le pointeur haut indique la fonction li. Les pointeurs bas indiquent les 3 phases.
	IΔn : Seuil de déclenchement de la protection différentielle	А	Le pointeur haut indique la fonction IΔn. Les pointeurs bas indiquent les 3 phases.
	Δt : Temporisation de la protection différentielle	s	Le pointeur haut indique la fonction Δt.
.%. ◆ ■	Etat du neutre: N : Protection du neutre active noN : Protection du neutre inactive	-	_

MicroLogic 7 LSIV : Ecrans de réglage des fonctions de protection

Mode	Description de l'affichage	Unité	Pointeurs
Ø/1	Ir : Réglage du seuil de déclenchement de la protection long retard pour les phases Préréglage par commutateur	A	Le pointeur haut indique la fonction lr. Les pointeurs bas indiquent les 3 phases.
	tr : Réglage de la temporisation de la protection long retard	s	Le pointeur haut indique la fonction tr.
	Isd : Réglage du seuil de déclenchement de la protection court retard pour les phases	Isd/Ir	Le pointeur haut indique la fonction lsd. Les pointeurs bas indiquent les 3 phases.
	tsd : Réglage de la temporisation de la protection court retard Activation de la protection court retard à courbe de temps inverse l²t ON : Fonction l²t active OFF : Fonction l²t inactive	s	Le pointeur haut indique la fonction tsd.
	IN : Réglage du seuil de déclenchement de la protection du neutre (tétrapolaire avec protection du neutre active)	IN/Ir	Le pointeur bas indique le neutre.
	li : Réglage du seuil de déclenchement de la protection instantanée pour les phases et pour le neutre (tétrapolaire avec protection du neutre active)	li/In	Le pointeur haut indique la fonction li. Les pointeurs bas indiquent les 3 phases.
	IΔn : Réglage du seuil de déclenchement de la protection différentielle Préréglage par commutateur NOTE: Les réglages actuels et précédents de la protection différentielle sont enregistrés dans un historique, page 169	A	Le pointeur haut indique la fonction IΔn. Les pointeurs bas indiquent les 3 phases.
	Δt : Réglage de la temporisation de la protection différentielle	s	Le pointeur haut indique la fonction Δt .
<i>%</i> . ∕ ₽	Activation de l'état du neutre • N : Protection du neutre active • noN : Protection du neutre inactive	-	-

Logiciel EcoStruxure Power Commission

Présentation

Le logiciel EcoStruxure Power Commission détecte automatiquement les appareils intelligents et vous permet d'ajouter des appareils pour une configuration aisée. Vous pouvez générer des rapports complets dans le cadre des tests de réception en usine et des tests de réception sur site, et éviter ainsi une grande charge de travail. De plus, au cours du fonctionnement des tableaux, il est très facile d'identifier la moindre modification dans les réglages grâce à un surligneur jaune. Ceci indique les différences entre les valeurs du projet et celles du dispositif et assure donc la cohérence du système pendant les phases de fonctionnement et de maintenance.

Le logiciel EcoStruxure Power Commission permet de configurer des disjoncteurs ComPact NSX avec les modules et accessoires suivants :

- Déclencheurs MicroLogic
- Modules d'interface de communication : module BSCM, interface IFM, interface IFE, serveur IFE
- Modules ULP: module IO, afficheur FDM121

Le logiciel EcoStruxure Power Commission permet de configurer les passerelles et les appareils sans fil suivants :

- EcoStruxure Panel Server
- Passerelle PowerTag Link
- Module PowerTag Energy
- Auxiliaire de signalisation sans fil

Le logiciel EcoStruxure Power Commission est disponible à l'adresse www.se. com.

Fonctionnalités clés

Le logiciel EcoStruxure Power Commission effectue les actions suivantes pour les appareils et modules pris en charge :

- Créer des projets par détection d'appareils
- Sauvegarder le projet dans le cloud EcoStruxure Power Commission pour référence
- · Télécharger des réglages sur ou depuis le dispositif
- · Comparer les réglages du projet avec ceux du dispositif
- Exécuter des actions de commande de façon sécurisée
- Générer et imprimer les rapports de réglages de dispositifs
- Effectuer un test du câblage de communication sur l'ensemble du projet et générer et imprimer le rapport de test
- Visualiser l'architecture de communication entre les dispositifs sur une représentation graphique
- · Afficher les mesures, les journaux et les informations de maintenance
- Afficher le statut de l'appareil et du module IO
- Afficher les détails des alarmes
- Vérifier la compatibilité des micrologiciels du système
- Installer la dernière version du micrologiciel
- Effectuer des tests de déclenchement forcé et des tests automatiques de la courbe de déclenchement

Gestion des mots de passe

Description générale

L'accès distant aux données sur les déclencheurs MicroLogic et les modules ULP de l'IMU est protégé par un mot de passe. L'accès distant inclut :

- Réseau de communication
- Logiciel EcoStruxure Power Commission
- Afficheur FDM128
- · Pages Web de l'IFE

Les quatre profils suivants sont définis pour l'accès à distance. Le mot de passe associé à chaque profil est différent pour chaque IMU.

- Administrator
- Services
- Ingénieur
- Opérateur

Le mot de passe Administrateur est requis pour les tâches suivantes :

- Ecriture des paramètres dans le déclencheur MicroLogic et les modules ULP de l'IMU à l'aide du logiciel, page 45 EcoStruxure Power Commission
- Mise à jour du firmware, page 48

Chaque commande intrusive envoyée via l'interface de commande est associée à un ou plusieurs profils d'utilisateur et protégée par le mot de passe correspondant à ce profil. Le mot de passe requis pour chaque commande intrusive est indiqué dans la description de la commande.

Aucun mot de passe n'est requis pour les commandes non intrusives via l'interface de commande.

Mots de passe par défaut

AAVERTISSEMENT

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

Change default passwords at first use to help prevent unauthorized access to device settings, controls, and information.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Voici les mots de passe par défaut des différents profils utilisateur :

Profil utilisateur	Mot de passe par défaut
Administrator	'0000' = 0x30303030
Services	'1111' = 0x31313131
Ingénieur	'2222' = 0x32323232
Opérateur	'3333' = 0x33333333

Modification d'un mot de passe

Vous pouvez modifier un mot de passe à l'aide du logiciel EcoStruxure Power Commission, page 45.

Pour modifier le mot de passe d'un profil utilisateur, il est nécessaire de saisir le mot de passe actuellement défini pour ce profil. Vous pouvez modifier le mot de passe de n'importe quel profil utilisateur en saisissant le mot de passe Administrateur.

Un mot de passe est constitué de 4 caractères ASCII. Il est sensible à la casse et autorise les caractères suivants :

- Chiffres entre 0 et 9
- Lettres de a à z
- Lettres de A à Z

Mots de passe de l'IMU

Le déclencheur MicroLogic et les modules ULP de l'IMU doivent être protégés par les mêmes mots de passe pour chaque profil d'utilisateur.

Si vous modifiez un mot de passe à l'aide du logiciel EcoStruxure Power Commission, la modification est effectuée dans le déclencheur MicroLogic et les modules ULP de l'IMU.

Il est impératif d'attribuer les mots de passe actuels de l'IMU au nouveau module de l'IMU dans les cas suivants :

- Ajout d'un nouveau module ULP à l'IMU
- Remplacement du déclencheur MicroLogic ou de l'un des modules ULP de l'IMU

Utilisez le logiciel EcoStruxure Power Commission pour remplacer les mots de passe du nouveau module par les mots de passe actuels de l'IMU.

Exemple: Ajout d'un module IO dans une IMU avec un déclencheur MicroLogic et une interface IFE.

- L'IMU a des mots de passe définis par l'utilisateur pour chaque profil d'utilisateur.
- Le module IO a les mots de passe par défaut pour chaque profil d'utilisateur.

Utilisez le logiciel EcoStruxure Power Commission pour remplacer les mots de passe par défaut du module IO par les mots de passe définis par l'utilisateur de l'IMU pour chaque profil d'utilisateur.

Réinitialisation du mot de passe

En cas d'oubli ou de perte du mot de passe Administrateur de l'IMU, il est possible de rétablir le mot de passe par défaut via le logiciel EcoStruxure Power Commission, page 45 et avec l'aide du Centre de relation clients de Schneider Electric.

Mise à jour du firmware

Introduction

The primary reason for updating the firmware of a MicroLogic trip unit is to obtain the latest MicroLogic features. If the latest MicroLogic features are not required, it is not mandatory to update the firmware of the MicroLogic trip unit and the Enerlin'X devices of the IMU.

Les fonctions de protection du déclencheur MicroLogic restent actives lors de la mise à jour du firmware.

Utilisez la dernière version du logiciel EcoStruxure Power Commission pour toutes les mises à jour de firmware.

Pour plus d'informations sur la mise à jour du firmware, consultez les documents suivants :

- DOCA0153EN ComPacT NSX MicroLogic 5/6 Trip Unit Firmware Release Notes
- DOCA0154EN ComPacT NSX MicroLogic 7 Trip Unit Firmware Release Notes
- DOCA0155EN MicroLogic Trip Units and Control Units Firmware History

Après avoir mis à jour la version de firmware du déclencheur MicroLogic, utilisez la dernière version du logiciel EcoStruxure Power Commission pour vérifier la compatibilité des micrologiciels entre les appareils de l'IMU. Le tableau **Mise à niveau du firmware** vous permet de diagnostiquer et d'identifier toutes les incohérences entre les appareils IMU. Il propose également des actions appropriées pour remédier aux incohérences détectées.

Vérification de la version du firmware

Vérifiez la version du firmware avec le logiciel EcoStruxure Power Commission.

Mise à jour du firmware à l'aide du logiciel EcoStruxure Power Commission

AVIS

COUPURE D'ALIMENTATION

Le déclencheur MicroLogic doit être alimenté en continu pendant la mise à jour du firmware.

Le non-respect de ces instructions peut provoquer des dommages matériels.

Les conditions suivantes doivent être remplies pour mettre à jour le firmware à l'aide du logiciel EcoStruxure Power Commission :

- La version la plus récente du logiciel EcoStruxure Power Commission doit être téléchargée et installée sur le PC.
- Le PC doit être raccordé à une alimentation. Le mode Redondant doit être désactivé pour éviter toute interruption pendant la mise à jour.
- Le PC doit être connecté au port de test MicroLogic via l'interface de service ou l'interface de maintenance USB.

Le mot de passe Administrateur du déclencheur MicroLogic est nécessaire pour lancer la mise à jour du firmware MicroLogic. Pour plus d'informations, consultez l'aide en ligne d'EcoStruxure Power Commission.

Fonction de protection

Contenu de cette partie

Application de distribution électrique	50
Application de départ-moteur	78

Application de distribution électrique

Contenu de ce chapitre

Protection de la distribution électrique	51
Protection long retard	56
Protection court retard	60
Protection instantanée	63
Protection contre les défauts à la terre	64
Protection différentielle	67
Protection du neutre	72
Sélectivité logique (ZSI)	75
Utilisation de la fonction ZSI avec les disjoncteurs ComPact NSX	

Protection de la distribution électrique

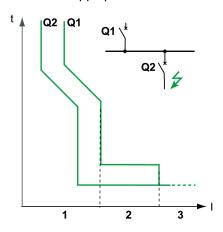
Présentation

Les déclencheurs MicroLogic 5, 6 et 7 assurent la protection contre les surintensités, les courants de défaut à la terre et les courants de fuite à la terre dans les applications commerciales ou industrielles.

Les déclencheurs MicroLogic 5, 6 et 7 offrent des caractéristiques de protection conformes aux exigences de la norme IEC/EN 60947-2. Pour plus d'informations, consutlez la documentation DOCA0140FR *ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur*.

Description

Lorsque vous choisissez le déclencheur MicroLogic à utiliser, tenez compte des points suivants :


- Surintensités (surcharges et courts-circuits)
- · Courants de défaut à la terre ou de fuite à la terre
- Conducteurs qui ont besoin de protection
- · Présence de courants harmoniques
- Coordination entre les appareils

Sélectivité entre les appareils

La coordination entre les appareils d'amont et d'aval, et en particulier la sélectivité, est indispensable pour optimiser la continuité de service. Le grand nombre d'options de réglage des fonctions de protection sur les déclencheurs MicroLogic 5, 6 et 7 améliore la coordination naturelle entre les disjoncteurs ComPact NSX. Pour plus d'informations, consultez le document LVPED217032EN *ComPact NSX & NSXm - Catalogue*.

Trois techniques de sélectivité peuvent être mises en place :

- 1. Sélectivité ampèremétrique : étagement du seuil de déclenchement de la protection long retard
- 2. Sélectivité chronométrique : étagement du seuil de déclenchement de la protection court retard
- 3. Sélectivité énergétique : étagement des niveaux d'énergie des disjoncteurs ; cela s'applique aux courants de court-circuit de très forte intensité.

Règles de sélectivité

Les règles de sélectivité dépendent :

- du type de déclencheur équipant les disjoncteurs installés en amont et en aval : électronique ou thermomagnétique.
- de la précision des réglages.

Sélectivité de la protection contre les surcharges

Pour la protection contre les surcharges, les règles de sélectivité entre les déclencheurs électroniques sont les suivantes :

- 1. Sélectivité ampèremétrique :
 - Un rapport de 1,3 entre le seuil de déclenchement Ir de la protection long retard du déclencheur du disjoncteur Q1 en amont et celui du déclencheur du disjoncteur Q2 en aval est en général suffisant.
 - La temporisation tr de la protection long retard du déclencheur du disjoncteur en amont Q1 est identique ou supérieure à celle du déclencheur du disjoncteur en aval Q2.
- 2. Sélectivité chronométrique :
 - Un rapport de 1,5 entre le seuil de déclenchement lsd de la protection court retard du déclencheur du disjoncteur Q1 en amont et celui du déclencheur du disjoncteur Q2 en aval est en général suffisant.
 - La temporisation tsd de la protection court retard du déclencheur du disjoncteur en amont Q1 est supérieure à celle du déclencheur du disjoncteur en aval Q2.
 - Si le disjoncteur en amont est en position l²t OFF, les disjoncteurs en aval doivent être en position l²t ON.
- 3. Sélectivité énergétique :
 - La sélectivité énergétique est assurée par les caractéristiques de conception et de construction des disjoncteurs. La limite de sélectivité ne peut être garantie que par le constructeur.
 - Pour les disjoncteurs de la gamme ComPact NSX, un rapport de 2,5 entre le calibre du disjoncteur Q1 en amont et celui du disjoncteur Q2 en aval garantit une sélectivité totale.

Sélectivité de la protection contre défaut à la terre

Pour la protection contre les défauts à la terre, seules les règles de sélectivité chronométrique doivent être appliquées au seuil de protection Ig et à la temporisation tg :

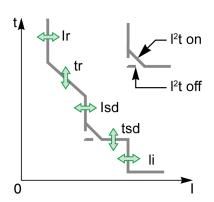
- Un rapport de 1,3 entre le seuil de déclenchement lg de la protection Défaut à la terre du déclencheur du disjoncteur Q1 en amont et celui du déclencheur du disjoncteur Q2 en aval est en général suffisant.
- La temporisation tg de la protection Défaut à la terre du déclencheur du disjoncteur en amont Q1 est supérieure à celle du déclencheur du disjoncteur en aval Q2.
- Si le disjoncteur en amont est en position l²t OFF, les disjoncteurs en aval doivent être en position l²t ON.

Sélectivité de la protection contre les fuites à la terre (différentielle)

Pour la protection différentielle, seules les règles de sélectivité chronométrique doivent être appliquées au seuil de protection $I\Delta n$ et à la temporisation Δt :

- Un rapport de 3 entre le seuil de déclenchement I∆n de la protection différentielle du déclencheur du disjonteur en amont Q1 et celui du déclencheur du disjoncteur en aval Q2 doit être appliqué.
- La temporisation Δt de la protection différentielle du déclencheur du disjoncteur en amont Q1 est supérieure à celle du déclencheur du disjoncteur en aval Q2.

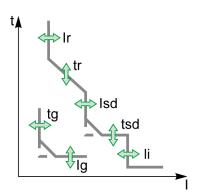
Limite de sélectivité


Selon l'étagement des calibres des disjoncteurs et du réglage des fonctions de protection, la sélectivité peut être :

- Limitée (sélectivité partielle) jusqu'à une valeur ls du courant de court circuit
- Totale (sélectivité totale), réalisée quelle que soit la valeur du courant de court-circuit

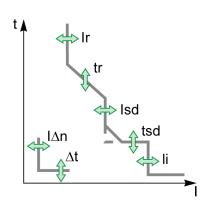
Tableau de sélectivité

Schneider Electric fournit des tableaux de sélectivité indiquant le type de sélectivité (partielle ou totale) entre tous les disjoncteurs, pour toute sa gamme de disjoncteurs. Ces tableaux de sélectivité sont testés conformément aux recommandations de la norme IEC/EN 60947-2. Pour plus d'informations, consultez la documentation LVPED217032EN *ComPact NSX & NSXm - Catalogue*.


Déclencheur MicroLogic 5

Les déclencheurs MicroLogic 5 offrent les fonctions de protection suivantes :

- Protection long retard contre les surintensités (Ir, tr)
- Protection court retard contre les surintensités (Isd, tsd)
- Protection instantanée contre les surintensités (li)


Déclencheur MicroLogic 6

Les déclencheurs MicroLogic 6 offrent les fonctions de protection suivantes :

- Protection long retard contre les surintensités (Ir, tr)
- Protection court retard contre les surintensités (Isd, tsd)
- Protection instantanée contre les surintensités (Ii)
- Protection contre les défauts à la terre (lg, tg)

Déclencheur MicroLogic 7 avec protection différentielle intégrée

Les déclencheurs MicroLogic 7 offrent les fonctions de protection suivantes :

- Protection long retard contre les surintensités (Ir, tr)
- Protection court retard contre les surintensités (Isd, tsd)
- Protection instantanée contre les surintensités (li)
- Protection différentielle (IΔn, Δt)

Configuration de la protection

Réglez les fonctions de protection :

- Sur le déclencheur MicroLogic à l'aide des commutateurs rotatifs et du clavier (selon a fonction de protection et le type MicroLogic)
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Protection instantanée intégrée

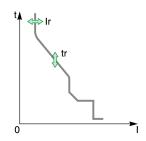
En plus de la protection instantanée réglable, les déclencheurs MicroLogic pour la protection de la distribution électrique disposent d'une protection instantanée intégrée non réglable SELLIM qui peut améliorer la sélectivité.

Déclenchement réflexe

En plus des fonctions de protection intégrées dans les déclencheurs MicroLogic, les disjoncteurs ComPact NSX présentent une protection réflexe. Ce système coupe les courants de défaut très élevés en déclenchant mécaniquement l'appareil avec un piston actionné directement par la pression produite dans le

disjoncteur par un court-circuit. Ce piston actionne le mécanisme d'ouverture, ce qui provoque un déclenchement ultra-rapide du disjoncteur.

Protection long retard


Présentation

La protection long retard sur les déclencheurs MicroLogic 5, 6 et 7 protège les applications de distribution électrique contre les courants de surcharge. Elle est identique pour les déclencheurs MicroLogic 5, 6 et 7.

Principe de fonctionnement

La protection long retard est de type I²t IDMT (Inverse Definite Minimum Time) :

- Elle intègre la fonction d'image thermique.
- Elle est définie avec le seuil de déclenchement Ir et la temporisation tr.

Les paramètres de protection long retard sont les suivants :

- Ir : seuil de déclenchement de la protection long retard
- tr : temporisation de la protection long retard

Réglage de la protection long retard

Réglez le seuil de déclenchement Ir de la façon suivante :

- Avec le commutateur rotatif lr du déclencheur MicroLogic pour prérégler la valeur et avec le clavier pour ajuster le réglage
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Réglez la temporisation tr de la manière suivante :

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeurs de réglage du seuil Ir

La plage de déclenchement de la protection long retard est comprise entre 1,05 et 1,20 fois Ir conformément à la norme IEC/EN 60947-2.

La valeur de réglage par défaut du seuil Ir est la position maximum du commutateur rotatif In.

Le tableau suivant indique la valeur de seuil Ir préréglée sur le commutateur :

Calibre In	Valeurs de préréglage de lr (A) en fonction du calibre ln du déclencheur et de la position du commutateur											
40 A	18	18 18 20 23 25 28 32 36 40										
100 A	40 45 50 55 63 70 80 90 100								100			
160 A	63	70	80	90	100	110	125	150	160			

Calibre In		Valeurs de préréglage de lr (A) en fonction du calibre ln du déclencheur et de la position du commutateur											
250 A	100	100 110 125 140 150 175 200 225 250											
400 A	160	160 180 200 230 250 280 320 360 400											
630 A	250	280	320	350	400	450	500	570	630				

La plage de précision est +5 % / + 20 %.

Utilisez le clavier pour ajuster le réglage par incréments de 1 A :

- Le maximum de la plage de réglage est la valeur de préréglage du commutateur rotatif.
- Le minimum de la plage est de 0,9 fois la valeur minimale de préréglage (pour le calibre 400 A, le minimum de la plage de réglage est 100 A).

Exemple : Un déclencheur MicroLogic 5.2 de calibre In = 250 A est préréglé à 140 A par le commutateur rotatif :

- · La valeur minimum de préréglage est 100 A
- · La plage de réglages fins au clavier va de 90 à 140 A

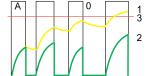
Valeurs de réglage de la temporisation tr

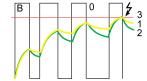
La valeur de réglage affichée est la valeur de la temporisation de déclenchement pour un courant de 6 fois Ir.

La valeur de réglage par défaut de la temporisation tr est 16 (valeur maximum), soit 16 s à 6 fois Ir.

Le tableau suivant indique la valeur de la temporisation de déclenchement (en secondes) en fonction du courant dans la charge pour les valeurs de réglage affichées à l'écran :

Courant dans la charge	Temporisation de déclenchement tr par valeur de réglage									
Charge	0,5	1	2	4	8	16				
1,5 x lr	15 s	25 s	50 s	100 s	200 s	400 s				
6 x lr	0,5 s	1 s	2 s	4 s	8 s	16 s				
7,2 x Ir	0,35 s	0,7 s	1,4 s	2,8 s	5,5 s	11 s				

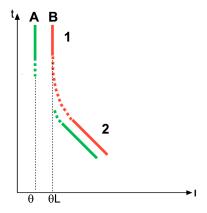

La plage de précision est -20 % / +0 %.


Image thermique

Le déclencheur utilise le calcul d'une image thermique pour évaluer l'échauffement du conducteur et surveiller de façon précise l'état thermique des conducteurs.

Exemple:

Comparaison du calcul de l'échauffement sans image thermique (schéma $\bf A$) et avec image thermique (schéma $\bf B$) :


- 0 Courant instantané (cyclique) dans la charge
- 1 Température du conducteur
- 2 Courant calculé sans image thermique (schéma A), avec image thermique (schéma B)
- 3 Seuil de déclenchement de la protection long retard : Ir
 - Déclencheur sans image thermique : A chaque impulsion de courant, le déclencheur ne prend en compte l'effet thermique que sur l'impulsion considérée. Il n'y a pas de déclenchement malgré le cumul de l'échauffement du conducteur.
 - Déclencheur avec image thermique : Le déclencheur ajoute l'effet thermique des impulsions de courant successives. Le déclenchement est fonction de l'état thermique réel du conducteur.

Echauffement d'un conducteur et courbes de déclenchement

L'analyse de l'équation d'échauffement d'un conducteur parcouru par un courant I permet de déterminer la nature des phénomènes physiques :

- Pour les courants de faible ou moyenne intensité (I < Ir), la température d'équilibre du conducteur (pour un temps infini) dépend uniquement de la valeur de la demande quadratique de courant, page 110. La température limite correspond à un courant limite (seuil de déclenchement Ir de la protection long retard du déclencheur).
- Pour les surintensités faibles (Ir < I < Isd), la température du conducteur dépend uniquement de l'énergie l²t apportée par le courant. La température limite est une courbe l²t IDMT.
- Pour les surintensités importantes (I > Isd), le phénomène est identique si la fonction I²t de la protection court retard est active (I²t ON), page 61.

La figure suivante (en échelles bi-logarithmiques) représente une courbe d'échauffement $\bf A$ (pour une température d'équilibre θ) et une courbe de déclenchement $\bf B$ (pour la température limite θL) :

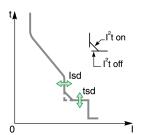
- 1 Zone de courant de faible intensité
- 2 Zone de surintensité faible

Mémoire thermique

Les déclencheurs MicroLogic5, 6 et 7 intègrent la fonction de mémoire thermique qui assure le refroidissement des conducteurs même après déclenchement. La durée de refroidissement est de 20 minutes avant ou après déclenchement.

Protection court retard

Présentation


La protection court retard sur les déclencheurs MicroLogic55, 6 et 7 protège tous les types d'applications de distribution électrique contre les courants de court-circuit.

Elle est identique pour les déclencheurs MicroLogic 5, 6 et 7.

Principe de fonctionnement

La protection court retard est à temps défini :

- Elle intègre la possibilité d'une fonction courbe à temps inverse l2t.
- Elle est définie à l'aide du seuil de déclenchement lsd et de la temporisation tsd.

Les paramètres de protection court retard sont :

- Isd : seuil de déclenchement de la protection court retard
- tsd: temporisation de la protection court retard
- I²t: fonction courbe à temps inverse (ON ou OFF)

Réglage de la protection court retard (MicroLogic 5)

Réglez le seuil Isd :

- Avec le commutateur rotatif lsd du déclencheur MicroLogic pour prérégler la valeur et avec le clavier pour ajuster le réglage
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Réglez la temporisation tsd :

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Le réglage de la temporisation tsd inclut l'activation/la désactivation de la fonction l²t.

Réglage de la protection court retard (MicroLogic 6 et 7)

Réglez le seuil Isd et la temporisation tsd :

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Le réglage de la temporisation tsd inclut l'activation/la désactivation de la fonction l²t.

Valeurs de réglage du seuil Isd

La valeur de réglage du seuil Isd est un multiple de Ir.

La valeur de réglage par défaut du seuil lsd est 1,5 x lr (valeur minimale du sélecteur).

Le tableau suivant indique les valeurs de réglage (préréglage par commutateur) et des plages de réglage (ajustement au clavier) du seuil de déclenchement lsd :

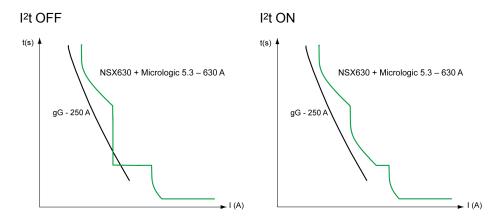
Type de réglage	Valeur o	/aleur ou plage de réglage (x lr)							
Péréglage par commutateur rotatif (MicroLogic 5)	1,5	2	3	4	5	6	7	8	10
Plage de réglage au clavier (1)	1,5	1,5-2	1,5-3	1,5-4	1,5-5	1,5-6	1,5-7	1,5-8	1,5-10
Incrément : 0,5 x Ir									
(1) Pour les déclencheurs MicroLogic 6 et 7, la plage de réglage au clavier va de 1,5 à 10 fois lr.									

La plage de précision est de +/- 10 %.

Valeurs de réglage de la temporisation tsd

Le tableau suivant indique les valeurs de réglage de la temporisation tsd en secondes (s) selon que la fonction l²t est active (l²t ON) ou inactive (l²t OFF). Les temps de maintien et de coupure associés sont indiqués en millièmes de seconde (ms).

Fonction	Valeur de réglage						
tsd avec I2t OFF (s)	0	0,1	0,2	0,3	0,4		
tsd avec I2t ON (s)	_	0,1	0,2	0,3	0,4		
Temps de maintien (ms)	20	80	140	230	350		
Temps maximum de coupure (ms)	80	140	200	320	500		


La valeur de réglage par défaut de la temporisation tsd est 0 s avec l²t OFF.

l²t Fonction courbe à temps inverse

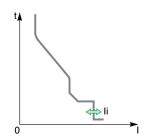
Utilisez la fonction courbe à temps inverse l²t pour améliorer la coordination des disjoncteurs. Utilisez cette fonction lorsqu'un équipement de protection utilisant uniquement le temps inverse (un appareil à fusibles, par exemple) est installé en aval.

Exemple:

Les graphiques ci-après illustrent un exemple de coordination sélective entre un disjoncteur ComPact NSX630 en amont et un fusible gG-250 A en aval (calcul effectué par le logiciel Ecodial.

Activez la fonction I^2t (I^2t ON) sur la protection court retard pour assurer la coordination.

Protection instantanée


Présentation

La protection instantanée sur les déclencheurs MicroLogic 5, 6 et 7 protège tous les types d'applications de distribution électrique contre les courants de court-circuit très élevés.

Elle est identique pour les déclencheurs MicroLogic 5, 6 et 7.

Principe de fonctionnement

La protection instantanée est associée à un temps défini, réglée selon un seuil de déclenchement li et sans temporisation.

La protection instantanée a un seul paramètre :

 li-: seuil de déclenchement de la protection instantanée

Réglage de la protection instantanée

Réglez le seuil li :

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeurs de réglage du seuil li

La valeur de réglage du seuil li est un multiple de In.

La valeur par défaut du seuil de déclenchement li est la valeur de réglage maximale (15, 12 ou 11 x In selon le calibre In du déclencheur).

Le tableau suivant indique les plages et les incréments de réglage en fonction du calibre In du déclencheur MicroLogic.

Calibre In du déclencheur	Plage de réglages	Incréments
100 A et 160 A	1,5-15 x ln	0,5 x ln
250 A et 400 A	1,5–12 x ln	0,5 x ln
630 A	1,5-11 x ln	0,5 x ln

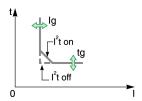
La plage de précision est de +/- 10 %.

Le temps de maintien est de 10 ms.

Le temps maximum de coupure est de 50 ms.

Protection contre les défauts à la terre

Présentation


La protection contre les défauts à la terre des déclencheurs MicroLogic 6 protège tous les types d'applications de distribution électrique contre les courants de défaut à la terre dans le système TN-S.

Pour plus d'informations sur les courants de défaut à la terre, consultez la documentation DOCA0140FR *ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.*

Principe de fonctionnement

La protection contre les défauts à la terre est à temps défini :

- Elle intègre la possibilité d'une fonction courbe à temps inverse l2t.
- Réglée par le seuil de déclenchement lg et la temporisation tg.

Les paramètres de la protection contre les défauts à la terre sont :

- Ig : seuil de déclenchement de la protection contre les défauts à la terre
- tg: temporisation de la protection contre les défauts à la terre
- l²t : courbe de la protection contre les défauts à la terre l²t en position ON ou OFF

Réglage de la protection contre les défauts à la terre

Réglez le seuil lg :

- Avec le commutateur rotatif lg du déclencheur MicroLogic 6 pour prérégler la valeur et avec le clavier pour ajuster le réglage
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Réglez la temporisation tg :

- Avec le clavier du déclencheur MicroLogic 6
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Le réglage de la temporisation tg inclut l'activation/la désactivation de la fonction l²t.

Valeurs de réglage du seuil Ig

La valeur de réglage du seuil Ig est un multiple de In.

La valeur de réglage par défaut du seuil de déclenchement lg est égale à la valeur minimale lue au commutateur :

0,40 x In pour les déclencheurs de calibre 40 A

0,20 x In pour les déclencheurs de calibre supérieur à 40 A

La protection contre les défauts à la terre peut être désactivée en positionnant le commutateur Ig sur OFF.

La protection contre les défauts à la terre peut être réactivée même si le commutateur lg est en position OFF :

- · Par le réglage fin au clavier
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Les tableaux ci-après précisent les valeurs de préréglage par commutateur et les plages de valeurs du réglage fin au clavier.

Depuis le clavier, l'incrément est de 0,05 x ln.

Pour les déclencheurs de calibre 40 A

Type de réglage	Valeur o	Valeur ou plage de réglage (x In)										
Préréglage par commutateur	0,40	0,40 0,40 0,50 0,60 0,70 0,80 0,90 1 OFF										
Plage de réglage au clavier	0,40	0,40	0,4-0,5	0,4-0,6	0,4-0,7	0,4-0,8	0,4-0,9	0,4-1	0,4-1 + OFF			

Pour les déclencheurs de calibre supérieur à 40 A

Type de réglage	Valeur o	Valeur ou plage de réglage (x ln)										
Préréglage par commutateur	0,20	0,20 0,30 0,40 0,50 0,60 0,70 0,80 1 OFF										
Plage de réglage au clavier	0,20	0,2-0,3	0,2-0,4	0,2-0,5	0,2-0,6	0,2-0,7	0,2-0,8	0,2-1	0,2–1 + OFF			

La plage de précision est de +/- 10 %.

Valeurs de réglage de la temporisation tg

La valeur de réglage de la temporisation tg est définie en secondes. Les temps de maintien et de coupure sont exprimés en millisecondes.

La valeur de réglage par défaut de la temporisation tg est 0 s avec l²t OFF.

Le tableau suivant indique les valeurs de réglage de la temporisation tg en secondes (s) selon que la fonction l²t est active (l²t ON) ou inactive (l²t OFF). Les temps de maintien et de coupure associés sont indiqués en millièmes de seconde (ms).

Fonction	Valeur de réglage				
tg avec I2t OFF (s)	0	0,1	0,2	0,3	0,4
tg avec I2t ON (s)	-	0,1	0,2	0,3	0,4
Temps de maintien (ms)	20	80	140	230	360
Temps maximum de coupure (ms)	80	140	200	320	500

l²t Fonction courbe à temps inverse

La fonction courbe à temps inverse l²t de la protection contre les défauts à la terre fonctionne de la même manière que la fonction courbe à temps inverse l²t utilisée pour la protection court retard, page 61.

Test de la protection contre les défauts à la terre

Vous pouvez tester la protection contre les défauts à la terre pour vérifier la fonction de déclenchement électronique du déclencheur. Utilisez le clavier du déclencheur MicroLogic 6 pour effectuer ce test.

Le test de la protection contre les défauts à la terre peut se faire cadenas verrouillé $\widehat{\blacksquare}$ ou cadenas déverrouillé $\widehat{\blacksquare}$.

Procédez comme suit pour tester et réinitialiser la protection contre les défauts à la terre sur les déclencheurs MicroLogic 6.

Étape	Action	Affichage
1	Fournissez une alimentation au déclencheur pour que l'écran affiche le résultat du test après le déclenchement du disjoncteur.	-
2	Sélectionnez le mode lecture de la mesure instantanée (l'écran affiche la phase de plus forte charge, Phase 2dans cet exemple).	Ir tr Isd tsd Ii(xln) N 1/A 2/B 3/C ±
3	Sélectionnez l'écran de mesure du courant de défaut à la terre (la valeur est un pourcentage du réglage lg).	OK N 1/A 2/B 3/C \(\frac{1}{4}\)
4	Accédez à la fonction de test de la protection contre les défauts à la terre en appuyant sur OK . Le pictogramme tESt apparaît et le pictogramme OK clignote.	Ir tr Isd tsd Ii Ig tg OK N 1/A 2/B 3/C ** ** ** ** ** ** ** ** **
5	Activez le test de protection contre les défauts à la terre en appuyant sur OK . Le disjoncteur se déclenche. L'écran de déclenchement de la protection contre les défauts à la terre s'affiche.	Ir tr Isd tsd Ii Ig tg Reset ? OK N 1/A 2/B 3/C =
6	Acquittez l'écran en appuyant sur OK . Le pictogramme Reset? OK clignote.	Ir tr Isd tsd Ii Ig tg Peset ? OK N T/A 2/B 3/C
7	Confirmez l'acquittement en appuyant de nouveau sur la touche OK . Le pictogramme de confirmation OK s'affiche pendant 2 s.	Ir tr Isd tsd li(xln) N 1/A 2/B 3/C ÷

Protection différentielle

Présentation

La protection différentielle sur les déclencheurs MicroLogic 7 assure la protection contre les courants de fuite à la terre de faible intensité pour :

- · tous les types d'applications de distribution électrique
- les personnes, en fonction du réglage de protection différentielle utilisé

La protection différentielle est conçue pour les installations équipées d'un système de mise à la terre TT ou TN-S.


Le déclencheur électronique MicroLogic 7 existe en deux versions pour la détection des fuites à la terre :

- La version Déclenchement se déclenche lorsqu'une fuite à la terre est détectée.
- La version Alarme mesure le courant de fuite et indique un défaut de fuite à la terre sur l'écran d'affichage.

Principe de fonctionnement

La protection différentielle est définie dans le temps.

Le seuil de protection différentielle $I\Delta n$ définit le niveau du courant de fuite à la terre auquel le disjoncteur se déclenche lorsqu'il atteint la temporisation de protection différentielle Δt .

Les paramètres de protection différentielle sont

- I\Deltan : seuil de déclenchement de la protection différentielle
- Δt : temporisation de la protection différentielle

Réglage de la protection différentielle

Réglez le seuil de déclenchement $I\Delta n$ à l'aide du commutateur rotatif $I\Delta n$ du déclencheur MicroLogic 7.

Réglez la temporisation Δt de la manière suivante :

- Avec le clavier du déclencheur MicroLogic 7
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)

Valeurs de réglage du seuil l∆n

Calibre In (A) du déclencheur	Seuil de déclenchement l∆n								
Position du commutateur l∆n	1	2	3	4	5	6	7	8	9
40, 100, 160 et 250 A	30 mA	30 mA	100 mA	300 mA	500 mA	1 A	3 A	5 A	OFF
400 et 570 A (1)	300 mA	300 mA	500 mA	1 A	3 A	5 A	10 A	10 A	OFF
(1) Réglage maximum à 570 A pour des raisons thermiques, à adapter avec un bloc de coupure jusqu'à 630 A									

La plage de précision est de +/- 10 %.

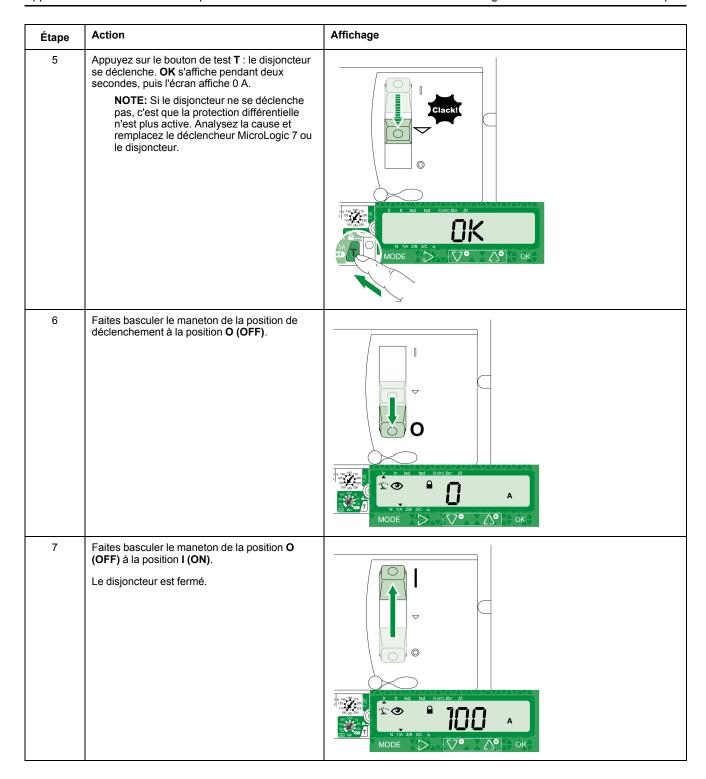
Valeurs de réglage de la temporisation Δt

Lorsque $I\Delta n$ est réglé sur 30 mA, la protection différentielle agit immédiatement (déclenchement instantané) quel que soit le réglage de la temporisation Δt .

Pour les autres valeurs de $I\Delta n$ (> 30 mA), la temporisation Δt peut être réglée sur l'une des valeurs suivantes :

- 0 s
- 60 ms
- 150 ms
- 500 ms
- 1 seconde

Test de la protection différentielle (avec déclenchement) à l'aide du bouton de test


Sur la version Déclenchement des déclencheurs MicroLogic 7, la protection différentielle doit être testée régulièrement à l'aide du bouton de test **T**. L'activation du bouton de test simule le passage d'un courant de fuite dans le tore et le disjoncteur se déclenche.

Lorsque le seuil de déclenchement $I\Delta n$ de la protection différentielle est réglé sur la position **OFF**, une pression sur le bouton de test n'a aucun effet.

Le test de la protection différentielle peut être effectué avec le cadenas verrouillé ou déverrouillé
.

Pour tester et réinitialiser la protection différentielle sur les déclencheurs MicroLogic 7, procédez comme suit :

Étape	Action	Affichage
1	Mettez le disjoncteur sous tension.	-
2	Ouvrez le capot de protection du déclencheur.	-
3	Fournissez une alimentation au déclencheur pour que l'écran affiche le résultat du test après le déclenchement du disjoncteur.	_
4	Faites basculer le maneton de la position O (OFF) à la position I (ON). Le disjoncteur est fermé.	To lad to light to at the ligh

Test de la protection différentielle (sans déclenchement) à l'aide du bouton de test

Sur la version Alarme du déclencheur MicroLogic 7, l'alarme de fuite à la terre peut être testée à l'aide du bouton de test **T**. L'activation du bouton de test simule le passage d'un courant de fuite dans le tore. Le disjoncteur ne se déclenche pas.

Lorsque le seuil de déclenchement $I\Delta n$ de l'alarme de fuite à la terre est réglé sur la position **OFF**, une pression sur le bouton de test n'a aucun effet.

Le test de la protection différentielle peut être effectué avec le cadenas verrouillé ou déverrouillé
.

Procédez comme suit pour tester l'alarme de fuite à la terre sur les déclencheurs MicroLogic 7AL :

Étape	Action	Affichage
1	Mettez le disjoncteur sous tension.	-
2	Ouvrez le capot de protection du déclencheur.	-
3	Fournissez une alimentation au déclencheur.	-
4	Faites basculer le maneton de la position O (OFF) à la position I (ON). Le disjoncteur est fermé.	The second secon
5	Appuyez sur le bouton de test T : Le message OK s'affiche à l'écran pendant deux secondes, puis l'écran précédent apparaît. NOTE: Si l'écran indique nOK , c'est que l'alarme de fuite à la terre n'est plus active. Remplacez le déclencheur MicroLogic 7AL.	N 1/A 2/B 3/C \$\infty\$ OK

Test de la fonction de protection différentielle (sans déclenchement) à l'aide du clavier uniquement

Sur les versions Déclenchement et Alarme du déclencheur MicroLogic 7, la chaîne de déclenchement de la protection différentielle ou d'alarme de fuite à la terre peut être testée (à l'exception du fonctionnement mécanique et de la polarité) à l'aide du clavier sans déclencher le disjoncteur.

Le test de la protection différentielle peut être effectué avec le cadenas verrouillé ou déverrouillé
.

Procédez comme suit pour tester l'alarme de protection différentielle sur les déclencheurs MicroLogic 7AL :

Étape	Action	Métho- de	Affichage
1	Sélectionnez l'écran de mesure des fuites à la terre.		I'r I'r IIId III III III III III III III III I
2	Accédez au test de la fonction différentielle en appuyant sur OK . Le pictogramme tESt apparaît et le pictogramme OK clignote.	ОК	OK LESE N 1/A 2/B 3/C \$\frac{1}{2}\$ MODE \(\sum_{Q} \s
3	Appelez le test de la fonction différentielle en appuyant sur OK . Le résultat du test (OK ou nOK) s'affiche à l'écran pendant deux secondes. NOTE: Si l'écran indique nOK , testez la fonction différentielle à l'aide du bouton de test T .	ОК	Ir tr lad sad Bloth libra At OK MODE S S S S S S S S S S S S S S S S S S S
4	Au bout de deux secondes, l'affichage retourne à l'écran qui était affiché avant le test.	-	_

Historique des tests de protection différentielle

Les dix derniers tests de protection différentielle sont enregistrés dans un historique, page 169. Les tests effectués à l'aide du bouton de test **T** et les tests effectués à l'aide du clavier sont enregistrés dans le même historique.

Cet historique retient les informations suivantes :

- Type de test : avec ou sans déclenchement
- Date du test
- Résultat du test (OK ou nOK)

L'historique des tests de la protection différentielle peut être consulté :

- A l'aide du logiciel EcoStruxure Power Commission
- Sur un contrôleur distant via le réseau de communication

Réarmement du disjoncteur après détection d'un défaut de fuite à la terre

La réinitialisation de la fonction différentielle après la détection d'un défaut de fuite à la terre (avec ou sans déclenchement) dépend de la version :

- Pour la version Déclenchement, réarmez le disjoncteur en déplaçant le maneton de la position Déclenchement à la position O (OFF) puis à la position I (ON). Acquittez l'écran de déclenchement sur fuite à la terre en apppuyant sur OK.
- Pour la version Alarme, acquittez l'écran de déclenchement d'alarme de fuite à la terre en appuyant sur OK.

La réinitialisation de la fonction de protection différentielle après un test de cette protection est décrite dans la procédure à suivre pour chaque test.

Protection du neutre

Présentation

La protection du neutre sur les déclencheurs MicroLogic 5, 6 et 7 protège tous les types d'applications de distribution électrique contre les courants de surcharge et de court-circuit.

Elle est disponible sur :

- Déclencheurs MicroLogic 5, 6 et 7 pour disjoncteurs 4 pôles
- Déclencheurs MicroLogic 5 et 6 avec option ENCT pour disjoncteurs 3 pôles

Description

Normalement, la protection des phases protège le conducteur neutre (s'il est distribué et de même taille que les phases, c'est-à-dire un neutre complet).

Le neutre nécessite une protection spécifique dans les cas suivants :

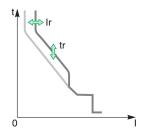
- Il présente une taille réduite par rapport aux conducteurs des phases
- Des charges non linéaires générant des harmoniques de rang 3 (ou des multiples) sont installées

La coupure du neutre peut être nécessaire pour des raisons fonctionnelles (schéma multisource) ou de sécurité (travail hors tension)

En résumé, le conducteur neutre peut être :

- Non distribué (disjoncteur tripolaire)
- Distribué, non coupé et non protégé (disjoncteur tripolaire)
- Distribué, non coupé mais protégé (disjoncteur tripolaire avec option ENCT)
- Distribué, coupé et protégé (disjoncteur tétrapolaire)

Les déclencheurs de disjoncteur ComPact NSX sont adaptés à tous les types de protection.


Disjoncteur	Types possibles	Protection du neutre		
Disjoncteur tripolaire	3P, 3D	Aucune		
Disjoncteur tripolaire avec option ENCT	3P, 3D	Aucune		
Option ENCT	3P, 3D + N/2	Demi-neutre		
	3P, 3D + N	Neutre complet		
	3P, 3D + OSN	Neutre surdimensionné		
Disjoncteur tétrapolaire	4P, 3D	Aucune		
	4P, 3D + N/2	Demi-neutre		
	4P, 4D	Neutre complet		
	4P, 4D + OSN	Neutre surdimensionné		
P : Pôle ; D : Déclencheur ; N : Protection du neutre				

Principe de fonctionnement

Les caractéristiques de la protection du neutre sont identiques à celles de la protection des phases :

• Le seuil de déclenchement est proportionnel aux seuils de déclenchement des protections long retard Ir et court retard Isd.

- Les valeurs de temporisation du déclenchement sont les mêmes que pour les protections long retard Ir et court retard Isd.
- La protection instantanée est identique.

Les réglages de protection du neutre sont :

- Ir : seuil de déclenchement de la protection long retard
- tr: temporisation de la protection long retard
- IN : seuil de déclenchement de la protection du neutre

Réglage de la protection du neutre

Déclencheur tétrapolaire

Réglez le seuil IN:

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Déclencheur tripolaire

Réglez la déclaration du neutre et le seuil de déclenchement IN :

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage de la protection du neutre

Les déclencheurs MicroLogic5, 6 et 7 intègrent la fonction OSN (Neutre surdimensionné) qui gère la protection du conducteur neutre en présence de courants harmoniques de rang 3 (et multiples de ceux-ci).

Le tableau suivant illustre les valeurs de réglage des seuils de déclenchement de la protection long retard du neutre et de la protection court retard du neutre en fonction de la valeur de la fonction IN/Ir :

Fonction IN/Ir	Valeur du seuil long retard lr(IN)	Valeur du seuil court retard Isd (IN)
OFF	N/A	N/A
0.5 (1)	Ir/2	Isd/2
1	Ir	Isd
(1) Pour le déclencheur MicroLogic 7 de calibre 40 A, le réglage IN/Ir à 0,5 n'est pas disponible.		

Les valeurs de réglage de temporisation sont identiques pour les phases, la protection long retard du neutre et la protection court retard.

Le tableau ci-dessous détaille les valeurs de réglage des seuils de déclenchement des protections du neutre (réglées sur OSN) en fonction du réglage du seuil de déclenchement Ir de la protection des phases et du calibre In du déclencheur tétrapolaire:

Valeurs Ir/In	Valeur du seuil long retard Ir(IN)	Valeur du seuil court retard Isd (IN)
Ir/In < 0,63	1,6 x lr	1,6 x lsd
0,63 < Ir/In < 1	In	In x Isd/Ir

Sélection de l'option ENCT

L'option ENCT est un transformateur de courant neutre externe pour un déclencheur tripolaire MicroLogic 5 ou 6.

Le tableau suivant indique la référence de l'option ENCT installée en fonction de la valeur In du déclencheur MicroLogic ou du besoin de protection OSN :

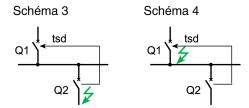
Calibre In (A)	Protection du neutre limitée à In	Protection du neutre OSN > In
40	LV429521	LV429521
100	LV429521	LV429521
160	LV430563	LV430563
250	LV430563	LV432575
400	LV432575	LV432575
630	LV432575	Non (1)
(1) Pour le calibre 630 A, la fonction OSN est limitée à In (= 630 A).		

Installation de l'option ENCT

Étape	Action
1	Raccordez le conducteur neutre au primaire de l'option ENCT (bornes H1, H2).
2	Retirez (le cas échéant) le cavalier entre les bornes T1 et T2 du déclencheur MicroLogic.
3	Raccordez le secondaire de l'option ENCT (bornes T1, T2) aux bornes T1 et T2 du déclencheur MicroLogic.
4	Déclarez l'option ENCT lors du réglage des fonctions de protection du déclencheur MicroLogic.

NOTE: Si l'option ENCT est déclarée avant son installation, le déclencheur MicroLogic se déclenche et affiche l'écran ENCT. Installez l'option ENCT ou placez un cavalier entre les bornes T1 et T2 du déclencheur MicroLogic. Effacez l'écran ENCT en appuyant sur la touche **OK** à deux reprises (entrer et confirmer).

Sélectivité logique (ZSI)


Présentation

Utilisez la fonction de sélectivité logique (ZSI, zone selective interlocking) pour réduire les contraintes électrodynamiques sur les équipements lorsque vous utilisez la coordination sélective.

Principe de la fonction ZSI

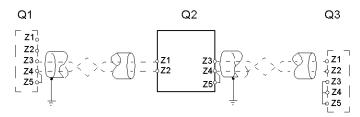
La fonction ZSI améliore la coordination en en étant sélective quant à l'emplacement du défaut électrique. Un câble de signal relie les déclencheurs de disjoncteur installés et gère la temporisation de déclenchement du disjoncteur amont Q1 en fonction de l'emplacement du défaut électrique.

Les déclencheurs des disjoncteurs Q1 et Q2 ont les mêmes réglages de temporisation qu'avec la coordinationn sélective.

Si un défaut électrique se produit en aval du disjoncteur aval Q2 (diagramme 3), les déclencheurs des disjoncteurs Q1 et Q2 le détectent simultanément. Le déclencheur du disjoncteur Q2 envoie un signal de restriction au déclencheur du disjoncteur Q1, lequel reste réglé sur sa temporisation tsd. Le disjoncteur Q2 déclenche et élimine le défaut (instantanément si le disjoncteur Q2 n'est pas temporisé).

Les autres utilisateurs en aval du disjoncteur Q1 restent alimentés, la disponibilité de l'énergie est optimisée.

 Si un défaut électrique se produit en aval du disjoncteur Q1 (diagramme 4), le déclencheur du disjoncteur Q1 ne reçoit pas de signal de restriction de la part du déclencheur du disjoncteur Q2. De ce fait, la temporisation tsd est inhibée. Le disjoncteur Q1 déclenche et élimine instantanément le défaut sur l'installation.


Les contraintes électrodynamiques créées par le courant de court-circuit sur l'installation sont réduites au minimum.

La fonction ZSI peut être utilisée pour optimiser la disponibilité de l'énergie (tout comme la coordination sélective) et réduire les contraintes électrodynamiques sur l'installation. La fonction ZSI s'applique à la protection court retard et à la protection contre les défauts à la terre.

Utilisation de la fonction ZSI avec les disjoncteurs ComPact NSX

Description

Les déclencheurs MicroLogic 5 et 6 prennent en charge la fonction d'interverrouillage sélectif de zone ZSI. La figure suivante montre comment le câble de signal est relié au déclencheur :

- **Q1** Disjoncteur amont
- Q2 Disjoncteur à relier
- Q3 Disjoncteur aval
- **Z1** ZSI-OUT source
- **Z2** ZSI-OUT
- **Z3** ZSI-IN source
- **Z4** ZSI-IN ST protection court retard
- **Z5** ZSI-IN GF protection contre les défauts à la terre (MicroLogic 6)

Les sorties Z3, Z4 et Z5 sont disponibles uniquement sur les disjoncteurs ComPact NSX400/630.

Les réglages de temporisation de la protection court retard et de terre (MicroLogic 6) pour les déclencheurs utilisant la fonction ZSI doivent respecter les règles relatives à la coordination sélective.

Principes de connexion

Les figures ci-dessous montrent les possibilités de raccordements entre appareils :

Protection	Schéma de raccordement	
Protection terre et court retard (MicroLogic 6)	Q1 Q2 Z1 Z3 Z2 Z4 Z2 Z4 Z5 Z5	Raccordez la sortie Z2 du déclencheur du disjoncteur aval Q2 aux entrées Z4 et Z5 du déclencheur du disjoncteur amont Q1.
Protection court retard	Q1 Q2 Z1 Z3 Z2 Z4 Z5 Z5 Z5	 Raccordez la sortie Z2 du déclencheur du disjoncteur aval Q2 à l'entrée Z4 du déclencheur du disjoncteur amont Q1. Entrées de court-circuit Z3 et Z5.
Protection contre les défauts à la terre (MicroLogic 6)	Q1 Q2 Z1 Z3 Z4 Z2 Z4 Z5 Z5 Z5	 Raccordez la sortie Z2 du déclencheur du disjoncteur aval Q2 à l'entrée Z5 du déclencheur du disjoncteur amont Q1. Entrées de court-circuit Z4 et Z3.

NOTE: Si la fonction ZSI n'est pas utilisée en aval, court-circuitez les entrées Z3, Z4 et Z5. Si ce principe n'est pas appliqué, la configuration de la temporisation des protections court retard et défaut de terre peut être inhibée.

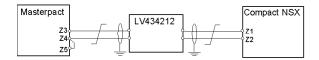
Distribution multisource

Si plusieurs disjoncteurs sont installés en amont (cas de la distribution multisource), les mêmes principes s'appliquent.

Raccordez un disjoncteur aval à tous les disjoncteurs installés directement en amont :

- Raccordez tous les communs (sorties Z1 / entrées Z2) entre eux.
- Raccordez la sortie Z2 simultanément aux entrées Z3, Z4ou Z5 de tous les déclencheurs de disjoncteur installés en amont.

NOTE: Aucun relais supplémentaire n'est requis dans la gestion de cette configuration pour assurer le contrôle de la fonction ZSI des sources utilisées.


Caractéristiques des câbles de connexion

Le tableau suivant indique les caractéristiques du câble de signal entre les appareils :

Caractéristiques	Valeurs
Impédance	< 50 Ω par 300 m
Longueur maximum	300 m
Type de câble	Torsadé blindé (Belden 8441 ou équivalent)
Sections des conducteurs admissibles	0,4 à -1,5 mm²
Limite d'interconnexion sur entrées Z3, Z4 et Z5 (vers les appareils en aval)	15 appareils
Limite d'interconnexion sur sorties Z1 et Z2 (vers les appareils en amont)	5 appareils

NOTE: Lorsque vous utilisez la fonction ZSI pour connecter des disjoncteurs ComPact NSX avec des disjoncteurs MasterPact ou ComPact NS, ajoutez un filtre RC (référence LV434212) au circuit à l'aide d'un disjoncteur MasterPact ou ComPactNS. Pour plus d'informations, consultez la documentation LVPED217032EN *ComPact NSX & NSXm - Catalogue*, page 7.

La figure suivante illustre le raccordement du filtre RC (référence LV434212).

Test de la fonction ZSI

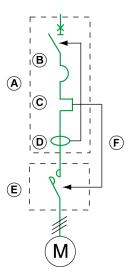
Testez la connexion et le fonctionnement de ZSI à l'aide de l'interface de maintenance USB et du logiciel LTU.

Application de départ-moteur

Contenu de ce chapitre

Protection des départs-moteurs	79
Protection long retard	
Protection court retard	88
Protection instantanée	89
Protection contre les défauts à la terre	90
Protection contre le déséquilibre de phase	93
Protection Blocage rotor	96
Protection du moteur contre les sous-charges	98
Protection du moteur contre le démarrage long	100

Protection des départs-moteurs


Présentation

Les déclencheurs MicroLogic 6 E-M des disjoncteurs ComPact NSX :

- Assurent la protection des départs moteurs à démarrage direct (le départmoteur à démarrage direct est le départ-moteur le plus utilisé)
- Intègrent les protections de base (surcharge, court-circuit et déséquilibre de phase) du départ-moteur et des protections complémentaires et/ou des options spécifiques pour les applications moteur
- Permettent la protection et la coordination des composants des départs moteurs conformément aux exigences des normes IEC/EN 60947-2 et IEC/EN 60947-4-1. Pour plus d'informations, consultez la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs 100–630 A - Guide utilisateur.

Description

Les disjoncteurs ComPact NSX équipés du déclencheur MicroLogic 6 E-M permettent de réaliser des départs-moteurs à deux appareils.

- A Disjoncteur ComPact NSX équipé d'un déclencheur MicroLogic 6 E-M
- **B** Protection contre les courts-circuits
- C Protection contre les surcharges
- D Protection contre les défauts à la terre
- **E** Contacteur
- F Option module SDTAM

Etats de fonctionnement

Le déclencheur MicroLogic 6 E-M considère que l'application est en fonctionnement dès lors que le courant moteur dépasse 10 % du seuil Ir (dans le sens positif).

Deux états de fonctionnement sont définis :

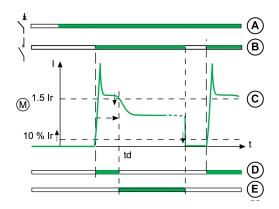
- Démarrage
- Régime établi

Démarrage

Le déclencheur MicroLogic 6 E-M considère que l'application est à l'état de démarrage d'après les critères suivants :

- Début : Dès que le courant moteur franchit les 10 % du seuil Ir (dans le sens positif)
- Fin : Dès que le seuil Id est franchi dans le sens négatif ou au maximum après une temporisation td définie comme suit :
 - Si la protection Démarrage long n'est pas activée (réglage d'usine), le seuil ld est égal à 1,5 x lr et la temporisation td est égale à 10 s (paramètres non réglables).
 - Le dépassement de la temporisation 10 s n'entraîne pas de déclenchement.
 - Si la protection Démarrage long est activée, page 100, le seuil ld est égal à llong et la temporisation td est égale à tlong (paramètres réglables).
 - Le dépassement de la temporisation tlong provoque le déclenchement de la protection Démarrage long.

NOTE: L'électronique de mesure du déclencheur MicroLogic filtre le régime subtransitoire (première pointe de courant de 20 ms environ à la fermeture du contacteur). Cette pointe de courant n'est donc pas prise en compte pour évaluer le franchissement du seuil ld.


Régime établi

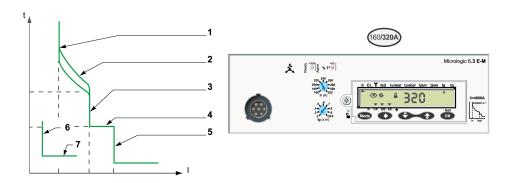
Le déclencheur MicroLogic 6 E-M considère que l'application est en régime établi d'après les critères suivants :

- Début : Dès la fin du régime de démarrage
- Fin : Dès le franchissement négatif de la limite de 10 % du seuil Ir par le courant moteur

Diagramme de fonctionnement

Le diagramme suivant présente les deux régimes de fonctionnement d'une application moteur :

- A Etat du disjoncteur ComPact NSX (vert = position ON)
- **B** Etat du contacteur (vert = position ON)
- C Courant dans l'application moteur


Régimes de fonctionnement :

D: Démarrage

E: Régime établi (les régimes actifs sont en vert)

Fonctions de protection

La figure et le tableau suivants décrivent les fonctions de protection des déclencheurs MicroLogic 6 E-M :

Elé- ment	Paramètre	Description		Réglable
0	In	Plage de réglage du déclencheur Réglage minimum/ réglage maximum = calibre ln du déclencheur	1	Non
1	Ir	Seuil de déclenchement de protection long retard	L	Oui
2	CI	Classe de déclenchement de protection long retard		Oui
3	Isd	Seuil de déclenchement de protection court retard	s	Oui
4	tsd	Temporisation de protection court retard		Non
5	li	Seuil de déclenchement de protection instantanée	1	Non
6	lg	Seuil de déclenchement de protection contre les défauts à la terre	G	Oui
7	tg	Temporisation de la protection contre les défauts à la terre		Oui
	lunbal	Seuil de déclenchement de la protection contre le déséquilibre de phase	Ř.	Oui
	tunbal	Temporisation de la protection contre le déséquilibre de phase		Oui

L'étude de chaque fonction est détaillée dans les pages suivantes.

Protections complémentaires

Le déclencheur MicroLogic 6 E-M intègre des fonctions de protection supplémentaires pour les applications moteur.

Protection	Activation par défaut	Réglage par défaut	Activation SDTAM
Protection Blocage rotor	OFF	ljam : OFF, tjam : 5 s	Oui
Protection du moteur contre les sous- charges	OFF	lund : OFF, t und : 10 s	Oui
Protection du moteur contre le démarrage long	OFF	llong : OFF, tlong : 10 s	Non

Les protections complémentaires sont activées pour un régime de démarrage ou un régime établi ou dans les deux cas.

Configuration de la protection

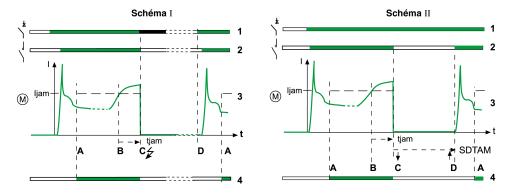
Réglez les fonctions de protection :

- Sur le déclencheur MicroLogic, à l'aide des commutateurs rotatifs et du clavier (selon la fonction de protection et de type MicroLogic).
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Déclenchement réflexe

En plus des fonctions de protection intégrées dans les déclencheurs MicroLogic, les disjoncteurs ComPact NSX présentent une protection réflexe. Ce système coupe les courants de défaut très élevés en déclenchant mécaniquement l'appareil avec un piston actionné directement par la pression produite dans le disjoncteur par un court-circuit. Ce piston actionne le mécanisme d'ouverture, ce qui provoque un déclenchement ultra-rapide du disjoncteur.

Option de module SDTAM


La fonction de déclenchement avancé du module SDTAM permet de commander l'ouverture du contacteur 400 ms avant le déclenchement calculé du disjoncteur dans les cas suivants :

- · Protection long retard
- Protection contre le déséquilibre de phase
- Protection Blocage rotor
- Protection du moteur contre les sous-charges

Le contacteur peut être refermé automatiquement ou manuellement en fonction du réglage du module SDTAM. Pour plus d'informations, consultez la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.

Exemple d'utilisation du module SDTAM

La figure suivante illustre le fonctionnement de la protection Blocage rotor sans le module SDTAM (schéma I) et avec le module SDTAM (schéma II) :

1 État du disjoncteur ComPact NSX

Blanc: ouvert, vert: fermé, noir: déclenché

2 Etat du contacteur (contact SD dans la bobine du contacteur)

Blanc: ouvert, vert: fermé

3 Courant moteur

4 Surveillance par protection Blocage rotor

Blanc : Non active (régime de démarrage). Vert : Active (régime établi)

Analyse du fonctionnement

Le tableau suivant décrit le fonctionnement sans module SDTAM (schéma I)

Evéne- ment	Commentaires
Α	Passage en régime établi du moteur de l'application.
	Protection Blocage rotor activée.
В	Apparition d'un courant de surcharge sur l'application (par exemple, rotor freiné du fait d'une viscosité importante d'un fluide à mélanger)
	La temporisation tjam de la protection Blocage rotor est actionnée dès que le courant moteur franchit le seuil ljam.
С	Fin de la temporisation de la protection Blocage rotor
	La protection Blocage rotor provoque le déclenchement du disjoncteur ComPact NSX.
D	Remise en service manuelle de l'application après refroidissement du moteur et refermeture du disjoncteur.

Le tableau suivant décrit le fonctionnement avec module SDTAM (schéma II)

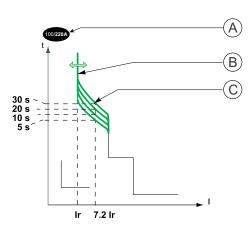
Evéne- ment	Commentaires
Α	Identique au schéma I
В	Identique au schéma I

Evéne- ment	Commentaires
С	400 ms avant la fin de la temporisation de la protection Blocage rotor, le module SDTAM :
	Commande l'ouverture du contacteur (sortie OUT2)
	Envoie une signalisation de défaut (sortie OUT1)
	Les deux sorties sont activées pendant une temporisation (réglable de 1 minute à 15 minutes).
D	Remise en service automatique du contacteur de l'application : la temporisation permet au moteur de refroidir.

Le module SDTAM peut être réglé sur la position **OFF** : l'application est remise en service manuellement (par la désactivation de l'alimentation du module SDTAM).

Protection long retard

Présentation


La protection long retard sur les déclencheurs MicroLogic 6 E-M protège tous les types d'applications moteur contre les courants de surcharge.

Principe de fonctionnement

La protection long retard est de type I2t IDMT (Inverse Definite Minimum Time):

- Elle intègre la fonction d'image thermique moteur.
- Elle peut être configurée en tant que seuil Ir et classe de déclenchement Class.

Courbe de déclenchement :

Les paramètres de protection long retard sont les suivants :

- A : plage de réglage du déclencheur In
- B : seuil de déclenchement de la protection Long retard Ir
- C : classe de déclenchement de la protection Long retard Cl (selon la norme IEC/EN 60947-4-1)

NOTE: La fonction de protection à déclenchement avancé du module SDTAM peut être utilisée pour commander l'ouverture du contacteur, page 82.

Réglage de la protection long retard

Réglez le seuil Ir :

- Avec le commutateur rotatif Ir du déclencheur MicroLogic pour prérégler la valeur et avec le clavier pour ajuster le réglage
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Réglez la classe de déclenchement CI:

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage du seuil Ir

La valeur de réglage par défaut du seuil Ir est In (valeur maximale du sélecteur).

La plage de déclenchement de la protection thermique ou contre surcharge va de 1,05 à 1,20 fois Ir conformément à la norme IEC/EN 60947-2.

500 A

Calibre In Valeurs de préréglage de Ir (A) en fonction du calibre In du déclencheur et de la position du commutateur 25 A 50 A 80 A 150 A 220 A 320 A

Le préréglage du seuil de déclenchement Ir est effectué par commutateur rotatif.

La plage de précision est +5 % / + 20 %.

Utilisez le clavier pour ajuster le réglage par incréments de 1 A :

 Le maximum de la plage de réglage est la valeur de préréglage affichée par le commutateur.

Le minimum de la plage de réglage est la valeur minimum de préréglage.

Exemple:

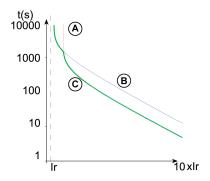
Un déclencheur MicroLogic 6 E-M de calibre In = 500 A est préréglé par le commutateur rotatif à 470 A. La plage de réglages fins au clavier va de 250 à 470 A.

Valeur de réglage de la classe de déclenchement

La classe est réglée via le clavier, à l'aide de l'une des quatre valeurs définies : 5, 10, 20 et 30.

La classe de déclenchement correspond à la valeur de la temporisation de déclenchement pour un courant de 7,2 fois Ir conformément à la norme IEC/EN 60947-4-1.

Le réglage d'usine est la classe 5 (valeur minimale).


Le tableau suivant indique pour les quatre classes la valeur de la temporisation de déclenchement en fonction du courant dans la charge.

Courant dans la charge	Classe de décle	Classe de déclenchement Cl				
	5	10	20	30		
	Temporisation	de déclenchemer	nt tr (s)			
1,5 x lr	120	240	400	720		
6 x lr	6,5	13,5	26	38		
7,2 x lr	5	10	20	30		

Image thermique moteur

Le modèle représentant l'échauffement et le refroidissement d'un récepteur moteur est identique à celui utilisé pour les conducteurs. Il est construit suivant l'algorithme de calcul de la demande thermique, mais ce modèle prend en compte des pertes cuivre et des pertes fer.

La figure suivante représente les courbes limites des composants en fer et en cuivre, calculées par le déclencheur MicroLogic 6 E-M (pour la classe 20) :

- A Courbe de température limite pour le cuivre
- B Courbe de température limite pour le fer
- C Courbe (enveloppe basse) de déclenchement

Mémoire thermique

Les déclencheurs MicroLogic 6 E-M intègrent une mémoire thermique qui assure le refroidissement des conducteurs même après déclenchement : le refroidissement dure 20 minutes avant ou après le déclenchement.

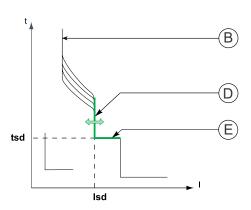
Ventilateur de refroidissement

Par défaut, le calcul de l'image thermique du moteur part de l'hypothèse que le moteur est autoventilé (ventilateur monté en bout d'arbre).

Si le moteur est motoventilé (ventilation forcée), le calcul de l'image thermique prend en compte les constantes de temps les plus courtes pour calculer le refroidissement.

Les paramètres de ventilation de refroidissement (position **Auto** ou **Moto**) sont réglés depuis le clavier du déclencheur MicroLogic ou à l'aide du logiciel EcoStruxure Power Commission.

Protection court retard


Présentation

La protection court retard des déclencheurs MicroLogic 6 E-M6protège tous les types d'applications moteur contre les courants de court-circuit.

Principe de fonctionnement

La protection court retard est à temps défini. Elle peut être configurée comme seuil lsd.

Courbe de déclenchement :

Les paramètres de la protection court retard sont les suivants :

- B : seuil de déclenchement de la protection Long retard Ir
- D : seuil de déclenchement de la protection Court retard Isd
- E : temporisation fixe de la protection court retard tsd

Réglage de la protection court retard

Réglez le seuil Isd et la temporisation tsd :

- Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage du seuil Isd

La valeur de réglage du seuil lsd est un multiple de Ir.

La valeur de réglage par défaut du seuil lsd est 5 x lr (valeur minimum).

La plage de réglages du seuil au clavier va de 5à 13 fois Ir. L'incrément est de $0.5 \, \mathrm{x}$ Ir.

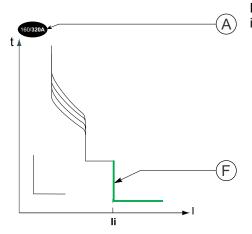
La plage de précision est de +/- 15 %.

Valeur de la temporisation tsd

La temporisation n'est pas réglable.

- Le temps de maintien est de 20 ms.
- · Le temps maximum de coupure est de 60 ms.

Protection instantanée


Présentation

La protection instantanée des déclencheurs MicroLogic 6 E-M protège tous les types d'applications moteur contre les courants de court-circuit de très forte intensité.

Principe de fonctionnement

La protection instantanée est fixe : la valeur du seuil est déterminée par le calibre du déclencheur. La protection est instantanée.

Courbe de déclenchement :

Les paramètres de la protection instantanée sont les suivants :

- A : plage de réglage du déclencheur In
- F : seuil de déclenchement de la protection Instantané li

Valeur du seuil li

La valeur du seuil de déclenchement li est directement déterminée par le calibre In du déclencheur et est exprimée en multiples de In.

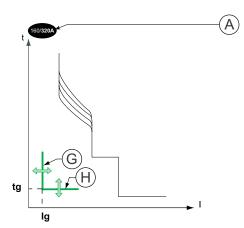
Valeur de seuil li selon le calibre In du déclencheur MicroLogic (plage de précision +/- 10 %).

Calibre In (A)	25	50	80	150	220	320	500
Seuil de la protection instantanée (A)	425	750	1200	2250	3300	4 800	7500

Le temps de maintien est de 0 ms.

Le temps maximum de coupure est de 30 ms.

Protection contre les défauts à la terre


Présentation

La protection contre les défauts à la terre des déclencheurs MicroLogic 6 E-M protège tous les types d'applications de distribution électrique contre les courants de défaut à la terre dans le système TN-S . Pour plus d'informations, consultez la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.

Principe de fonctionnement

La protection contre les défauts à la terre est à temps défini. Elle peut être configurée en termes de seuil de déclenchement lg et de temporisation de déclenchement tg.

Courbe de déclenchement :

Les paramètres de la protection contre les défauts à la terre sont les suivants :

- A : plage de réglage du déclencheur In
- G : seuil de déclenchement de la protection contre les défauts à la terre lq
- H : temporisation de la protection contre les défauts à la terre tg

Réglage de la protection contre les défauts à la terre

Réglez le seuil Ig:

- Avec le commutateur rotatif lg du déclencheur MicroLogic pour prérégler la valeur et avec le clavier pour ajuster le réglage
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Réglez la temporisation tg :

- · Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeurs de réglage du seuil Ig

La valeur de réglage du seuil lg est un multiple de In.

Le réglage par défaut du seuil de déclenchement Ig est égal à la valeur minimale au commutateur :

0,60 In pour les déclencheurs de calibre 25 A

- 0,30 In pour les déclencheurs de calibre 50 A
- 0,20 In pour les déclencheurs de calibre supérieur à 50 A

La protection contre les défauts à la terre peut être désactivée en positionnant le commutateur Ig sur OFF.

La protection contre les défauts à la terre peut être réactivée même si le commutateur lg est en position OFF :

- · Par le réglage fin au clavier
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Les trois tableaux ci-après précisent les valeurs de préréglage par commutateur et les plages de valeurs du réglage fin au clavier :

- pour les déclencheurs de calibre 25 A
- pour les déclencheurs de calibre 50 A
- pour les déclencheurs de calibre supérieur à 50 A

Depuis le clavier, l'incrément est de 0,05 x In.

Calibre 25 A

Type de réglage	Valeur ou	/aleur ou plage de réglage (x ln)							
Préréglage par commutateur	0,60	0,60	0,60	0,60	0,70	0,80	0,90	1	OFF
Plage de réglage au clavier	0,60	0,60	0,60	0,60	0,6-0,7	0,6-0,8	0,6-0,9	0,6-1	0,6–1 + OFF

Calibre 50 A

Type de réglage	Valeur o	Valeur ou plage de réglage (x ln)							
Préréglage par commutateur	0,30	0,40	0,50	0,60	0,70	0,80	0,90	1	OFF
Plage de réglage au clavier	0,30	0,3-0,4	0,3-0,5	0,3-0,6	0,3-0,7	0,3-0,8	0,3-0,9	0,3-1	0,3–1 + OFF

Calibre > 50 A

Type de réglage	Valeur	Valeur ou plage de réglage (x ln)							
Préréglage par commutateur	0,20	0,30	0,40	0,50	0,60	0,70	0,80	1	OFF
Plage de réglage au clavier	0,20	0,2-0,3	0,2-0,4	0,2-0,5	0,2-0,6	0,2-0,7	0,2-0,8	0,2-1	0,2-1 + OFF

La plage de précision est de +/- 10 %.

Valeurs de réglage de la temporisation tg

La valeur de réglage de la temporisation tg est définie en secondes. Les temps de maintien et de coupure sont exprimés en millisecondes.

Le réglage par défaut de la temporisation tg est 0 s.

Le tableau suivant indique les valeurs de réglage de tg en secondes (s) et les temps de maintien et de coupure associés en millisecondes (ms) :

Fonction	Valeur				
tg (s)	0	0,1	0,2	0,3	0,4
Temps de maintien (ms)	20	80	140	230	350
Temps maximum de coupure (ms)	80	140	200	320	500

Test de la protection contre les défauts à la terre

Vous pouvez tester la protection contre les défauts à la terre pour vérifier la fonction de déclenchement électronique du déclencheur. Utilisez le clavier du déclencheur MicroLogic 6 pour effectuer ce test.

Le test de la protection contre les défauts à la terre peut se faire cadenas verrouillé $\stackrel{\frown}{=}$ ou cadenas déverrouillé $\stackrel{\frown}{=}$.

Procédez comme suit pour tester et réinitialiser la protection contre les défauts à la terre sur les déclencheurs MicroLogic 6.

Étape	Action	Affichage
1	Fournissez une alimentation au déclencheur pour que l'écran affiche le résultat du test après le déclenchement du disjoncteur.	-
2	Sélectionnez le mode lecture de la mesure instantanée (l'écran affiche la phase de plus forte charge, Phase 2dans cet exemple).	Ir tr Isd tsd Ii(xln) N 1/A 2/B 3/C ±
3	Sélectionnez l'écran de mesure du courant de défaut à la terre (la valeur est un pourcentage du réglage lg).	OK N 1/A 2/B 3/C \(\frac{1}{4}\)
4	Accédez à la fonction de test de la protection contre les défauts à la terre en appuyant sur OK . Le pictogramme tESt apparaît et le pictogramme OK clignote.	Ir tr Isd tsd Ii Ig tg OK N 1/A 2/B 3/C ** ** ** ** ** ** ** ** **
5	Activez le test de protection contre les défauts à la terre en appuyant sur OK . Le disjoncteur se déclenche. L'écran de déclenchement de la protection contre les défauts à la terre s'affiche.	Ir tr Isd tsd Ii Ig tg Reset ? OK N 1/A 2/B 3/C =
6	Acquittez l'écran en appuyant sur OK . Le pictogramme Reset? OK clignote.	Ir tr Isd tsd Ii Ig tg Peset ? OK N T/A 2/B 3/C
7	Confirmez l'acquittement en appuyant de nouveau sur la touche OK . Le pictogramme de confirmation OK s'affiche pendant 2 s.	Ir tr Isd tsd li(xIn) IK N 1/A 2/B 3/C ÷

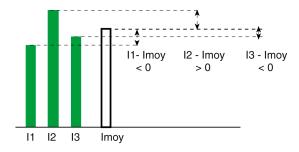
Protection contre le déséquilibre de phase

Présentation

Les déséquilibres des courants phase moteur engendrent des échauffements importants et des couples de freinage pouvant créer des dégradations prématurées du moteur. Ces effets sont amplifiés durant le démarrage : la protection doit être quasiment immédiate.

Description

La protection contre le déséquilibre de phase :

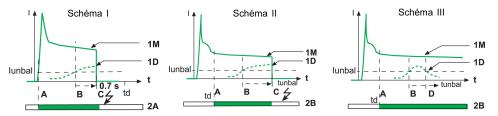

 Calcule les déséquilibres en courant pour chaque phase, par rapport au courant moyen, exprimés en pourcentage :

Imoy =
$$\frac{(11+12+13)}{3}$$

Ik déséquilibre (%) =
$$\frac{lk - lmoy}{lmoy} \times 100$$
 avec k = 1, 2, 3

 Compare la valeur du déséquilibre en courant maximum au seuil de protection lunbal.

Le schéma suivant illustre un déséquilibre positif maximum sur la phase 2 :


Si la valeur maximale du déséquilibre du courant est supérieure au seuil lunbal de la protection Déséquilibre de phase, la temporisation tunbal s'enclenche.

La protection Déséquilibre de phase ne peut pas être désactivée.

La protection Déséquilibre de phase est activée pendant le régime de démarrage et en régime établi.

Principe de fonctionnement

Les figures suivantes illustrent les possibilités de fonctionnement :

- 1 M Courant moteur
- 1 D Déséquilibre maximum des courants phase moteur
- **2 A** Surveillance par la protection contre le déséquilibre de phase pendant le démarrage (schéma I)
- **2 B** Surveillance par la protection contre le déséquilibre de phase en régime établi (schémas II et III)

Blanc: non activée. Vert: active

- Le déséquilibre de courant ne tombe pas en dessous du seuil lunbal avant la fin de la temporisation tunbal : la protection Déséquilibre de phase se déclenche. Le comportement de la protection est différent suivant le régime de fonctionnement du moteur :
 - Pendant le démarrage (schéma I)
 - A : Activation du démarrage.
 - B : Activation de la temporisation de la protection dès le franchissement du seuil.
 - C : Déclenchement de la protection à la fin de la temporisation fixe de 0,7 s.
 - En régime établi (schéma II)
 - A : Activation du démarrage.
 - B : Activation de la temporisation de la protection dès le franchissement du seuil.
 - C : Déclenchement de la protection à la fin de la temporisation réglable.
- Le déséquilibre de courant tombe en dessous du seuil lunbal avant la fin de la temporisation tunbal. La protection Déséquilibre de phase ne se déclenche pas (schéma III):
 - B : Activation de la temporisation de la protection dès le franchissement du seuil.
 - D : Désactivation de la protection.

NOTE: La fonction de protection à déclenchement avancé du module SDTAM peut être utilisée pour commander l'ouverture de contacteur, page 82.

Réglage de la protection

Réglez le seuil lunbal et la temporisation tunbal :

- · Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage du seuil lunbal

La valeur de réglage du seuil lunbal est en pourcentage du courant moyen.

La plage de réglages du seuil au clavier est 10–40 %. L'incrément est de 1 %. La valeur de réglage par défaut du seuil est 30 %.

La plage de précision est de +/- 20 %.

Valeur de réglage de la temporisation tunbal

La valeur de réglage de la temporisation tunbal est définie en secondes.

Le réglage de la temporisation tunbal dépend des conditions de fonctionnement :

- Durant le régime de démarrage, la valeur de la temporisation est non réglable et égale à 0,7 s.
- En régime établi, la plage de réglage est de 1 à 10 s. L'incrément est de 1 s.
 La valeur de réglage par défaut de la temporisation est de 4 s.

Protection Blocage rotor

Présentation

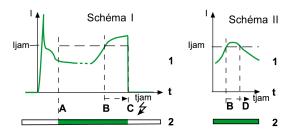
La protection Blocage rotor assure un complément de protection pour :

- Détecter le surcouple.
- · Surveiller les dysfonctionnements mécaniques.
- Détecter plus rapidement les dysfonctionnements sur des machines pour lesquelles le moteur est surdimensionné.

Exemples de machines présentant un risque élevé de blocage : convoyeurs, broyeurs et malaxeurs, ventilateurs, pompes et compresseurs.

Description

La protection Blocage rotor compare la valeur du courant moyen du moteur lavg à la valeur de réglage du seuil de protection Ijam. Si le courant moyen du moteur lavg dépasse le seuil Ijam, la temporisation de protection tjam s'enclenche.


Par défaut, la protection Blocage rotor n'est pas active.

Après le réglage de la fonction, la protection Blocage rotor est :

- Activée en régime établi.
- Désactivée durant le démarrage.

Principe de fonctionnement

Les figures suivantes illustrent les possibilités de fonctionnement :

- 1 Courant moteur
- 2 Surveillance par protection Blocage rotor

Blanc : Non active (au démarrage). Vert : Active (régime établi)

- Diagramme I: Le courant moyen du moteur lavg ne tombe pas sous le seuil de déclenchement de la protection ljam avant la fin de la temporisation tjam (rotor bloqué). Déclenchements de la protection Blocage rotor:
 - · A: Protection activée (passage en régime établi).
 - B : Activation de la temporisation de la protection dès le franchissement du seuil.
 - C : Déclenchement de la protection à la fin de la temporisation.
- Diagramme II: Le courant moyen du moteur lavg retombe et reste en dessous de la protection ljam avant la fin de la temporisation tjam (surcharge occasionnelle). La protection Blocage rotor ne se déclenche pas:
 - B : Activation de la temporisation de la protection dès le franchissement du seuil.
 - D : Protection désactivée.

NOTE: La fonction de protection à déclenchement avancé du module SDTAM peut être utilisée pour commander l'ouverture de contacteur, page 82.

Réglage de la protection

Définissez le seuil ljam et la temporisation tjam :

- · Avec le clavier du déclencheur MicroLogic
- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage du seuil ljam

La valeur de réglage du seuil ljam est un multiple de Ir.

La plage de réglages du seuil au clavier va de 1 à 8 fois Ir. L'incrément est de 0,1 fois Ir. La valeur de réglage par défaut est OFF : protection inactive.

La plage de précision est de +/- 10 %.

Valeur de réglage de la temporisation tjam

La valeur de réglage de la temporisation tjam est définie en secondes.

La plage de réglage de la temporisation tjam va de 1 à 30 s. L'incrément est de 1 s. La valeur de réglage par défaut est 5 s.

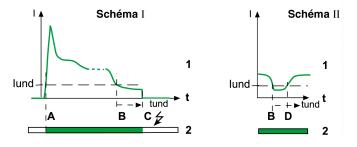
Protection du moteur contre les sous-charges

Présentation

La protection Sous-charge assure un complément de protection pour la détection du fonctionnement à vide du moteur.

Exemples de fonctionnement à vide : pompe fonctionnant à sec, courroie d'entraînement rompue, motoréducteur cassé.

Description


La protection Sous-charge compare la valeur du minimum des courants phase I MIN à la valeur de réglage du seuil lund de la protection. Si la valeur de courant I MIN chute en dessous du seuil de déclenchement lund, la temporisation tund de la protection est activée.

Par défaut, la protection du moteur contre les sous-charges n'est pas active.

Après réglage de la fonction, la protection Sous-charge est activée pendant le régime de démarrage et en régime établi.

Principe de fonctionnement

Les figures suivantes illustrent les possibilités de fonctionnement :

- 1 Courant moteur
- 2 Surveillance par la protection Sous-charge

Blanc: non active. Vert: active

- Diagramme I: La valeur minimum du courant de phase I MIN ne passe pas au-dessus du seuil lund de la protection avant la fin de la temporisation tund (exemple d'une pompe fonctionnant à vide). La protection Sous-charge se déclenche:
 - A : Protection activée (passage en régime établi)
 - B : Activation de la temporisation de la protection dès le franchissement du seuil.
 - C: Déclenchement de la protection à la fin de la temporisation
- Diagramme II: La valeur minimum du courant de phase I MIN remonte et reste au-dessus du seuil avant la fin de la temporisation tund (par exemple, désamorçage temporaire d'une pompe). La protection Sous-charge ne se déclenche pas:
 - B: Activation de la temporisation de la protection dès le franchissement du seuil.
 - D : Désactivation de la protection.

NOTE: La fonction de protection à déclenchement avancé du module SDTAM peut être utilisée pour commander l'ouverture du contacteur, page 82.

Réglage de la protection

Les réglages du seuil de déclenchement lund et de la temporisation tund sont accessibles uniquement :

- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage du seuil lund

La valeur de réglage du seuil lund est un multiple de Ir.

La plage de réglage du seuil va de 0,3 à 0,9 fois Ir. L'incrément est de 0,01 fois Ir. Le réglage par défaut est OFF : protection inactive.

La plage de précision est de +/- 10 %.

Valeur de réglage de la temporisation tund

La valeur de réglage de la temporisation tund est définie en secondes.

La plage de réglage de la temporisation tund va de 1 à 200 s. L'incrément est de 1 s. La valeur de réglage par défaut est 10 s.

Protection du moteur contre le démarrage long

Présentation

La protection Démarrage long assure une protection supplémentaire :

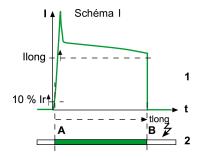
- Pour machines à risque de démarrage difficile :
 - machines à forte inertie
 - machines à fort couple résistant
 - machines avec charge fluctuante à partir d'un régime établi

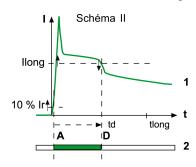
Exemples de machines présentant un risque important de démarrage difficile : ventilateurs, compresseurs.

- Pour éviter les démarrages à vide :
 - Charge non présente
 - · Machines surdimensionnées pour l'application.

Description

La protection Démarrage long est activée dès que le courant moteur moyen lavg dépasse 10 % de la valeur de réglage Ir : la temporisation de la protection tlong s'enclenche. La protection Démarrage long compare la valeur du courant moyen du moteur lavg à la valeur de réglage du seuil de protection llong.


Par défaut, la protection Démarrage long n'est pas active.

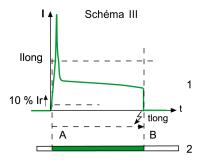

Après le réglage de la fonction, la protection Démarrage long est :

- Active durant le démarrage
- Désactivée en régime établi

Principe de fonctionnement (démarrage difficile)

Au démarrage, le courant moyen du moteur lavg dépasse le seuil llong de protection Démarrage long. La protection reste activée tant que la valeur du courant moyen lavg n'est pas retombée au-dessous du seuil llong.

- 1 Courant moteur
- 2 Activation de la temporisation tlong de la protection Démarrage long


Blanc: Protection non active. Vert: Protection active

La courbe peut évoluer de différentes façons :

- Diagramme I: Le courant moyen lavg du moteur n'a pas chuté en dessous du seuil d'activation llong avant la fin de la temporisation tlong (démarrage avec charge trop importante). Déclenchement de la protection Démarrage long:
 - A : Activation de la temporisation de la protection (dépassement du seuil de 10 % de Ir).
 - B : Déclenchement de la protection à la fin de la temporisation.
- Diagramme II: La valeur du courant moyen lavg retombe au-dessous du seuil llong avant la fin de la temporisation tlong (démarrage correct). La protection Démarrage long ne se déclenche pas:
 - A : Activation de la temporisation de la protection (dépassement du seuil de 10 % de Ir).
 - D : Désactivation de la protection.

Principe de fonctionnement (démarrage à vide)

Au démarrage, le courant moyen du moteur lavg ne dépasse pas le seuil llong de protection Démarrage long. La protection reste active tant que la valeur moyenne du courant lavg n'est pas repassée en dessous de 10% de la valeur du réglage Ir.

- 1 Courant moteur
- 2 Activation de la temporisation de la protection Démarrage long

Blanc: Protection non active. Vert: Protection active

Diagramme III : Le courant du moteur n'est pas retombé au-dessous de 10 % du réglage de lr avant la fin de la temporisation tlong : la protection Démarrage long se déclenche.

- A : Activation de la temporisation de la protection (le seuil de 10 % de lr est dépassé)
- B : Déclenchement de la protection à la fin de la temporisation

Si le courant moteur repasse au dessous de 10 % de la valeur du réglage Ir avant la fin de la temporisation tlong de la protection (par exemple à l'ouverture du contacteur), la protection Démarrage long ne se déclenche pas.

NOTE: L'électronique de mesure du déclencheur MicroLogic filtre le régime subtransitoire (première pointe de courant de 20 ms environ à la fermeture du contacteur). Cette pointe de courant n'est donc pas prise en compte pour évaluer le franchissement du seuil llong.

Configuration de la protection

Les réglages du seuil de déclenchement llong et de la temporisation tlong sont accessibles uniquement :

- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Valeur de réglage du seuil llong

La valeur de réglage du seuil llong est un multiple de Ir.

La plage de réglage du seuil va de 1 à 8 fois Ir. L'incrément est de 0,1 fois Ir. Le réglage d'usine est OFF : protection inactive.

La plage de précision est de +/- 10 %.

Valeur de réglage de la temporisation tlong

La valeur de réglage de la temporisation tlong est définie en secondes.

La plage de réglage de la temporisation tlong va de 1 à 200 s. L'incrément est de 1 s. La valeur du réglage d'usine est 10 s.

Fonction de mesure

Contenu de cette partie

Techniques de mesure	104
Tableaux des précisions des mesures	. 129

Techniques de mesure

Contenu de ce chapitre

Coloul des valours Domand ((Misral esis E)	
Calcul des valeurs Demand ((MicroLogic E)10	
Mesure de puissance (MicroLogic E)1	12
Algorithme de calcul des puissances1	15
Mesure de l'énergie (MicroLogic E)1	18
Courants harmoniques12	20
Mesure des indicateurs de qualité de l'énergie (MicroLogic E)12	23
Mesure du facteur de puissance FP et de cos	

MicroLogic Mesures en temps réel des E

Valeurs instantanées

Déclencheurs MicroLogic A (ampèremètre) et E (énergie) :

- Mesurent en temps réel et en valeur efficace :
 - Courant instantané pour chaque phase et le neutre (si présent),
 - Courant de défaut à la terre (MicroLogic 6)
 - Courant de fuite à la terre (résiduel) (MicroLogic 7)
- · Calculent en temps réel le courant de phase moyen
- Déterminent les valeurs maximum et minimum de ces grandeurs électriques (courants de phase, du neutre, de terre et résiduel)

Les déclencheurs MicroLogic E (énergie) :

- Mesurent en temps réel et en valeur efficace les tensions instantanées phase/phase et phase/neutre (si présent)
- Calculent les grandeurs électriques associées à partir des valeurs efficaces des courants et des tensions :
 - Tension moyenne phase/phase et la tension moyenne phase/neutre (si présent)
 - Déséguilibres en courant
 - Déséquilibres en tension phase/phase et phase/neutre (si présent)
 - Puissances, page 112
 - Indicateurs de qualité: fréquence, THD(I) et THD(V), page 123, et facteur de puissance FP et mesure du cos φ, page 125
- Affichent les indicateurs de fonctionnement : quadrant et type de charge
- Déterminer les valeurs maximum et minimum de ces grandeurs électriques
- Incrémentent en temps réel trois compteurs d'énergie (active, réactive, apparente) à partir des valeurs en temps réel des puissances totales, page 112

La méthode d'échantillonnage utilise les valeurs des courants et tensions harmoniques jusqu'au 15e ordre. La période d'échantillonnage est de 512 microsecondes.

Les valeurs des grandeurs électriques, mesurées ou calculées en temps réel, se mettent à jour toutes les secondes.

Mesure du courant neutre

Les déclencheurs MicroLogic tétrapolaires ou tripolaires avec option ENCT mesurent le courant neutre :

- Pour un déclencheur tripolaire, le courant neutre est mesuré en ajoutant un transformateur de courant spécial sur le conducteur neutre. Pour plus d'informations sur les transformateurs, reportez-vous à la documentation LVPED217032EN ComPact NSX & NSXm - Catalogue.
- Pour un déclencheur tétrapolaire, la mesure du courant de neutre est systématique.

La mesure du courant de neutre se fait de manière identique à celle des courants de phase.

Mesure du courant de défaut de terre

Le courant de défaut à la terre est calculé à l'aide des courants de phase selon la configuration du disjoncteur, comme indiqué dans les premières lignes du tableau suivant. Le courant de défaut à la terre est mesuré directement à l'aide d'un transformateur de courant situé sur la connexion SGR du transformateur à la terre.

Configuration du disjoncteur	Courant de défaut de terre lg
3P	Ig = I1 + I2 + I3
4P	Ig = I1 + I2 + I3 + IN
3P + ENCT	Ig = I1 + I2 + I3 + IN (ENCT)
3P ou 4P + SGR	Ig = ISGR

Mesure du courant de fuite à la terre (MicroLogic 7

Le courant de fuite à la terre est mesuré par un capteur intégré qui inclut les 3 phases ou les 3 phases et le neutre.

Mesure des tensions phase/neutre

Les déclencheurs MicroLogic tétrapolaires ou tripolaires avec option ENVT (MicroLogic5 et 6) mesurent les tensions phase-neutre (ou ligne-neutre) V1N, V2N et V3N :

- Pour un déclencheur tripolaire, il est nécessaire de :
 - Raccorder le fil de l'option ENVT au conducteur neutre.
 - Déclarer l'option ENVT avec le logiciel EcoStruxure Power Commission (protégé par mot de passe) ou en envoyant une commande de réglage via le réseau de communication (protégé par mot de passe).

NOTE: L'option ENVT ne peut pas être configurée sur un déclencheur MicroLogic 7.

• Pour les déclencheurs tétrapolaires, la mesure des tensions phase/neutre est systématique.

La mesure des tensions phase/neutre est effectuée de la même manière que celle des tensions phase/phase.

Calcul du courant moyen et de la tension moyenne

Les déclencheurs MicroLogic calculent :

le courant moyen Imoy, moyenne arithmétique des courants à 3 phases :

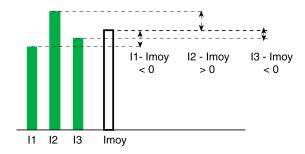
Imoy = (I1+I2+I3)/3

- les tensions moyennes :
 - V moy phase/phase, moyenne arithmétique des 3 tensions phase/phase :

$$Umoy = (U12+U23+U31)/3$$

 Vmoy phase/neutre, moyenne arithmétique des 3 tensions phase/neutre (déclencheur tétrapolaire ou tripolaire avec l'option ENVT (MicroLogic 5 ou 6)):

$$Vmoy = (V1N + V2N + V3N)/3$$

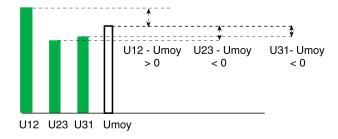

Mesure des déséquilibres de phase en courant et en tension

Les déclencheurs MicroLogic calculent les déséquilibres en courant pour chaque phase (3 valeurs).

Le déséquilibre en courant est un pourcentage du courant moyen :

$$Imoy = (I1+I2+I3)/3$$

Ik déséquilibre (%) =
$$\frac{lk - lmoy}{lmoy} \times 100$$
, où k = 1, 2, 3



Les déclencheurs MicroLogic calculent :

- les déséquilibres en tension phase/phase pour chaque phase (3 valeurs),
- les déséquilibres en tension phase/neutre (si présente) pour chaque phase (3 valeurs).

Le déséquilibre en tension est exprimé en pourcentage par rapport à la valeur moyenne de la grandeur électrique (Vmoy) :

Ujk déséquilibre (%) =
$$\frac{\text{Ujk - Umoy}}{\text{Umoy}}$$
 X 100 avec jk = 12, 23, 31

NOTE: Les valeurs de déséquilibre sont signées (valeurs relatives exprimées en pourcentage). Les valeurs maximales/minimales de déséquilibre sont des valeurs absolues exprimées en pourcentage.

Valeurs maximales/minimales

Les déclencheurs MicroLogic A et E déterminent en temps réel la valeur maximum (MAX) et la valeur minimum (MIN) atteintes par les grandeurs électriques désignées pour la période en cours.

Le déclencheur MicroLogic A (ampèremètre) détermine en temps réel :

- La valeur maximum (MAX) et la valeur minimum (MIN) du courant (pour chaque phase) atteintes durant la période en cours.
- Les valeurs maximum (MAXMAX) de tous les courants de phase et les valeurs minimum (MINMIN) de tous les courants de phase.

Le déclencheur MicroLogic E (énergie) détermine en temps réel la valeur maximum (MAX) et la valeur minimum (MIN) atteintes par les grandeurs électriques suivantes, organisées en groupes pour la période en cours :

- Intensité: Courants de phase, neutre et résiduel, courants moyens et déséquilibres en courant
- Tension : Tensions phase-phase et phase-neutre, tensions moyennes et déséguilibres en tension
- Puissance : Puissance totale et puissance pour chaque phase (active, réactive, apparente et de distorsion)
- Distorsion harmonique totale : taux THD en courant et en tension
- Fréquence
- Les valeurs maximum (MAXMAX) de tous les courants de phase et les valeurs minimum (MINMIN) de tous les courants de phase.

La période en cours pour un groupe commence à la dernière réinitialisation de l'une des valeurs maximum du groupe (voir détails ci-après).

Réinitialisation des valeurs maximum/minimum

Vous réinitialisez les valeurs maximum et minimum pour un groupe :

- En envoyant une commande de réinitialisation via le réseau de communication (protégé par mot de passe)
- Sur l'écran FDM121(protégé par mot de passe)

Vous réinitialisez les valeurs maximum et minimum dans un groupe à partir du clavier et à l'aide du menu pour les groupes suivants :

- Courants
- Tensions
- Puissances

Seules les valeurs maximum sont affichées, mais la remise à zéro est effectuée pour les valeurs maximum et minimum.

Calcul des valeurs Demand ((MicroLogic E)

Présentation

Le déclencheur MicroLogic E calcule :

- Les valeurs de la demande demand de courants phase, neutre et résiduel
- Les valeurs de la demande des puissances active, réactive et apparente

Chaque valeur de demande maximale (valeur de crête) est stockée dans la mémoire.

Les valeurs de demande sont mises à jour en fonction du type de fenêtre.

Définition

La valeur de demande d'une grandeur est une valeur moyenne calculée sur un intervalle défini.

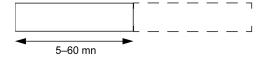
La valeur de demande d'une grandeur est indifféremment appelée :

- valeur moyenne (sur un intervalle)
- Demand
- valeur de demande (sur un intervalle)

Modèles de valeurs de demande

Le calcul de la valeur moyenne d'une grandeur sur un intervalle déterminé (fenêtre de mesure) est réalisé suivant deux modèles différents :

- · valeur moyenne arithmétique pour les puissances,
- · valeur moyenne quadratique (image thermique) pour les courants.


Fenêtre de mesure

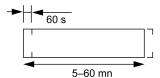
L'intervalle de temps spécifié T est choisi d'après trois types de fenêtre de mesure :

- fenêtre fixe,
- · fenêtre glissante,
- fenêtre synchronisée.

Fenêtre de mesure fixe

La durée de la fenêtre de mesure fixe peut être définie entre 5 et 60 minutes par incréments de 1 minute.

Par défaut, la durée de la fenêtre de mesure fixe est de 15 minutes.


A la fin de chaque fenêtre de mesure fixe :

 Le calcul de la valeur moyenne sur la fenêtre de mesure est effectué et mis à jour.

 Le calcul d'une nouvelle valeur moyenne est initialisé sur une nouvelle fenêtre de mesure.

Fenêtre de mesure glissante

La durée de la fenêtre de mesure glissante peut être définie entre 5 et 60 minutes par incréments de 1 minute.

Par défaut, la durée de la fenêtre de mesure glissante est de 15 minutes.

A la fin de la première fenêtre de mesure glissante et ensuite toutes les minutes :

- Le calcul de la valeur moyenne sur la fenêtre de mesure est effectué et mis à jour.
- Le calcul d'une nouvelle valeur moyenne est initialisé sur une nouvelle fenêtre de mesure :
 - en éliminant la contribution de la première minute de la fenêtre de mesure précédente,
 - en ajoutant la contribution de la minute en cours.

Fenêtre de mesure synchronisée

La synchronisation est effectuée à l'aide du réseau de communication.

A la réception de l'impulsion de synchronisation :

- La valeur de demande sur la fenêtre de mesure synchronisée est recalculée.
- Une nouvelle valeur de demande est calculée.

NOTE: La durée entre deux impulsions de synchronisation doit être inférieure à 60 minutes.

Valeur de demande quadratique (image thermique)

Le modèle de la valeur moyenne quadratique est représentatif de l'échauffement des conducteurs (image thermique).

L'échauffement créé par le courant I(t) durant l'intervalle de temps T est identique à celui créé par un courant constant Ith durant le même intervalle. Ith représente l'effet thermique du courant I(t) sur l'intervalle T. Si la période T est infinie, le courant Ith représente l'image thermique du courant.

La valeur moyenne selon le modèle thermique est calculée sur une fenêtre de mesure glissante.

NOTE: La valeur moyenne thermique est analogue à une valeur efficace.

NOTE: Les anciens appareils de mesure affichent naturellement un type de réponse thermique pour le calcul des valeurs de demande.

Valeur de demande arithmétique

Le modèle de la valeur moyenne arithmétique est représentatif de la consommation électrique et du coût associé.

Le calcul de la valeur moyenne suivant le modèle arithmétique peut être fait sur tous les types de fenêtres de mesure.

Valeur de la demande de pointe

Le déclencheur MicroLogic E indique la valeur maximale (pic) atteinte sur une période définie pour :

- Les valeurs de demande demand de courants phase, neutre et résiduel
- Les valeurs demand de puissances active, apparente et réactive

Les valeurs de demande sont organisées en deux groupes :

- · valeurs moyennes en courant,
- valeurs moyennes en puissance.

Réinitialisation des valeurs de pic de demande

Réinitialisez les pics d'un groupe :

- En envoyant une commande de réinitialisation via le réseau de communication (protégé par mot de passe)
- Sur l'afficheur FDM121

Mesure de puissance (MicroLogic E)

Présentation

Le déclencheur MicroLogic E calcule les quantités électriques nécessaires à la gestion des puissances :

- Valeurs instantanées des :
 - puissances actives (total Ptot et par phase) en kW
 - puissances réactives (total Qtot et par phase) en kvar
 - puissances apparentes (total Stot et par phase) en kVA
 - puissances réactives fondamentales (total Qfundtot et par phase) en kVAR
 - puissances de distorsion (total Dtot et par phase) en kVAR
- Valeurs maximales et minimales pour chacune de ces puissances
- Valeurs moyennées (ou demand) et pics pour les puissances totales Ptot, Qtot et Stot
- Indicateurs cos pet facteur de puissance FP
- Le quadrant de fonctionnement et le type de charge (capacitive ou inductive)

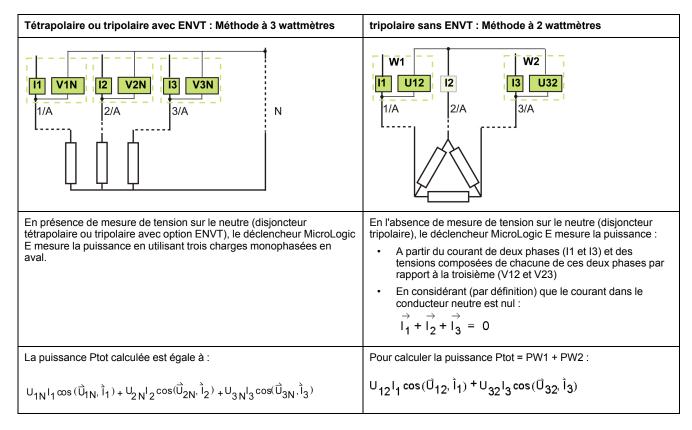
Toutes ces grandeurs électriques sont calculées en temps réel et leur valeur est mise à jour toutes les secondes.

Principe de la mesure des puissances

Le déclencheur MicroLogic E calcule les valeurs de puissance à partir des valeurs efficaces des courants et des tensions.

Le principe de calcul est fondé sur :

- la définition des puissances
- des algorithmes suivant le type de déclencheur (tripolaire ou tétrapolaire),
- la définition du signe des puissances (disjoncteur alimenté par le haut ou par le bas).


Algorithme de calcul

L'algorithme de calcul, à partir de la définition des puissances, est développé au paragraphe, page 115.

Les harmoniques sont utilisées dans les calculs (jusqu'à la 15e).

Disjoncteur tripolaire, disjoncteur tétrapolaire

L'algorithme de calcul dépend de la présence ou non de la mesure de tension sur le conducteur neutre.

Le tableau suivant indique les possibilités de mesure :

Méthode	Disjoncteur tripolaire, neutre non distribué	Disjoncteur tripolaire, neutre distribué	Disjoncteur tripolaire, neutre distribué, avec option ENVT	Disjoncteur tétrapolaire
2 wattmètres	✓	√ (1)	_	_
3 wattmètres	_	_	✓	✓
(1) La mesure est erronée dès qu'il y a un courant de circulation dans le neutre.				

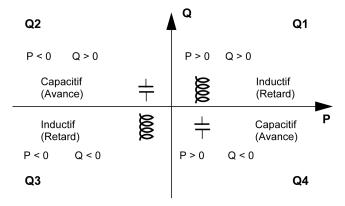
Disjoncteur tripolaire, neutre distribué

Pour activer l'option ENVT sur un disjoncteur tripolaire avec neutre distribué, il est nécessaire de :

- Raccorder le fil de l'option ENVT au conducteur neutre.
- Déclarez l'option ENVT avec le logiciel EcoStruxure Power Commission (protégé par mot de passe) ou en envoyant une commande de réglage via le réseau de communication (protégé par mot de passe).

NOTE: La simple déclaration de l'option ENCT ne permet pas le calcul correct des puissances. Il faut impérativement raccorder le fil de l'option ENVT sur le conducteur neutre.

Signe de la puissance et quadrant de fonctionnement


Par définition, les puissances actives sont :

- signées + quand elles sont consommées par l'utilisateur, c'est-à-dire quand l'appareil fonctionne en récepteur,
- signées quand elles sont consommées par l'utilisateur, c'est-à-dire quand l'appareil fonctionne en générateur.

Par définition, les puissances réactives sont :

- du même signe que les énergies et puissances actives quand le courant est en retard sur la tension, c'est-à-dire quand l'appareil est de type inductif,
- du signe contraire à celui des énergies et puissances actives quand le courant est en avance sur la tension, c'est-à-dire quand l'appareil est de type capacitif.

Ces définitions déterminent quatre quadrants de fonctionnement (Q1, Q2, Q3 et Q4) :

NOTE: Les valeurs des puissances sont :

- signées sur la communication (par exemple, lors de la lecture de l'écran FDM121).
- non signées lors de la lecture de l'écran LCD MicroLogic.

Raccordement par le haut ou par le bas à l'alimentation

Les disjoncteurs ComPact NSX peuvent être raccordés à l'alimentation par le haut (position standard considérée comme la position par défaut) ou par le bas : le signe de la puissance traversant le disjoncteur dépend du type de raccordement.

NOTE: Par défaut, le déclencheur MicroLogic E signe positivement les puissances traversant le disjoncteur alimenté par le haut avec les charges raccordées par le bas.

Les disjoncteurs alimentés par le bas doivent avoir des puissances signées négativement.

Vous pouvez modifier le paramètre du signe de Puissance :

- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Algorithme de calcul des puissances

Présentation

Les algorithmes sont indiqués pour les 2 méthodes de calcul (2 wattmètres et 3 wattmètres). Les définitions et le calcul des puissances sont indiqués pour un réseau avec harmoniques.

Le déclencheur MicroLogic E affiche toutes les quantités calculées comme suit :

- Sur l'écran d'affichage du déclencheur MicroLogic, page 37
- · Via le réseau de communication
- Sur l'afficheur FDM121

Avec la méthode de calcul des 2 wattmètres, aucune mesure de puissance par phase ne peut être délivrée.

Données d'entrée

Les données d'entrée sont les tensions et les courants pour chaque phase. Pour plus d'informations sur le calcul des harmoniques, reportez-vous à la section traitant des courants harmoniques, page 120.

$$\begin{array}{lll} u_{ij}(t) &= \sum_{n=1}^{15} U_{ijn} \sqrt{2} sin(n\omega t) & \text{et} & U_{ij} &= \sqrt{\sum_{n=1}^{15} U_{ijn}}^2 \\ v_i(t) &= \sum_{n=1}^{15} V_{in} \sqrt{2} sin(n\omega t) & \text{et} & V_i &= \sqrt{\sum_{n=1}^{15} V_{in}}^2 & \text{(déclencheur tétrapolaire ou tripolaire avec option ENVT)} \\ i_i(t) &= \sum_{n=1}^{15} I_{in} \sqrt{2} sin(n\omega t - \varphi_n) & \text{et} & I_i &= \sqrt{\sum_{n=1}^{15} I_{in}}^2 \\ avec & i, j = 1, 2, 3 \text{ (phase)} \end{array}$$

A partir de ces données, le déclencheur MicroLogic E calcule les différentes puissances suivant la séquence décrite ci-après.

Puissances actives

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT
La puissance active de chaque phase et totale est calculée.	Seule la puissance active totale peut être calculée.
$P_{i} = \frac{1}{T} \int_{T}^{V_{i}(t)} i_{i}(t) dt = \sum_{n=1}^{15} V_{in} I_{in} \cos(V_{in}, I_{in})$ avec i = 1, 2, 3 (phase)	_
$Ptot = P_1 + P_2 + P_3$	Ptot = Pw1 + Pw2

 P_{W1} et P_{W2} sont les puissances fictives calculées par la méthode des 2 wattmètres.

Puissances apparentes par phase

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT
La puissance apparente de chaque phase est calculée.	_
$S_i = (V_i . I_i)$ avec i = 1, 2, 3 (phase)	_

Puissances réactives avec harmoniques par phase

La puissance réactive avec harmoniques n'a pas de signification physique.

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT
La puissance réactive avec harmoniques de chaque phase est calculée.	_
	_
$Q_i = \sqrt{S_i^2 - P_i^2}$ avec i = 1, 2, 3 (phase)	

Puissances réactives

La puissance réactive du fondamental correspond à la puissance réactive physique.

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT
La puissance réactive de chaque phase et totale est calculée.	Seule la puissance réactive totale peut être calculée.
Qfund _i = $V_{1i}I_{1i}\sin\varphi_1$ avec i =1,2,3 (phase)	_
Qfundtot = Qfund ₁ + Qfund ₂ + Qfund ₃	Qfundtot = Qfundw1 + Qfundw2

QfundW1 et QfundW2 sont les puissances réactives fictives calculées par la méthode des 2 wattmètres.

Puissance de distorsion

La puissance déformante de distorsion est la différence quadratique entre la puissance réactive avec harmoniques et la puissance réactive (fondamental).

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT
La puissance de distorsion de chaque phase et totale est calculée.	Seule la puissance de distorsion totale peut être calculée.
$D_i = \sqrt{Q_i^2 - Qfund_i^2} \qquad \text{avec i = 1, 2, 3 (phase)}$	-
$Dtot = D_1 + D_2 + D_3$	Dtot = Dw1 + Dw2

Dw1 et Dw2 sont les puissances fictives calculées par la méthode des 2 wattmètres.

Puissance réactive totale (avec harmoniques)

La puissance réactive totale (avec harmoniques) n'a pas de signification physique.

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT	
La puissance réactive totale est calculée.	La puissance réactive totale est calculée.	
$Qtot = \sqrt{Qfundtot^2 + Dtot^2}$	$Qtot = \sqrt{Qfundtot^2 + Dtot^2}$	

Puissance apparente totale

Mesure sur un disjoncteur tétrapolaire ou tripolaire avec option ENVT	Mesure sur un disjoncteur tripolaire sans option ENVT	
La puissance apparente totale est calculée.	La puissance apparente totale est calculée.	
Stot = $\sqrt{\text{Ptot}^2 + \text{Qtot}^2}$	Stot = $\sqrt{\text{Ptot}^2 + \text{Qtot}^2}$	

Mesure de l'énergie (MicroLogic E)

Présentation

Le déclencheur MicroLogic E calcule les différents types d'énergie à l'aide de compteurs et fournit les valeurs suivantes :

- Energie active Ep, énergie active fournie EpOut et énergie active consommée EpIn
- Energie réactive Eq, énergie réactive fournie EqOut et énergie réactive consommée EqIn
- Energie apparente Es

Les valeurs des énergies sont indiquées en consommation horaire. Elles se mettent à jour toutes les secondes. Les valeurs sont enregistrées dans une mémoire non volatile toutes les heures.

NOTE: Lorsque le courant traversant le disjoncteur est trop faible (15-50 A, selon le calibre), le déclencheur MicroLogic E doit être alimenté par une source 24 Vcc externe pour le calcul de l'énergie. Reportez-vous à la section Alimentation des déclencheurs MicroLogic, page 22.

Principe de calcul des énergies

Par définition

L'énergie est l'intégration de la puissance instantanée sur une période T :

$$E = \int_{T} G \delta t$$
 avec $G = P$, Q ou S

- La valeur de la puissances instantanée active P et de la puissance réactive Q peut être positive (puissance consommée) ou négative (puissance fournie) selon le quadrant de fonctionnement, page 113.
- · La valeur de la puissance apparente S est toujours comptée positivement.

Compteurs d'énergie partielle

Pour chaque type d'énergie, active ou réactive, un compteur d'énergie partielle consommée et un compteur d'énergie partielle fournie calculent l'énergie accumulée en s'incrémentant toutes les secondes :

 de la contribution de la puissance instantanée consommée pour le compteur d'énergie consommée

E(t)In (consommée) =
$$\left(\sum_{t=1}^{\infty} Gin(u) + Gin\right) / 3600$$
 avec Gin= Plot ou Qtot consommée

 de la contribution en valeur absolue de la puissance fournie pour le compteur d'énergie fournie (la puissance fournie est toujours comptée négativement)

E(t)Out (fournie) =
$$\left(\left| \sum_{t=1}^{t} \text{Gout}(u) + \text{Gout} \right| \right) / 3600$$
 avec Gout= Ptot ou Qtot fournie

Le calcul est initialisé par la dernière action de réinitialisation.

Compteurs d'énergie

A partir des compteurs d'énergie partielle et pour chaque type d'énergie, active ou réactive, un compteur d'énergie fournit les mesures suivantes toutes les secondes

• Energie absolue, en effectuant la somme des énergies consommées et fournies. Le mode d'accumulation de l'énergie est absolu.

$$E(t)$$
absolue = $E(t)$ In + $E(t)$ Out

 Energie signée, en calculant la différence entre les énergies consommées et les énergies fournies. Le mode d'accumulation de l'énergie est signé.

$$E(t)$$
signée = $E(t)$ In – $E(t)$ Out

L'énergie apparente Es est toujours comptée positivement.

Choix du calcul de l'énergie

Le choix du calcul est déterminé par les informations recherchées :

- La valeur absolue de l'énergie ayant traversé les pôles d'un disjoncteur ou les câbles d'une installation électrique est un paramètre pertinent pour la maintenance d'une installation.
- Les valeurs signées de l'énergie fournie et de l'énergie consommée sont nécessaires au calcul du coût financier d'une installation.

Par défaut, le mode d'accumulation d'énergie absolue est paramétré.

Ce réglage peut être modifié :

- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Réinitialisation des compteurs d'énergie

Vous pouvez réinitialiser les compteurs d'énergie avec :

- Le réseau de communication (protégé par mot de passe)
- L'afficheur FDM121
- Une entrée du module IO

Il existe deux compteurs d'accumulation d'énergie active supplémentaires (EpIn et EpOut) que l'on ne peut pas remettre à zéro.

Courants harmoniques

Origine et effets des harmoniques

La présence d'un grand nombre de charges non linéaires sur un réseau électrique crée un niveau élevé de courants harmoniques dans ce réseau.

Ces courants harmoniques :

- déforment les ondes de courants et de tensions.
- · dégradent la qualité de l'énergie distribuée

Si les distorsions sont importantes, elles peuvent entraîner :

- des dysfonctionnements, voire des dégradations des équipements alimentés,
- des échauffements intempestifs des équipements et des conducteurs,
- · une sur-consommation

Ces différents problèmes augmentent les coûts d'installation et d'exploitation du système. Il est donc nécessaire de bien gérer la qualité de l'énergie.

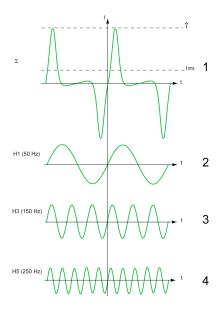
Définition d'un harmonique

Un signal périodique est une superposition des éléments suivants :

- Signal sinusoïdal d'origine à la fréquence fondamentale (par exemple, 50 Hz ou 60 Hz)
- Signaux sinusoïdaux dont les fréquences sont des multiples de la fréquence fondamentale, appelés harmoniques
- Tout composant CC

Ce signal périodique se décompose en une somme de termes :

$$y(t) = y_0 + \sum_{1}^{\infty} y_n (\sqrt{2} x \sin(n\omega t - \phi_n))$$


où:

- y₀: Valeur de la composante CC
- y_n: Valeur efficace de l'harmonique de rang n
- ω : Pulsation de la fréquence fondamentale
- \$\phi_n\$: Déphasage de la composante harmonique n

NOTE: La composante CC est généralement très faible (même en amont de ponts redresseurs) et peut être considérée comme nulle.

NOTE: L'harmonique de rang 1 est dite fondamentale (signal d'origine).

Exemple d'une onde de courant distordue par une composante harmonique :

1 Irms: Valeur efficace du courant total

2 I1: Courant fondamental

3 I3: Courant harmonique de rang 3

4 I5: Courant harmonique de rang 5

Courants et tensions efficaces

Les déclencheurs MicroLogic E affichent les valeurs efficaces des courants et des tensions.

 Le courant efficace totale I_{rms} est la racine carrée de la somme des carrés des courants efficaces de chaque harmonique, soit :

$$I_{eff} = \sqrt{\sum_{1}^{\infty} I_{neff}^{2}} = \sqrt{I_{1eff}^{2} + I_{2eff}^{2} + ... + I_{neff}^{2} + ...}$$

 La tension efficace totale U_{rms} est la racine carrée de la somme des carrés des tensions efficaces de chaque harmonique, soit :

$$U_{eff} = \sqrt{\sum_{1}^{\infty} U_{neff}^2} = \sqrt{U_{1eff}^2 + U_{2eff}^2 + ... + U_{neff}^2 + ...}$$

Niveau d'harmoniques acceptable

Différentes normes et réglementations définissent les niveaux d'harmoniques acceptables :

- Norme de compatibilité électromagnétique adaptée aux réseaux publiques en basse tension : IEC/EN 61000-2-2
- Normes de compatibilité électromagnétique :
 - Pour des charges inférieures à 16 A : IEC/EN 61000-3-2
 - Pour des charges supérieures à 16 A : IEC/EN 61000-3-4
- · Recommandations des distributeurs d'énergie applicables aux installations

Des études internationales ont permis d'identifier les valeurs typiques des harmoniques à ne pas dépasser.

Le tableau suivant indique les valeurs typiques des harmoniques en tension en pourcentage de :

Harmoniques impaires non multiples de 3		Harmoniques impaires multiples de 3		Harmoniques paires	
Rang (n)	Valeur en % de V ₁	Rang (n)	Valeur en % de V ₁	Rang (n)	Valeur en % de V ₁
5	6%	3	5%	2	2%
7	5%	9	1,5%	4	1%
11	3,5%	15	0,3%	6	0,5%
13	3%	>15	0,2%	8	0,5%
17	2%	_	-	10	0,5%
> 19	1,5%	-	-	>10	0,2%

NOTE: Les harmoniques de rang élevé (n > 15) ont des valeurs efficaces très faibles donc négligeables.

Mesure des indicateurs de qualité de l'énergie (MicroLogic E)

Présentation

Le déclencheur MicroLogic E met à disposition via réseau de communication les mesures et indicateurs de qualité nécessaires à la gestion de l'énergie :

- · Mesure des puissances réactives
- · Facteur de puissance FP
- cos ¢
- · Distorsion harmonique totale THD
- Mesure des puissances de distorsion

Les indicateurs de qualité de l'énergie considèrent :

- la gestion de l'énergie réactive (mesure du cos φ) pour optimiser le dimensionnement de l'installation et/ou éviter les pénalités tarifaires,
- la gestion des harmoniques pour éviter la dégradation et les dysfonctionnements de l'exploitation.

Utilisez ces mesures et indicateurs pour mettre en oeuvre des actions correctives en vue de maintenir la qualité de l'énergie.

THD du courant

Le THD du courant est défini par la norme IEC/EN 61000-2-2.

Le THD du courant est le pourcentage de la valeur efficace des courants harmoniques des rangs supérieurs à 1 par rapport à la valeur efficace du courant fondamental (rang 1). Le déclencheur MicroLogic E calcule la distorsion totale du courant harmonique THD jusqu'à la quinzième harmonique :

$$THD(I) = \frac{\sqrt{\sum_{1}^{15} I_{neff}}^{2}}{I_{1eff}} = \sqrt{\left(\frac{I_{eff}}{I_{1eff}}\right)^{2} - 1}$$

Le THD du courant peut être supérieur à 100 %.

Utilisez la distorsion harmonique totale THD(I) pour évaluer la déformation de l'onde de courant avec un seul nombre. Le tableau suivant indique les valeurs limites de THD.

Valeur THD(I)	Commentaires
THD(I) < 10%	Courants harmoniques faibles : peu de risques de dysfonctionnement.
10% < THD(I) < 50%	Courants harmoniques significatifs : risques d'échauffement, surdimensionnement de l'alimentation.
50% < THD(I)	Courants harmoniques très élevés : risques quasi certains de dysfonctionnement, de dégradation et d'échauffement dangereux, sauf si l'installation est calculée et dimensionnée en tenant compte de cette restriction.

La déformation de l'onde de courant créée par un appareil non linéaire avec valeur THD(I) élevée peut provoquer la déformation de l'onde de tension, selon le niveau de distorsion et l'impédance source. La déformation de l'onde de tension concerne tous les appareils alimentés. Par conséquent, cela peut affecter les appareils sensibles du système. Il se peut qu'un appareil avec valeur THD(I) élevée ne soit pas affecté mais qu'il provoque des dysfonctionnements sur d'autres appareils plus sensibles du système.

NOTE: La mesure de la valeur THD(I) est un moyen efficace de déterminer les risques de problèmes liés aux appareils des réseaux électriques.

THD de la tension

Le THD de la tension est défini par la norme IEC/EN 61000-2-2.

Le THD de la tension est le pourcentage de la valeur efficace des tensions harmoniques des rangs supérieurs à 1, en fonction de la valeur efficace de la tension fondamentale (rang 1). Le déclencheur MicroLogic E calcule le THD de la tension jusqu'à la quinzième harmonique :

$$THD(V) = \frac{\sqrt{\sum_{2}^{15} V_{neff}}^{2}}{V_{1eff}}$$

Théoriquement, ce facteur peut être supérieur à 100 %, mais en pratique il est rarement supérieur à 15 %.

Utilisez la distorsion harmonique totale THD(V) pour évaluer la déformation de l'onde de tension avec un seul nombre. Les valeurs limites suivantes sont couramment évaluées par les distributeurs d'énergie :

Valeur THD(V)	Commentaires
THD(V) < 5 %	Faible déformation de l'onde de tension : faible risque de dysfonctionnement.
5 % < THD(V) < 8 %	Déformation significative de l'onde de tension : risque d'échauffement et de dysfonctionnement.
8 % < THD(V)	Déformation très importante de l'onde de tension : risque très élevé de dysfonctionnement, sauf si l'installation est calculée et dimensionnée en fonction de cette déformation.

La déformation de l'onde de tension affecte tous les appareils alimentés.

NOTE: Utilisez l'indication THD(V) pour évaluer les risques de perturbations des appareils sensibles alimentés.

Puissance de distorsion D

En présence de pollution harmonique, le calcul de la puissance apparente totale fait intervenir 3 termes :

$$Stot^2 = Ptot^2 + Qtot^2 + Dtot^2$$

La puissance de distorsion D qualifie la perte d'énergie due à la présence de pollution harmonique.

Mesure du facteur de puissance FP et de cos φ (MicroLogic E

Facteur de puissance FP

Le déclencheur MicroLogic E calcule le facteur de puissance FP à partir de la puissance active totale Ptot et de la puissance apparente totale Stot :

$$FP = \frac{Ptot}{Stot}$$

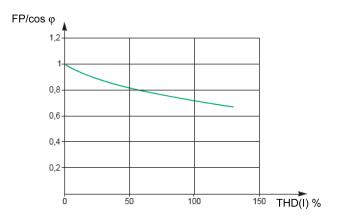
Cet indicateur qualifie:

- Le surdimensionnement nécessaire pour l'alimentation de l'installation en présence de courants harmoniques
- La présence de courants harmoniques par rapport à la valeur du cos φ.

cos ф

Le déclencheur MicroLogic E calcule le $\cos \phi$ à partir de la puissance active totale Pfundtot et de la puissance apparente totale Sfundtot de la fondamentale (rang 1):

$$cos \varphi = \frac{Pfundtot}{Sfundtot}$$


Cet indicateur qualifie l'utilisation de l'énergie fournie.

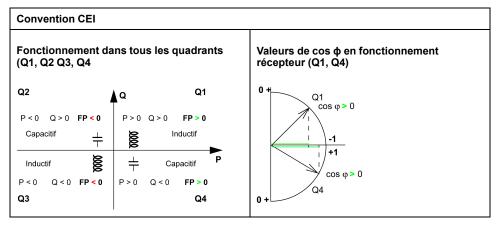
Facteur de puissance FP et cos φ en présence de courants harmoniques

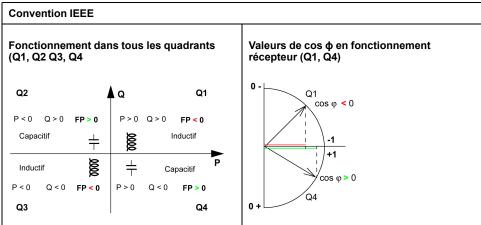
Si la tension du réseau n'est pas trop déformée, le facteur de puissance FP est exprimé en fonction du $\cos \phi$ et du THD(I)) par :

$$\mathsf{FP} \approx \frac{\mathsf{cos}\ \phi}{\sqrt{1 + \mathsf{THD}(\mathsf{I})^2}}$$

Le graphe ci-après indique la valeur de FP/cos φ en fonction de THD(I) :

La comparaison des deux valeurs permet d'estimer le niveau de distorsion harmonique de l'alimentation.


Signe du facteur de puissance FP et du cos ф


Deux conventions de signe peuvent être appliquées pour ces indicateurs :

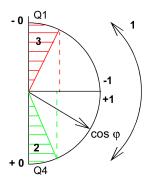
- Convention CEI: Le signe de ces indicateurs est strictement conforme aux calculs signés des puissances (c'est-à-dire Ptot, Stot, Pfundtot et Sfundtot).
- Convention IEEE: Les indicateurs sont calculés conformément à la convention CEI, mais multipliés par l'inverse du signe de la puissance réactive (Q).

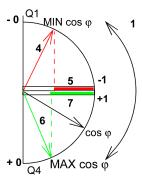
$$\text{FP} = \frac{\text{Ptot}}{\text{Stot}} \, x(-\text{signe}(Q)) \qquad \text{et} \qquad \cos \phi = \frac{\text{Pfundtot}}{\text{Sfundtot}} \, x(-\text{signe}(Q))$$

Les figures suivantes définissent le signe du facteur de puissance FP et du $\cos \phi$ par quadrant (Q1, Q2, Q3 et Q4) pour les deux conventions :

NOTE: Pour un équipement, une partie d'installation qui n'est que récepteur (ou générateur), l'intérêt de la convention IEEE est d'ajouter aux indicateurs FP et $\cos \phi$ le type de la composante réactive :

- Capacitive : signe positif des indicateurs FP et cos φ
- Inductive : signe négatif des indicateurs FP et cos φ


Gestion du facteur de puissance FP et de cos φ : Valeurs minimales et maximales


Objectifs de la gestion des indicateurs FP et $\cos \phi$:

- Définir les situations critiques
- Mettre en place la surveillance des indicateurs conformément à la définition des situations critiques

Les situations sont considérées critiques lorsque les valeurs des indicateurs sont proches de 0. Les valeurs minimum et maximum des indicateurs sont définies pour ces situations.

La figure ci-dessous illustre les variations de l'indicateur cos ϕ (avec définition du cos ϕ MIN/MAX) et sa valeur selon la convention IEEE pour une application récepteur :

- 1 Flèches indiquant la plage de variation du cos φ de la charge en exploitation
- 2 Zone critique + 0 pour les appareils fortement capacitifs (ombrage vert)
- 3 Zone critique 0 pour les appareils fortement inductifs (ombrage rouge)
- 4 Position minimale du cos φ (inductif) de la charge : flèche rouge
- **5** Plage de variation de la valeur du cos φ (inductif) de la charge : rouge
- 6 Position maximale du cos φ (capacitif) de la charge : flèche verte
- 7 Plage de variation de la valeur du cos φ (capacitif) de la charge : vert

FP MAX (ou $\cos \phi$ MAX) est obtenu pour la plus petite valeur positive de l'indicateur FP (ou $\cos \phi$).

FP MIN (ou cos ϕ MIN) est obtenue pour la plus grande valeur négative de l'indicateur FP (ou cos ϕ).

NOTE: Les valeurs minimum et maximum des indicateurs FP et $\cos \phi$ ne sont pas physiquement significatives : ce sont des marqueurs qui déterminent la zone de fonctionnement idéale de la charge.

Surveillance des indicateurs cos ϕ et FP

Selon la convention IEEE, les situations critiques en mode récepteur sur charge capacitive ou inductive sont détectées et différenciées (deux valeurs).

Le tableau ci-dessous indique le sens de variation des indicateurs et leur valeur en mode récepteur.

Convention IEEE		
Quadrant de fonctionnement	Q1	Q4
Sens de variation des cos φ (ou FP) sur la plage de fonctionnement	MIN MAX	MIN MAX
Valeur des cos φ (ou FP) sur la plage de fonctionnement	00,30,81	+1+0,8+0,40

Le MAX et le MIN de l'indicateur de qualité indiquent les deux situations critiques.

Selon la convention CEI, les situations critiques en mode récepteur sur charge capacitive ou inductive sont détectées mais non différenciées (une seule valeur).

Le tableau ci-dessous indique le sens de variation des indicateurs et leur valeur en mode récepteur.

Convention CEI		
Quadrant de fonctionnement	Q1	Q4
Sens de variation des cos φ (ou FP) sur la plage de fonctionnement	MAX MIN	MIN MAX
Valeur des cos φ (ou FP) sur la plage de fonctionnement	0+0,3+0,8+1	+1+0,8+0,40

Le MAX de l'indicateur de qualité indique les deux situations critiques.

Choix de la convention de signe du cos φ et du facteur de puissance FP

Vous définissez la convention de signe des indicateurs cos φ et FP :

- A l'aide du logiciel EcoStruxure Power Commission(protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Par défaut la convention IEEE est appliquée.

NOTE: Le choix de la convention de signe détermine aussi le choix des alarmes. Par exemple, la surveillance d'un indicateur d'alarme utilisant la convention CEI n'est pas correcte si la convention IEEE a été configurée.

Tableaux des précisions des mesures

Contenu de ce chapitre

Précision des mesures	130
MicroLogic A - Mesures en temps réel	131
MicroLogic E - Mesures en temps réel	
MicroLogic E - Mesures de valeur de demande	
MicroLogic E - Mesure de l'énergie	

Précision des mesures

Présentation

Les déclencheurs MicroLogic fournissent des mesures qui sont disponibles :

- Via le réseau de communication
- Sur l'écran FDM121 dans le menu Services ou Mesure.

Les mesures indiquées dans la liste suivante sont accessibles sur l'afficheur du déclencheur MicroLogic, page 37.

Les tableaux ci-après indiquent les mesures disponibles et pour chaque mesure :

- Unité
- Plage de mesure
- Précision
- · Plage de précision

Précision des mesures

Les déclencheurs répondent aux exigences de la norme IEC/EN 61557-12 selon :

- la classe 1, pour la mesure des courants,
- · la classe 2, pour la mesure des énergies.

La précision de chaque mesure est définie :

- Pour un déclencheur MicroLogic alimenté dans des conditions normales
- A une température de 23 °C +/-2 °C (73 °F +/-3 °F).

Pour une mesure effectuée à une autre température, dans la plage de température de -25 à +70 °C (-13 à +158 °F), le coefficient de déclassement de la précision en température est de 0,05 % par degré.

La plage de précision est la partie de la plage de mesure pour laquelle la précision définie est obtenue ; la définition de cette plage peut être liée aux caractéristiques de la charge du disjoncteur.

MicroLogic A - Mesures en temps réel

Mesure des courants

Mes	ure	Unité	Plage de mesure	Précision	Plage de précision
•	Mesures de courant de phase I1, I2, I3 et de neutre IN(1)	Α	0-20 In	+/-1 %	0,2-1,2 ln
•	Valeurs maximales des courants de phase I1 MAX, I2 MAX, I3 MAX et du neutre IN $\rm MAX^{(1)}$				
•	Valeur maximale (MAXMAX) de tous les courants de phase				
•	Valeurs minimales des courants de phase I1 MIN, I2 MIN, I3 MIN et du neutre IN $\mathrm{MIN}^{(1)}$				
•	Valeur minimale (MINMIN) de tous les courants de phase				
•	Mesures du courant moyen Imoy				
•	Valeur maximale du courant moyen Imoy MAX				
•	Valeur minimale du courant moyen Imoy MIN				
Micr	oLogic 6	% lg	0-600 %	_	_
•	Mesure du courant de défaut à la terre				
•	Valeurs maximale/minimale du courant de défaut à la terre				
(1) II	N avec déclencheur tétrapolaire ou tripolaire avec option ENCT				

MicroLogic E - Mesures en temps réel

Mesure des courants

Mesure	Unité	Plage de mesure	Précision	Plage de précision
Mesures de courant de phase I1, I2, I3 et de neutre IN ⁽¹⁾ Valeurs maximum des courants phase MAX I1, MAX I2, MAX I3 et du neutre MAX IN ⁽¹⁾ Valeur maximum (MAXMAX) de tous les courants de phase Valeurs de courant minimum des phases I1 MIN, I2 MIN, I3 MIN et du neutre IN MIN ⁽¹⁾ Valeur minimum (MINMIN) de tous les courants de phase Mesures du courant moyen Imoy Valeur maximale du courant moyen Imoy MAX Valeur minimale du courant moyen Imoy MIN	A	0–20 ln +/-	+/-1 %	0,2-1,2 In
MicroLogic 6 • Mesure du courant de défaut à la terre • Valeurs maximale/minimale du courant de défaut à la terre	% lg	0-600%	_	-
MicroLogic 7 Mesure du courant de fuite à la terre Valeurs maximale/minimale du courant de fuite à la terre	А	0-100	_	-
(1) IN avec déclencheur tétrapolaire ou tripolaire avec option ENCT	1		I	I

Mesure des déséquilibres en courant

La plage de précision s'applique à la plage suivante : 0,2-1,2 In.

Mes	sure	Unité	Plage de mesure	Précision	Plage de précision
•	Mesure des déséquilibres de phase en courant l1 déséq, l2 déséq, l3 déséq	% Imoy	-100–100 %	+/-2%	-100–100 %
•	Valeurs maximum des déséquilibres de phase en courant l2 déséq MAX, l3 déséq MAX				
•	Valeur maximum (MAXMAX) de tous les déséquilibres de phase				

NOTE:

- Les valeurs de déséquilibre sont signées (valeurs relatives).
- Les valeurs maximum (MAX) de déséquilibre ne sont pas signées (valeurs absolues).

Mesure des tensions

Mes	Mesure		Mesure		Plage de mesure	Précision	Plage de précision
•	Mesures de tension phase/phase V12, V23, V31 et phase/neutre V1N, V2N, V3N ⁽¹⁾	V	0-850	+/-0,5%	70-850		
•	Valeurs maximum des tensions phase/phase V12 MAX L-L, V23 MAX L-L, V31 MAX L-L et des tensions phase/neutre V1N MAX L-N, V2N MAX L-N, V3N MAX L-N (1)						
•	Valeur maximum des tensions phase/phase MAX (V12, V23, V31)						
•	Valeurs minimum des tensions phase/phase V12 MIN L-L, V23 MIN L-L, V31 MIN L-L et des tensions phase/neutre V1N MIN L-N, V2N MIN L-N, V3N MIN L-N (1)						
•	Valeur minimum des tensions phase/phase MIN (V12, V23, V31)						
•	Mesures des tensions moyennes Vmoy L-L et Vmoy L-N						
•	Valeur maximum des tensions moyennes Vmoy MAX L-L et Vmoy MAX L-N						
•	Valeur minimum des tensions moyennes Vmoy MIN L-L et Vmoy MIN L-N						

Mesure des déséquilibres en tension

La plage de précision s'applique à la plage de tension : 70-850 V.

Mesure	Unité	Plage de mesure	Précision	Plage de précision
Mesures des déséguilibres en tension phase/phase V12déség	% Vmoy L-L	-100–100 %	+/-1 %	-100–100 %
L-L, V23déséq L-L, V31déséq L-L et phase/neutre V1Ndéséq L-N, V2Ndéséq L-N, V3Ndéséq L-N (1)	% Vmoy L-N			
 Valeurs maximum des déséquilibres de tension phase/phase V12unbal MAX L-L, V23unbal MAX L-L, V31unbal MAX L-L et déséquilibres de tension phase/neutre V1Nunbal MAX L-L, V2Nunbal MAX L-L, V3Nunbal MAX L-L 1) 				
 Valeurs maximum (MAXMAX) des MAX des déséquilibres en tension phase/phase et phase/neutre (1) 				

NOTE:

- Les valeurs de déséquilibre sont signées (valeurs relatives).
- Les valeurs maximum (MAX) de déséquilibre ne sont pas signées (valeurs absolues).

Mesure des puissances

La précision concerne :

plage de courant : 0,1-1,2 In plage de tension : 70-850 V

• plage de cos φ : de -1 à -0,5 et de 0,5 à 1

Mes	ure	Unité	Plage de mesure	Précision	Plage de précision
	juement avec déclencheur tétrapolaire ou tripolaire avec on ENVT	kW	-1000 à 1000	+/-2 %	-1000 à -1
•	Mesure des puissances actives par phase P1, P2, P3				1 à 1000
•	Valeurs maximum des puissances actives par phase P1 MAX, P2 MAX, P3 MAX				
•	Valeurs minimum des puissances actives par phase P1 MIN, P2 MIN, P3 MIN				
•	Mesure de la puissance active totale Ptot	kW	-300 à 3000	+/-2 %	-3000 à -3
•	Valeur maximale de la puissance active totale Ptot MAX				3 à 3000
•	Valeur minimale de la puissance active totale Ptot MIN				
Unic	juement avec déclencheur tétrapolaire ou tripolaire avec on ENVT	kVAR	-1000 à 1000	+/-2 %	-1000 à -1
•	Mesure des puissances réactives par phase Q1, Q2, Q3				1 à 1000
•	Valeurs maximum des puissances réactives par phase Q1 MAX, Q2 MAX, Q3 MAX				
•	Valeurs minimum des puissances réactives par phase Q1 MIN, Q2 MIN, Q3 MIN				
•	Mesure de la puissance réactive totale Qtot	kVAR	-3000 à 3000	+/-2 %	-3000 à -3
•	Valeur maximale de la puissance réactive totale Qtot MAX				3 à 3000
•	Valeur minimale de la puissance réactive totale Qtot MIN				
	quement avec déclencheur tétrapolaire ou tripolaire avec on ENVT	kVA	-1000 à 1000	+/-2 %	-1000 à -1
•	Mesure des puissances apparentes par phase S1, S2, S3				1 à 1000
•	Valeurs maximum des puissances apparentes pour chaque phase S1 MAX, S2 MAX, S3 MAX				
•	Valeurs minimum des puissances apparentes pour chaque phase S1 MIN, S2 MIN, S3 MIN				
•	Mesure de la puissance apparente totale Stot	kVA	-3000 à 3000	+/-2 %	-3000 à -3
•	Valeur maximale de la puissance apparente totale Stot MAX				3 à 3000
•	Valeur minimale de la puissance apparente totale Stot MIN				
	uement avec déclencheur tétrapolaire ou tripolaire avec on ENVT	kVAR	-1000 à 1000	+/-2 %	-1000 à -1
•	Mesure des puissances réactives fondamentales par phase Qfond 1, Qfond 2, Qfond 3				1 à 1000
•	Valeurs maximum des puissances réactives fondamentales par phase Qfond 1 MAX, Qfond 2 MAX, Qfond 3 MAX				
•	Valeurs minimum des puissances réactives fondamentales par phase Qfond 1 MIN , Qfond 2 MIN , Qfond 3 MIN				
•	Mesure de la puissance réactive fondamentale totale Qfondtot	kVAR	-3000 à 3000	+/-2 %	-3000 à -3 3 à 3000
•	Valeur maximale de la puissance réactive fondamentale totale MAX Qfondtot				3 a 3000
•	Valeur minimale de la puissance réactive fondamentale totale MIN Qfondtot				

Mes	ure	Unité	Plage de mesure	Précision	Plage de précision
	Uniquement avec déclencheur tétrapolaire ou tripolaire avec option ENVT		-1000 à 1000	+/-2 %	-1000 à -1
•	Mesure des puissances de distorsion par phase D1, D2, D3				1 à 1000
•	Valeurs maximum des puissances de distorsion par phase D1 MAX, D2 MAX, D3 MAX				
•	Valeurs minimum des puissances de distorsion par phase D1 MIN, D2 MIN, D3 MIN				
•	Mesure de la puissance de distorsion totale Dtot	kVAR	-3000 à 3000	+/-2 %	-3000 à -3
•	Valeur maximale de la puissance de distorsion totale Dtot MAX				3 à 3000
•	Valeur minimale de la puissance de distorsion totale Dtot MIN				

Indicateurs de fonctionnement

Mesure	Unité	Plage de mesure	Précision	Plage de précision
Mesure du quadrant de fonctionnement	-	1, 2, 3, 4	-	_
Mesure du sens de rotation des phases	-	0, 1	-	_
Mesure du type de charge (capacitive/inductive)	-	0, 1	_	_

Indicateurs de qualité de l'énergie

La plage de précision concerne :
plage de courant : 0,1-1,2 In
plage de tension : 70-850 V

Mes	ure	Unité	Plage de mesure	Précision	Plage de précision
•	Mesure de :	_	-1,00 à 1,00	+/-2 %	-1,00 à -0,50
	 Facteurs de puissance PF1, PF2, PF3 et cos φ 1,cos φ 2, cos φ 3 pour chaque phase 				0,50 à 1,00
	Uniquement avec déclencheur tétrapolaire ou tripolaire avec option ENVT				
	 PF total et cos φ total 				
•	Valeurs maximales :				
	 par phase, des facteurs de puissance PF1 MAX, PF2 MAX, PF3 MAX et des cos φ 1 MAX, cos φ 2 MAX, cos φ 3 MAX 				
	o du facteur de puissance PF MAX et du cos φ MAX				
•	Valeurs minimales :				
	$^{\circ}$ des facteurs de puissance PF1 MIN, PF2 MIN, PF3 MIN et des cos ϕ 1 MIN, cos ϕ 2 MIN, cos ϕ 3 MIN				
	Uniquement avec déclencheur tétrapolaire ou tripolaire avec option ENVT				
	 du total PF MIN et du total cos φ MIN 				
•	Mesure des taux de distorsion harmonique totale THD en courant par phase THD(I1), THD(I2), THD(I3)	% Ifond	0->1000 %	+/-10 %	10-500 % I > 20 % In
•	Valeurs maximum de la distorsion harmonique totale en courant THD pour chaque phase THD(I1) MAX, THD(I2) MAX, THD(I3) MAX				1 × 20 /0 III
•	Valeurs minimum de la distorsion harmonique totale THD en courant pour chaque phase THD(I1) MIN, THD(I2) MIN, THD(I3) MIN				

Unité	Plage de mesure	Précision	Plage de précision
% Vfond L-L % Vfond L-N	0->1000 %	+/-5 %	2-500 % V >100 V
Hz	15-440	+/-0,2 %	45-65
	% Vfond L-L % Vfond L-N	% Vfond L-L 0—>1000 % % Vfond L-N	mesure

Image thermique du moteur (MicroLogic 6 E-M)

La plage de précision s'applique à la plage de courant : 0,2-1,2 ln.

Mesure	Unité	Plage de mesure	Précision	Plage de précision
Mesures de l'image thermique du moteur	% Ir	0–100 %	+/-1 %	0–100 %
Valeur maximale de l'image thermique du moteur				
Valeur minimale de l'image thermique du moteur				

MicroLogic E - Mesures de valeur de demande

Valeurs de demande et de crête de courant

Mesure	Unité	Plage de mesure	Précision	Plage de précision
Valeurs de demande en courant de phase (I1, I2, I3) et de neutre (IN) (1)	A	0–20 ln	+/-1,5%	0,2-1,2 ln
Valeurs de crête en courant de phase (I1, I2, I3) et de neutre (IN) (1)				
(1) IN avec déclencheur tétrapolaire ou tripolaire avec option ENCT				

Valeurs de demande et de crête de puissance

La plage de précision concerne :

plage de courant : 0,1-1,2 In plage de tension : 70-850 V

plage de cos φ : -1 à -0,5 et 0,5 à 1

Mesure	Unité	Plage de mesure	Précision	Plage de précision
 Valeur de demande de puissance active totale (Stot) Valeur de crête de puissance active totale (Ptot) 	kW	0-3000 kW	+/-2 %	3-3000 kW
 Valeur de demande de puissance réactive totale (Qtot) Valeur crête de puissance réactive totale (Qtot) 	kVAR	0-3000 kVAR	+/-2%	3-3000 kVAR
 Valeur de demande de puissance apparente totale (Stot) Valeur crête de puissance apparente totale (Stot) 	kVA	0-3000 kVA	+/-2 %	3-3000 kVA

MicroLogic E - Mesure de l'énergie

Compteurs d'énergie

La plage de précision concerne :

plage de courant : 0,1-1,2 Inplage de tension : 70-850 V

• plage de cos φ: -1 à -0,5 et 0,5 à 1

Mesure	Unité	Plage de mesure	Précision	Plage de précision
Mesure des énergies actives : Ep, EpIn fourni et EpOut consommé	kWh puis MWh	1 kWh à > 1000 TWh	+/-2 %	1 kWh à 1000 TWh
Mesure des énergies réactives : Eq, EqIn fourni et EqOut consommé	kVARh puis MVARh	1 kVARh à > 1000 TVARh	+/-2 %	1 kVARh à 1000 TVARh
Mesure de l'énergie apparente Es	kVAh puis MVAh	1 kVAh à > 1000 TVAh	+/-2 %	1 kVAh à 1000 TVAh

Alarmes

Contenu de cette partie

Alarmes associées aux mesures	140
Alarmes sur événement de déclenchement, de défaillance et de	
maintenance	144
Fableaux des alarmes	145
Fonctionnement des sorties des modules SDx et SDTAM affectées à des	
alarmes	150

Alarmes associées aux mesures

Présentation

Les déclencheurs MicroLogic 5, 6 et 7 surveillent les mesures via :

- Une ou deux préalarmes (suivant le type de déclencheur) affectées comme suit :
 - Protection long retard (PAL Ir) pour les déclencheurs MicroLogic 5
 - Protection long retard (PAL Ir) et protection contre les défauts à la terre (PAL Ig) pour les déclencheurs MicroLogic 6
 - Protection long retard (PAL Ir) et protection différentielle (PAL IΔn) pour les déclencheurs MicroLogic 7

Par défaut, ces alarmes sont activées.

 Dix alarmes définies par l'utilisateur au choix. L'utilisateur peut affecter chacune de ces alarmes à une mesure.

Par défaut, ces alarmes ne sont pas activées.

Toutes les alarmes associées à des mesures sont accessibles :

- · Via le réseau de communication
- Sur l'afficheur FDM121

Les alarmes associées aux mesures peuvent être affectées à une sortie de module SDx à l'aide du logiciel EcoStruxure Power Commission, page 150.

Paramétrage des alarmes

Vous sélectionnez les alarmes définies par l'utilisateur et définissez leurs fonctions à l'aide du logiciel EcoStruxure Power Commission.

Le paramétrage des alarmes consiste à :

- choisir le niveau de priorité des alarmes,
- régler les seuils d'activation des alarmes et les temporisations.

Les tableaux, page 145 de description des alarmes indiquent pour chacune des alarmes :

- la plage de réglages (seuils et temporisations),
- les valeurs de réglage par défaut.

Niveau de priorité des alarmes

Chaque alarme se voit attribuer un niveau de priorité :

- priorité haute ;
- priorité moyenne ;
- priorité basse ;
- aucune priorité.

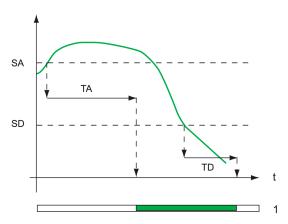
La signalisation des alarmes sur l'écran FDM121 dépend de leur niveau de priorité.

L'utilisateur définit le niveau de priorité de chaque alarme en fonction de l'urgence de l'action requise.

Par défaut, les alarmes sont de priorité moyenne sauf les alarmes associées aux indicateurs de fonctionnement qui sont de priorité basse.

Conditions d'activation des alarmes

Une alarme associée à une mesure est activée dans les cas suivants :


- La valeur augmente au-delà du seuil de mesure définissant les conditions de valeur excessive.
- La valeur chute en-deçà du seuil de mesure définissant les conditions de valeur insuffisante.
- · La valeur est égale au seuil de mesure définissant les conditions d'égalité.

La condition d'activation de l'alarme peut être préconfigurée à l'aide du logiciel EcoStruxure Power Commission.

Condition de valeur excessive

L'activation de l'alarme sur condition de valeur excessive est déterminée au moyen de deux seuils et de deux temporisations.

La figure ci-dessous illustre l'activation d'une alarme sur condition de valeur excessive.

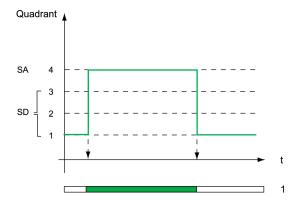
- SA Seuil d'activation
- **TA** Temporisation d'activation
- SD Seuil de désactivation
- TD Temporisation de désactivation
- 1 Zone d'activation d'alarme (en vert)

Condition de valeur insuffisante

L'activation de l'alarme sur condition de valeur insuffisante est déterminée au moyen de deux seuils et deux temporisations.

La figure ci-dessous illustre l'activation d'une alarme sur condition de valeur insuffisante.

- SA Seuil d'activation
- TA Temporisation d'activation
- SD Seuil de désactivation
- TD Temporisation de désactivation
- 1 Zone d'activation d'alarme (en vert)


Condition d'égalité

L'alarme est activée quand la grandeur surveillée associée est égale au seuil d'activation.

L'alarme est désactivée dès que la grandeur surveillée est différente du seuil d'activation.

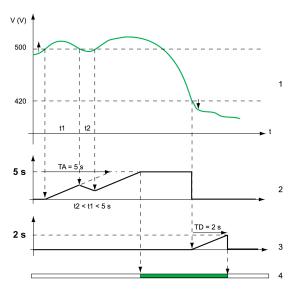
L'activation de l'alarme est déterminée au moyen des seuils d'activation/ désactivation.

La figure suivante illustre l'activation d'une alarme sur condition d'égalité (surveillance du quadrant 4) :

- SA Seuil d'activation
- SD Seuils de désactivation
- 1 Zone d'activation d'alarme du quadrant 4 (en vert)

Gestion des temporisations (condition de valeur excessive ou de valeur insuffisante)

La gestion des temporisations des alarmes est assurée par deux compteurs qui sont normalement à 0.


Pour le seuil d'activation, le compteur de la temporisation :

- · est incrémenté lorsque la condition d'activation est remplie,
- est décrémenté si la condition d'activation n'est plus remplie (avant la fin de la temporisation d'activation).

Si la condition de désactivation est atteinte, le compteur de la temporisation d'activation est remis à zéro et le compteur de la temporisation de désactivation est incrémenté.

Pour le seuil de désactivation, le même principe est utilisé.

Exemple: Gestion de la temporisation sur une alarme de surtension (code 79)

- 1 Evolution de la tension
- 2 Compteur de la temporisation d'activation à 5 s
- 3 Compteur de la temporisation de désactivation à 2 s
- 4 Zone d'activation de l'alarme de surtension (en vert)

Le compteur de temporisation d'activation de l'alarme se déclenche lorsque la tension franchit le seuil de 500 V. Il est incrémenté ou décrémenté suivant la valeur de la tension par rapport au seuil.

Le compteur de la temporisation de désactivation de l'alarme se déclenche au retour de la tension en dessous du seuil 420 V.

Alarmes sur événement de déclenchement, de défaillance et de maintenance

Présentation

Les alarmes sur événement de déclenchement, de défaillance et de maintenance sont toujours actives. Elles sont accessibles :

- Via le réseau de communication
- Sur l'afficheur FDM121

Certaines alarmes peuvent être affectées à une sortie de module SDx à l'aide du logiciel EcoStruxure Power Commission, page 150.

Paramétrage des alarmes

Les fonctions des alarmes sur événement de déclenchement et de défaillance sont imposés et ne sont pas modifiables.

Les fonction des deux alarmes de maintenance (seuil du compteur de dépassement d'opération OF et seuil du compteur de commandes de fermeture) peuvent être modifiées :

- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Niveau de priorité des alarmes

Affectez à chaque alarme un niveau de priorité :

- priorité haute;
- · priorité moyenne ;

Tableaux des alarmes

Préalarmes

Par défaut, les préalarmes sont actives et sont de priorité moyenne.

Libellé	Code	Plage de réglages		Réglage us	sine			
		Seuils (d'activation ou de				Temporis	ation	
		désactivation)	uon	Seuil	Désacti- vation	Seuil	Désacti- vation	
Pré-alarme Ir (PAL Ir)	1013	40–100 % Ir	1 s	90 % Ir	85 % Ir	1 s	1 s	
Pré-alarme Ig (PAL Ig) (déclencheur MicroLogic 6)	1014	40–100 % lg	1 s	90 % lg	85 % lg	1 s	1 s	
Pré-alarme IΔn (PAL IΔn) (déclencheur MicroLogic 7)	1015	50–80 % IΔn	1 s	80 % I∆n	75% I∆n	1 s	1 s	

Alarmes définies par l'utilisateur (MicroLogic A)

Libellé	Code	Plage de réglages		Réglage usine			
		Seuils (d'activation	Temporisa- tion	Seuils	Temporisa	Temporisation	
		ou de désactivation)			Seuil	Désactiva- tion	
Surintensité Inst I1	1	0,2–10 ln	1–3000 s	In	40 s	10 s	
Surintensité Inst I2	2	0,2–10 ln	1–3000 s	In	40 s	10 s	
Surintensité Inst I3	3	0,2–10 ln	1–3000 s	In	40 s	10 s	
Surintensité Inst IN	4	0,2–10 ln	1–3000 s	In	40 s	10 s	
Alarme de défaut à la terre (déclencheur MicroLogic 6)	5	10–100% lg	1-3000 s	40% lg	40 s	10 s	
Sous-intensité Inst I1	6	0,2–10 ln	1–3000 s	0,2 In	40 s	10 s	
Sous-intensité Inst I2	7	0,2–10 ln	1–3000 s	0,2 In	40 s	10 s	
Sous-intensité Inst I3	8	0,2–10 ln	1–3000 s	0,2 In	40 s	10 s	
Surintensité Imoy	55	0,2–10 ln	1–3000 s	In	60 s	15 s	
Surintensité I MAX (1, 2, 3)	56	0,2–10 ln	1–3000 s	In	60 s	15 s	
Sous-intensité IN	57	0,2–10 ln	1–3000 s	0,2 ln	40 s	10 s	
Sous-intensité Imoy	60	0,2–10 ln	1–3000 s	0,2 ln	60 s	15 s	
Sous-intensité I MIN (1, 2, 3)	65	0,2–10 ln	1–3000 s	0,2 In	60 s	15 s	

Alarmes définies par l'utilisateur (MicroLogic E)

Par défaut :

- Les alarmes définies par l'utilisateur ne sont pas actives.
- Les alarmes 1 à 144 sont de priorité moyenne.
- Les alarmes 145 à 150 sont de priorité basse.

Libellé	Code	Plage de réglages		Réglage usine)	
		Seuils (d'activation	Temporisa-	Seuils	Temporisation	
		ou de désactivation)	tion		Seuil	Désactiva- tion
Surintensité Inst I1	1	0,2–10 ln	1–3000 s	In	40 s	10 s
Surintensité Inst I2	2	0,2–10 In	1–3000 s	In	40 s	10 s
Surintensité Inst I3	3	0,2–10 In	1–3000 s	In	40 s	10 s
Surintensité Inst IN	4	0,2–10 In	1–3000 s	In	40 s	10 s
Alarme de défaut à la terre (déclencheur MicroLogic 6)	5	10–100% lg	1-3000 s	40% lg	40 s	10 s
Sous-intensité Inst I1	6	0,2–10 In	1–3000 s	0,2 In	40 s	10 s
Sous-intensité Inst I2	7	0,2–10 In	1–3000 s	0,2 In	40 s	10 s
Sous-intensité Inst I3	8	0,2–10 In	1–3000 s	0,2 In	40 s	10 s
Dépass déséq I 1	9	60 % Imoy	1–3000 s	25%	40 s	10 s
Dépass déséq I 2	10	60 % Imoy	1–3000 s	25%	40 s	10 s
Dépass déséq I 3	11	60 % Imoy	1–3000 s	25%	40 s	10 s
Surtension V1N	12	100-1100 V	1-3000 s	300 V	40 s	10 s
Surtension V2N	13	100-1100 V	1-3000 s	300 V	40 s	10 s
Surtension V3N	14	100-1100 V	1-3000 s	300 V	40 s	10 s
Sous-tension V1N	15	100-1100 V	1-3000 s	180 V	40 s	10 s
Sous-tension V2N	16	100-1100 V	1-3000 s	180 V	40 s	10 s
Sous-tension V3N	17	100-1100 V	1-3000 s	180 V	40 s	10 s
Dépass. déséq. U V1N	18	2%-30% Umoy	1-3000 s	10%	40 s	10 s
Dépass. déséq. U V2N	19	2%-30% Umoy	1-3000 s	10%	40 s	10 s
Dépass. déséq. U V3N	20	2%-30% Umoy	1-3000 s	10%	40 s	10 s
Dépass. total KVA	21	1-1000 kVA	1–3000 s	100 kVA	40 s	10 s
Dépass KW consommé	22	1–1000 kW	1–3000 s	100 kW	40 s	10 s
Puissance déwat. KW	23	1–1000 kW	1–3000 s	100 kW	40 s	10 s
Dépass kVAR consommé	24	1–1000 kVAR	1–3000 s	100 kVAR	40 s	10 s
Puissance déwat. kVAR	25	1–1000 kVAR	1–3000 s	100 kVAR	40 s	10 s
Sous-puiss tot KVA	26	1-1000 kVA	1–3000 s	100 kVA	40 s	10 s
Sous-puiss KW consom	27	1–1000 kW	1–3000 s	100 kW	40 s	10 s
Sous-puiss kVAR consom	29	1–1000 kVAR	1–3000 s	100 kVAR	40 s	10 s
PF capacitif (IEEE) (1)	31	0-0,99	1–3000 s	0,80	40 s	10 s
PF capa/inductif (CEI) (1)	33	0-0,99	1–3000 s	0,80	40 s	10 s
PF inductif (IEEE) (1)	34	-0,99-0	1–3000 s	-0,80	40 s	10 s
Surintensité THD I1	35	0–500 %	1-3000 s	15%	40 s	10 s
Surintensité THD I2	36	0–500 %	1-3000 s	15%	40 s	10 s
Surintensité THD I3	37	0–500 %	1-3000 s	15%	40 s	10 s
Dépass. THD V1N	38	0–500 %	1-3000 s	5 %	40 s	10 s
Dépass. THD V2N	39	0–500 %	1-3000 s	5 %	40 s	10 s
Dépass. THD V3N	40	0–500 %	1-3000 s	5 %	40 s	10 s
Dépass. THD V12	41	0–500 %	1-3000 s	5 %	40 s	10 s
Dépass. THD V23	42	0–500 %	1-3000 s	5 %	40 s	10 s
Dépass. THD V31	43	0–500 %	1-3000 s	5 %	40 s	10 s

Libellé	Code	Plage de réglages		Réglage usine		
		Seuils (d'activation	Temporisa-	Seuils	Temporisa	tion
		ou de désactivation)	tion		Seuil	Désactiva- tion
Courant de fuite à la terre (déclencheur MicroLogic 7)	54	50–80 % I∆n	1-3000 s	80% I∆n	40 s	10 s
Surintensité Imoy	55	0,2–10 In	1–3000 s	In	60 s	15 s
Surintensité I MAX (1, 2, 3)	56	0,2–10 In	1–3000 s	In	60 s	15 s
Sous-intensité IN	57	0,2–10 ln	1–3000 s	0,2 ln	40 s	10 s
Sous-intensité Imoy	60	0,2–10 ln	1–3000 s	0,2 In	60 s	15 s
Dépassement de demande I1	61	0,2-10,5 ln	1-3000 s	0,2 ln	60 s	15 s
Dépassement de demande l2	62	0,2-10,5 ln	1-3000 s	0,2 ln	60 s	15 s
Dépassement de demande I3	63	0,2-10,5 ln	1-3000 s	0,2 ln	60 s	15 s
Dépassement de demande IN	64	0,2-10,5 ln	1-3000 s	0,2 In	60 s	15 s
Sous-intensité I MIN (1, 2, 3)	65	0,2–10 ln	1–3000 s	0,2 ln	60 s	15 s
Au-dessous de la demande I1	66	0,2-10,5 ln	1-3000 s	0,2 In	60 s	15 s
Au-dessous de la demande l2	67	0,2-10,5 ln	1-3000 s	0,2 In	60 s	15 s
Au-dessous de la demande l3	68	0,2-10,5 ln	1-3000 s	0,2 In	60 s	15 s
Au-dessous de la demande IN	69	0,2-10,5 ln	1-3000 s	0,2 ln	60 s	15 s
Dépassement de Idéséq MAX	70	60 % Imoy	1–3000 s	25%	40 s	10 s
Surtension V12	71	100–1100 V	1–3000 s	500 V	40 s	10 s
Surtension V23	72	100-1100 V	1–3000 s	500 V	40 s	10 s
Surtension V31	73	100-1100 V	1–3000 s	500 V	40 s	10 s
Surtension Vmoy L-N	75	100-1100 V	1-3000 s	300 V	5 s	2 s
Sous-tension V12	76	100-1100 V	1-3000 s	320 V	40 s	10 s
Sous-tension V23	77	100-1100 V	1-3000 s	320 V	40 s	10 s
Sous-tension V31	78	100-1100 V	1-3000 s	320 V	40 s	10 s
Surtension MAX L-L	79	100-1100 V	1-3000 s	300 V	5 s	2 s
Sous-tension Vmoy L-N	80	100-1100 V	1-3000 s	180 V	5 s	2 s
Sous-tension MIN L-L	81	100-1100 V	1-3000 s	180 V	5 s	2
Dépassement de déséq U MAX L-L	82	2%–30% Umoy	1-3000 s	10%	40 s	10 s
Dépass. déséq. U V12	86	2%–30% Umoy	1-3000 s	10%	40 s	10 s
Dépass. déséq. U V23	87	2%-30% Umoy	1-3000 s	10%	40 s	10 s
Dépass. déséq. U V31	88	2%-30% Umoy	1-3000 s	10%	40 s	10 s
Dépassement de déséq U MAX L-L	89	2%–30% Umoy	1-3000 s	10%	40 s	10 s
Séquence de phase	90	0,1	-	0	-	-
Sous-fréquence	92	45/65 Hz	1–3000 s	45 Hz	5 s	2 s
Sur-fréquence	93	45/65 Hz	1–3000 s	65 Hz	5 s	2 s
Dépass puiss KW dmd	99	1–1000 kW	1–3000 s	100 kW	40 s	10 s
cos φ capacitif (IEEE) (1)	121	0-0,99	1–3000 s	0,80	40 s	10 s
cos φ capacitif/inductif (CEI) (1)	123	0-0,99	1–3000 s	0,80	40 s	10 s
cos φ inductif (IEEE) (1)	124	-0,99-0	1–3000 s	-0,80	40 s	10 s
Dépass T° image moteur (déclencheur MicroLogic 6 E-M)	125	0,2-10,5 ln	1-3000 s	In	60 s	15 s
Sous T° image moteur (déclencheur MicroLogic 6 E-M)	126	0,2-10,5 ln	1-3000 s	In	60 s	15 s

Libellé	Code	Plage de réglages		Réglage usine			
		Seuils (d'activation	Temporisa- tion	Seuils	Temporis	Temporisation	
		ou de désactivation)			Seuil	Désactiva- tion	
Surintens I1 Pic Dmd	141	0,2-10,5 ln	1-3000 s	In	60 s	15 s	
Surintens I2 Pic Dmd	142	0,2-10,5 ln	1-3000 s	In	60 s	15 s	
Surintens I3 Pic Dmd	143	0,2-10,5 ln	1-3000 s	In	60 s	15 s	
Surintens IN Pic Dmd	144	0,2-10,5 ln	1-3000 s	In	60 s	15 s	
Avance	145	0,0	1–3000 s	0	40 s	10 s	
Retard	146	1,1	1–3000 s	1	40 s	10 s	
Quadrant 1	147	1,1	1–3000 s	1	40 s	10 s	
Quadrant 2	148	2,2	1-3000 s	2	40 s	10 s	
Quadrant 3	149	3,3	1-3000 s	3	40 s	10 s	
Quadrant 4	150	4,4	1-3000 s	4	40 s	10 s	

⁽¹⁾ Le type des alarmes associées à la surveillance des indicateurs $\cos \phi$ et FP doit être obligatoirement homogène avec le choix de la convention de signe (IEEE ou CEI) de l'indicateur FP.

Alarmes sur événement de déclenchement

Libellé	Code	Sortie SDx	Priorité
Prot. long retard Ir	16384	Oui	Elevé
Prot. court retard Isd	16385	Oui	Elevé
Prot. instant. li	16386	Oui	Elevé
Défaut à la terre Ig	16387	Oui	Elevé
Prot. différentielle IΔn	16388	Oui	Elevé
Instantané intégré	16390	Non	Elevé
Défaut déclencheur (Stop)	16391	Oui	Elevé
Prot. instant. vigi (module externe)	16392	Non	Elevé
Déclenchement réflexe	16393	Non	Elevé
Déséquilibre phase	16640	Oui	Elevé
Rotor bloqué	16641	Oui	Elevé
Sous-charge moteur	16642	Oui	Elevé
Démarrage long	16643	Oui	Elevé
Indicateur de déclenchement SD	1905	Non	Moyenne

Alarmes sur événement de défaillance

Libellé	Code	Sortie SDx	Priorité
Echec BSCM (Stop)	1912	Oui	Elevé
Echec BSCM (Err)	1914	Oui	Moyenne

Alarmes sur événement de maintenance

Libellé	Code	Sortie SDx	Priorité
Dépassement opérations OF	1916	Oui	Moyenne
Dépassement cmdes de fermeture	1919	Oui	Moyenne
Usure sur les contacts	256	Oui	Moyenne

Fonctionnement des sorties des modules SDx et SDTAM affectées à des alarmes

Présentation

Les deux sorties du module SDx peuvent être affectées à deux alarmes à l'aide du logiciel EcoStruxure Power Commission. Elles sont activées (ou désactivées) par l'occurrence (ou la réalisation) :

- d'une alarme associée à une mesure, page 140
- d'une alarme sur événement déclenchement, défaillance et maintenance, page 144

Les deux sorties du module SDTAM pour les applications de départ moteur ne peuvent pas être configurées :

- La sortie 1 est affectée à la signalisation d'un défaut thermique moteur.
- La sortie 2 est utilisée pour ouvrir le contacteur.

Pour plus d'informations sur les modules SDx et SDTAM, reportez-vous à la documentation DOCA0140FR *ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.*

Affectation des sorties du module SDx

Toutes les alarmes sur événement de déclenchement, de défaillance et de maintenance ainsi que toutes les alarmes associées à une mesure peuvent être affectées à une sortie du module SDx.

Le réglage d'usine pour l'affectation des sorties du module SDx dépend du type de déclencheur MicroLogic installé sur le module.

Les 2 sorties sont affectées par défaut comme suit :

- MicroLogic Déclencheur 5 :
 - La sortie 1 est la signalisation de défaut thermique (SDT).
 - La sortie 2 est la pré-alarme long-retard (PAL Ir).
- MicroLogic Déclencheur 6 :
 - La sortie 1 est la signalisation de défaut thermique (SDT) pour les applications de distribution électrique.

La sortie 1 est **None** pour les applications de départ-moteur.

- La sortie 2 est la signalisation de défaut à la terre (SDG).
- MicroLogic Déclencheur 7 avec protection différentielle intégrée :
 - La sortie 1 est la signalisation de défaut thermique (SDT).
 - La sortie 2 est la signalisation de fuite à la terre (SDV).

Modes de fonctionnement des sorties du module SDx

Le mode de fonctionnement des sorties du module SDx peut être défini sur :

- Sans accrochage
- Avec accrochage
- Temporisé sans accrochage
- forcé à l'état fermé,
- Forcé à l'état ouvert

Fonctionnement en mode sans accrochage

La position de la sortie (S) suit les transitions de l'alarme associée (A).

A Alarme: Vert = activée, blanc = désactivée

S Sortie: Position haute = activée, position basse = désactivée

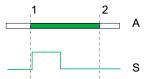
1 Transition d'activation de l'alarme

2 Transition de désactivation de l'alarme

Fonctionnement en mode avec accrochage

La position de la sortie (S) suit la transition active de l'alarme associée (A) et reste auto-maintenue quel que soit l'état de l'alarme.

A Alarme : Vert = activée, blanc = désactivée


S Sortie: Position haute = activée, position basse = désactivée

1 Transition d'activation de l'alarme

2 Transition de désactivation de l'alarme

Fonctionnement en mode temporisé sans accrochage

La sortie (**S**) suit la transition d'activation de l'alarme (**A**) associée. La sortie revient dans la position désactivée après une temporisation quel que soit l'état de l'alarme.

A Alarme: Vert = activée, blanc = désactivée

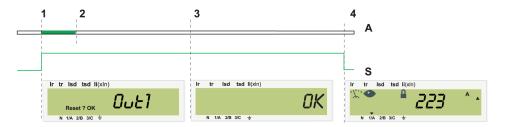
S Sortie : Position haute = activée, position basse = désactivée

1 Transition d'activation de l'alarme

2 Transition de désactivation de l'alarme

La plage de réglage de la temporisation va de 1 à 360 s. Le réglage de temporisation par défaut est 5 s. Définissez la temporisation à l'aide du logiciel EcoStruxure Power Commission.

Fonctionnement en mode forcé à l'état ouvert ou fermé


En mode forcé à l'état ouvert, la sortie est maintenue en position désactivée quel que soit l'état de l'alarme associée.

En mode forcé à l'état fermé, la sortie est maintenue en position activée quel que soit l'état de l'alarme associée.

NOTE: Ces 2 modes peuvent être utiles pour la mise au point ou la vérification d'une installation électrique.

Acquittement du mode avec accrochage

Acquittez le mode avec accrochage à l'aide du clavier du déclencheur MicroLogic en appuyant deux fois sur la touche oc.

A Alarme : Vert = activée, blanc = désactivée

S Sortie: Position haute = activée, position basse = désactivée

Etape	Evénement/Action	Informations à l'écran
1	Activation de l'alarme	Out1 s'affiche.
2	Désactivation de l'alarme	Le message Out1 reste affiché.
3	Confirmez la position activée de la sortie (deux pressions sur la touche pour confirmer)	OK s'affiche.
4	-	L'écran de veille est affiché.

Particularités du mode avec accrochage

Si la demande d'acquittement est faite alors que l'alarme est encore active :

- L'acquittement de la position active de la sortie n'est pas effectif.
- · La navigation au clavier est possible.
- L'écran de veille revient au message Out1.

Si les deux alarmes associées aux deux sorties en mode avec accrochage sont actives :

- Le message de la première alarme **Out1** (ou **Out2**) est affiché à l'écran jusqu'à l'acquittement effectif de l'alarme (la position active de la sortie est acquittée après désactivation de l'alarme).
- Après l'acquittement de la première alarme, l'écran affiche le message de la seconde alarme Out2 (ou Out1) jusqu'à l'acquittement effectif de la seconde alarme.
- Après les deux acquittements, l'afficheur revient à son écran de veille.

Affectation des sorties du module SDTAM

La sortie 1 (SD2/OUT1), normalement ouverte, est affectée à la signalisation d'un défaut thermique moteur.

La sortie 2 (SD4/OUT2), normalement fermée, permet l'ouverture du contacteur.

Elles sont activées 400 ms avant le déclenchement du disjoncteur en cas de :

- Protection long retard
- Protection contre le déséquilibre de phase

- Protection du moteur contre les blocages (MicroLogic 6 E-M)
- Protection contre les sous-charges (MicroLogic 6 E-M)

Assistance à l'exploitation

Contenu de cette partie

Etat du voyant	155
Indication sur l'afficheur MicroLogic	
Exemples d'utilisation des alarmes	163
Surveillance du cos φ et du facteur de puissance par alarme	164
Communications des disjoncteurs	167
Historiques et informations horodatées	
Indicateurs de maintenance	

État du voyant

Indicateur local

Le nombre et la signification des LED dépendent du type de déclencheur MicroLogic.

Type de déclencheur MicroLogic	Description
Distribution > >15A = >90 >105	Le voyant Ready (vert) clignote lentement lorsque les fonctions de protection standard du déclencheur électronique sont opérationnelles.
2 >15A	 Le voyant de pré-alarme de surcharge (orange) s'allume lorsque la charge dépasse 90 % du réglage lr.
ш	 Le voyant d'alarme de surcharge (rouge) s'allume lorsque la charge dépasse 105 % du réglage lr.
Moteur	 Le voyant Ready (vert) clignote lentement lorsque les fonctions de protection standard du déclencheur électronique sont opérationnelles.
Ready >95 W T° ○	Le voyant d'alarme de température de surcharge (rouge) s'allume lorsque l'image thermique du moteur dépasse 95 % du réglage lr.

Fonctionnement du voyant Ready

Le voyant **Ready** (vert) clignote lentement lorsque les fonctions de protection standard du déclencheur électronique sont opérationnelles. Il indique que le déclencheur fonctionne correctement.

Pour les déclencheurs MicroLogic 5 et 6 : le voyant **Ready** clignote à une valeur égale à la somme des courants du disjoncteur pour chaque phase et le neutre audessus d'une valeur limite. Cette valeur limite est indiquée au-dessus du voyant **Ready**, en face avant du déclencheur MicroLogic.

Le tableau ci-dessous illustre sur exemples la comparaison des courants phase et neutre avec la valeur limite d'activation du voyant **Ready**.

Déclencheur MicroLogic 5.2, calibre 40 A, 3 pôles	Déclencheur MicroLogic 5.3, calibre 400 A, 4 pôles		
La valeur limite est de 15 A.	La valeur limite est de 50 A.		
Cette valeur limite peut être :	Cette valeur limite peut être :		
La somme des intensités de courant phase de 5 A (3 phases équilibrées)	 La somme des intensités de 3 courants phase de 15 A et une intensité de courant neutre de 5 A 		
7,5 A par phase dans deux phases (l'intensité de courant dans la troisième phase est nulle)	 25 A par phase dans deux phases (l'intensité de courant dans la troisième phase et dans le neutre est nulle) 		
15 A dans une seule phase si le disjoncteur (tripolaire):	25 A dans une phase et dans le neutre (l'intensité du courant		
 est installé sur une distribution avec neutre distribué, 	dans les autres phases étant nulle)		
 a seulement une phase chargée sur une charge monophasée. 			
L'intensité du courant dans les autres phases est nulle.			

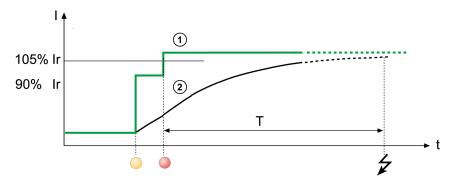
Le déclencheur MicroLogic 7 avec protection différentielle intégrée dispose d'une alimentation en tension interne (en plus de l'alimentation fournie par les transformateurs de courant) pour alimenter la protection différentielle même lorsque la demande en courant est faible. La LED **Ready** clignote quelle que soit la charge, indiquant que les fonctions de protection standard sont opérationnelles.

Fonctionnement des LED de préalarme et d'alarme (protection distribution électrique)

Les signalisations de préalarme (LED orange) et d'alarme (LED rouge) sont déclenchées dès que la valeur du courant d'une des phases dépasse respectivement 90 % et 105 % du réglage du seuil Ir.

Préalarme

Le dépassement du seuil de pré-alarme fixé à 90 % de lr n'a pas d'effet sur la protection long retard.

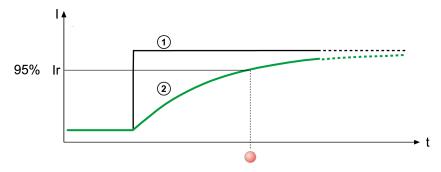

Alarme

Le dépassement du seuil d'alarme fixé à 105 % de lr active la protection long retard, page 56 avec une temporisation de déclenchement qui dépend :

- de la valeur du courant dans la charge,
- du réglage de la temporisation tr

NOTE: Si les LED de pré-alarme et d'alarme restent allumées, procédez à un délestage pour éviter les déclenchements causés par une surcharge du disjoncteur.

La figure suivante illustre les informations fournies par les LED :


- 1 Courant dans la charge (phase la plus chargée)
- 2 Image thermique calculée par le déclencheur

Fonctionnement des LED d'alarme (protection moteur)

La signalisation d'alarme (LED rouge) est déclenchée dès que la valeur de l'image thermique du moteur dépasse 95 % du réglage du seuil Ir.

Le franchissement du seuil de 95 % de Ir est une alarme de température : la protection long retard n'est pas activée.

La figure suivante illustre les informations fournies par la LED :

- 1 Courant dans la charge
- 2 Image thermique calculée par le déclencheur

Indication sur l'afficheur MicroLogic

Présentation

Les écrans de signalisation indiquent l'état de l'installation.

Les interventions de maintenance doivent être exécutées en fonction du niveau de priorité :

- · Configuré (alarmes : priorité haute, moyenne, basse ou pas de priorité)
- Prédéfini (événements de déclenchement et de défaillance : priorité haute ou moyenne)

Empilement des écrans

Lorsqu'un certain nombre d'événements arrivent simultanément, ils s'empilent en fonction de leur niveau de criticité : 0 (pas de criticité) à 4 (criticité élevée).

Criticité	Ecran (1)		
0	Ecran d'accueil		
1	Ecran d'alarme Outx		
2	Ecran de défaillance interne Err		
3	Ecran de défaut interne Stop		
4	Ecran de déclenchement Trip		
(1) Les écrans et leur procédure d'acquittement sont décrits ci-après.			

Exemple:

Une alarme sur une mesure de tension **Outx** puis une défaillance interne **Err** sont apparues :

- L'écran affiché est l'écran de défaillance interne Err (niveau de criticité = 2).
- Après acquittement de l'écran de défaillance interne Err, l'écran affiché devient l'écran d'alarme Outx (niveau de criticité = 1).
- Après acquittement de l'écran de défaillance interne **Outx**, l'écran affiché devient l'écran d'accueil (niveau de criticité = 0).

La même séquence d'acquittement doit être effectuée si la défaillance interne **Err** est apparue avant la mesure de tension **Outx**.

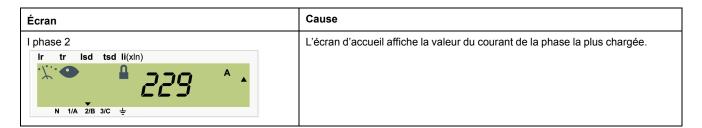
Consignes de sécurité

AADANGER

RISQUE D'ÉLECTROCUTION, D'EXPLOSION OU D'ARC ÉLECTRIQUE

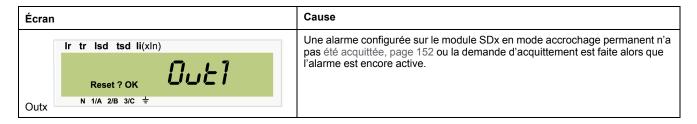
- Si le bloc déclencheur affiche le message St0p à l'écran, remplacez immédiatement bloc le déclencheur MicroLogic.
- Si le déclencheur affiche un défaut à l'écran, ne refermez pas le disjoncteur sans avoir vérifié et éventuellement réparé l'installation électrique aval.
- Portez un équipement de protection individuelle adapté et respectez les consignes de sécurité électrique courantes. Consultez le document NFPA 70E ou CSA Z462, ou son équivalent local.
- Seul un personnel qualifié est habilité à effectuer l'installation et l'entretien de cet appareil.
- Coupez toutes les alimentations à cet appareil avant d'y travailler.
- Utilisez toujours un appareil de détection de tension approprié pour vérifier que l'alimentation est coupée.
- Replacez tous les dispositifs, les portes et les capots avant de mettre l'appareil sous tension.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.


AATTENTION

RISQUE D'INFORMATION ERRONEE

S'il affiche un écran *E r r*, remplacez le déclencheur MicroLogic lors de la prochaine opération de maintenance de routine.


Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Signalisation de bon fonctionnement de l'installation

Signalisation d'une alarme

Disjoncteur avec option de module SDx

Vérifiez la cause de l'alarme et acquittez-la en appuyant deux fois sur la touche (validation et confirmation).

L'écran principal (valeur du courant de la phase la plus chargée) s'affiche.

Indication des défauts avec les déclencheurs MicroLogic 5, 6 et 7

Pour plus d'informations sur les définitions des protections associées aux signalisations, reportez-vous à la section traitant de la protection de la distribution électrique, page 51.

Écran	Cause
Courant de coupure Ir Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C =	Déclenchement par la protection long retard : Pointeur haut sur Ir, valeur de coupure affichée
Courant de coupure crête Isd Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C ÷	Déclenchement par la protection court retard : Pointeur haut sur lsd, valeur de coupure affichée
Courant de coupure crête li Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C ÷	Déclenchement par la protection instantanée ou réflexe : Pointeur haut sur li, valeur de coupure affichée
Ir tr Isd tsd Ii(xIn)	Déclenchement par la protection Instantané intégrée : Pointeur haut sur li, triP affiché
Ir tr Isd tsd Ii Ig tg Reset ? OK N 1/A 2/B 3/C =	MicroLogic 6 Déclenchement par la protection contre les défauts à la terre : Pointeur haut sur Ig , triP affiché
Ir tr Isd tsd II(xin) I\(\text{In } \Delta t\) Reset ? OK N. 1/A 2/B 3/C \(\frac{1}{2} \) MODE OK	MicroLogic 7 avec protection différentielle intégrée Déclenchement par la protection différentielle : Pointeur haut sur ΙΔn
Ir tr Isd tsd Ii(xIn) Reset ? OK N 1/A 2/B 3/C ÷	Déclenchement dû à l'absence d'option ENCT, car l'option ENCT a été déclarée lors du réglage des fonctions de protection du déclencheur MicroLogic. Installez l'option ENCT ou raccordez un cavalier entre les bornes T1 et T2 du déclencheur MicroLogic.

Indication des défauts avec un déclencheur MicroLogic 6 E-M

Pour plus d'informations sur les définitions des protections associées aux signalisations, reportez-vous à la section traitant de la protection des départs-moteur, page 79.

Écran	Cause
Ir CI. Isd Iunbal tunbal Ijam tjam Ig tg Reset ? OK N 1/A 2/B 3/C +	Déclenchement par la protection long retard : Pointeur haut sur Ir, triP affiché
Courant de coupure crête Isd Ir CI. Isd Iunbal tunbal Ijam tjam Ig tg Reset ? OK N 1/A 2/B 3/C =	Déclenchement par la protection court retard : Pointeur haut sur lsd, valeur de coupure affichée
Ir Cl. Isd lunbal tunbal ljam tjam lg tg Reset ? OK N 1/A 2/B 3/C =	Déclenchement par la protection instantanée ou réflexe : Inst affiché
Ir CI. S Isd Iunbal tunbal Ijam tjam Ig tg Reset ? OK N 1/A 2/B 3/C =	Déclenchement par la protection contre les défauts à la terre : Pointeur haut sur lg, triP affiché
Ir CI. Isd lunbal tunbal ljam tjam Ig tg Reset ? OK N 1/A 2/B 3/C ÷	Déclenchement par la protection contre les déséquilibres : Pointeur haut sur lunbal, triP affiché ⁽¹⁾
Ir CI. Isd Iunbal tunbal Ijam tjam Ig tg Reset ? OK N 1/A 2/B 3/C =	Déclenchement par la protection Blocage rotor : Pointeur haut sur Ijam, triP affiché ⁽¹⁾
Ir Cl. Isd lunbal tunbal ljam tjam lg tg Reset ? OK N 1/A 2/B 3/C +	Déclenchement par la protection contre les sous-charges : Undl affiché (1)
Ir Cl. Isd lunbal tunbal ljam tjam lg tg Reset ? OK N 1/A 2/B 3/C ÷	Déclenchement par la protection Démarrage long : Strt affiché
(1) Ces causes de déclenchement peuvent être gérées auto contacteur , page 150.	omatiquement par action de la sortie 2 (OUT2) du module SDTAM sur le

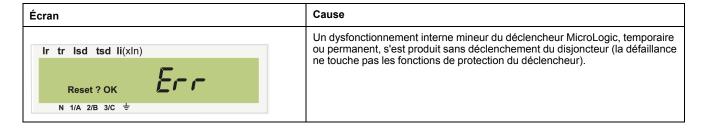
Acquittement des écrans de déclenchement

Acquittez les écrans de déclenchement en appuyant deux fois sur la touche (validation et confirmation).

AAVERTISSEMENT

RISQUE DE FERMETURE SUR DÉFAUT ÉLECTRIQUE

Ne refermez pas le disjoncteur sans préalablement vérifier et éventuellement réparer l'installation électrique aval.


Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Le déclenchement d'une protection n'élimine pas la cause du défaut sur l'installation électrique aval.

Etape	Action
1	Isolez l'entrée d'alimentation avant d'inspecter l'équipement électrique en aval.
2	Recherchez la cause du défaut.
3	Examinez l'équipement en aval et effectuez les réparations nécessaires.
4	Inspecter l'équipement en cas de déclenchement sur court-circuit.
5	Réarmez et fermez le disjoncteur.

Pour plus d'informations sur le dépannage et le redémarrage suite à un défaut, reportez-vous à la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100-630 A - Guide utilisateur.

Indication d'un dysfonctionnement interne mineur du déclencheur **MicroLogic**

AATTENTION

RISQUE D'INFORMATION ERRONÉE

Remplacez le déclencheur MicroLogic lors de la prochaine opération de maintenance.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Acquittement de l'écran Err

Acquittez l'écran **Err** en appuyant deux fois sur la touche (validation et confirmation):

- La touche Mode permet d'accéder aux mesures et aux réglages.
- L'écran **Err** devient l'écran principal si la défaillance est permanente.

Indication d'un dysfonctionnement interne majeur du déclencheur **MicroLogic**

Écran	Cause
Ir tr Isd tsd li(xln)	Un dysfonctionnement interne majeur s'est produit dans le déclencheur MicroLogic. Ce défaut fait déclencher le disjoncteur.
N 1/A 2/B 3/C ±	

AATTENTION

RISQUE D'INFORMATION ERRONÉE

Remplacez le déclencheur MicroLogic immédiatement.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Acquittement de l'écran StoP

L'écran **StoP** ne peut pas être acquitté à l'aide de la touche :

- Il n'est plus possible de fermer le disjoncteur.
- La touche Mode ne peut pas accéder aux mesures et aux réglages.
- L'écran **StoP** devient l'écran principal.

Ecran de signalisation de téléchargement de micrologiciel

Écran	Cause		
Ir tr Isd tsd li(xln)	Le déclencheur MicroLogic est en attente ou en cours de téléchargement du micrologiciel via le logiciel EcoStruxure Power Commission (durée : 3 minutes environ).		
	Les protections du déclencheur sont toujours opérationnelles.		
N 1/A 2/B 3/C ÷	 L'accès aux mesures et aux réglages (à l'aide des commutateurs rotatifs ou du clavier du déclencheur MicroLogic ou via le réseau de communication) est interrompu. 		
	Si le message boot persiste après plusieurs tentatives de téléchargement, remplacez le déclencheur MicroLogic.		

Exemples d'utilisation des alarmes

Présentation

Vous utilisez le logiciel EcoStruxure Power Commission pour sélectionner les éléments suivants :

- · Grandeur à surveiller
- Réglages des fonctions d'alarme

Condition de valeur excessive

Les alarmes sur condition de valeur excessive sont dédiées à la surveillance :

- · des surtensions
- des déséquilibres de phase (MicroLogic 6 E-M)
- · des surintensités
- · des surfréquences
- des déséquilibres en courant
- des dépassements de puissance
- des dépassements de distorsion harmonique totale (THD)

La valeur du seuil de désactivation est obligatoirement inférieure à celle du seuil d'activation.

Condition de valeur insuffisante

La valeur du seuil de désactivation est obligatoirement supérieure celle du seuil d'activation.

Les alarmes sur condition de valeur insuffisante sont dédiées à la surveillance :

- · des sous-tensions
- des sous-charges (MicroLogic 6 E-M)
- · des sous-fréquences

Alarmes sur condition d'égalité

Les mesures associées aux alarmes sur condition d'égalité correspondent à un état de la charge :

- · Quadrant de fonctionnement
- · Puissance réactive inductive ou capacitive

Surveillance du cos φ et du facteur de puissance par alarme

Gestion du cos φ et du facteur de puissance FP

La surveillance des indicateurs de $\cos \phi$ et de facteur de puissance FP dépend de la convention de signe choisie pour le facteur de puissance : convention IEEE ou convention CEI, page 126.

NOTE: Le type de l'alarme associée aux indicateurs, par exemple PF capacitif (IEEE) (code 31) ou PF capa/inductif (CEI) (code 33), doit être cohérent avec la convention de signe sélectionnée (IEEE ou CEI) de l'indicateur FP.

Vous sélectionnez la convention de signe pour l'indicateur FP :

- Avec le logiciel EcoStruxure Power Commission (protégé par mot de passe)
- En envoyant une commande de configuration via le réseau de communication (protégé par mot de passe)

Le réglage d'usine est la convention IEEE.

Valeurs maximum et minimum des indicateurs

- La valeur maximum de l'indicateur PF MAX (ou cos φ MAX) est obtenue pour la plus petite valeur positive du facteur de puissance (ou cos φ).
- La valeur minimum de l'indicateur PF MIN (ou cos φ MIN) est obtenue pour la plus grande valeur négative du facteur de puissance (ou cos φ).

Distribution électrique surveillée en convention IEEE

L'exemple suivant décrit la surveillance de la qualité de l'énergie par l'indicateur $\cos \phi$

Le tableau suivant présente l'historique des valeurs $\cos \phi$ de la charge d'un atelier en aval d'un disjoncteur ComPact NSX en convention IEEE :

Heure	Evolution de la charge	Convention IEEE		
		cos φ	cos φ MIN	cos φ MAX
t1 = 8 h 00 mn	Mise en service de la force motrice	- 0,4	- 0,4	- 0,4
t2 = 8 h 01 mn	Mise en service d'un système de compensation	- 0,9	- 0,4	- 0,9
t3 = 9 h 20 mn	Arrêt de la force motrice	+ 0,3	- 0,4	+ 0,3
t4 = 9 h 21 mn	Arrêt du système de compensation	- 0,95	- 0,4	+ 0,3

Interprétation des valeurs cos φ MIN/MAX et du cos φ en convention IEEE

Les valeurs cos ϕ MIN et cos ϕ MAX correspondent à la plage de variation du cos ϕ pour la charge. Cela fournit à l'utilisateur des informations sur la performance économique de son installation et permet d'installer des dispositifs de compensation si nécessaire. Les valeurs cos ϕ MIN et cos ϕ MAX sont accessibles sur l'afficheur FDM121.

Les valeurs du $\cos \phi$ de la charge indiquent en temps réel les actions éventuelles de correction :

- La valeur absolue trop faible d'un cos φ négatif (= 0,4) indique qu'il faut mettre en place des condensateurs pour remonter la valeur du cos φ de l'installation.
- La valeur trop faible d'un cos φ positif (= + 0,3) indique qu'il faut éliminer des condensateurs pour remonter la valeur du cos φ de l'installation.

Les deux alarmes sur le $\cos \phi$ en convention IEEE qui sont intégrées dans le déclencheur MicroLogic permettent de surveiller automatiquement les deux situations critiques.

Distribution électrique surveillée en convention CEI

Le tableau suivant présente l'historique des valeurs $\cos \phi$ de la charge d'un atelier en aval d'un disjoncteur ComPact NSX en convention CEI :

Heure	Evolution de la charge	Convention CEI		
		cos φ	cos φ MIN	cos φ MAX
t1 = 8 h 00 mn	Mise en service de la force motrice	+ 0,4	+ 0,4	+ 0,4
t2 = 8 h 01 mn	Mise en service d'un système de compensation	+ 0,9	+ 0,9	+ 0,4
t3 = 9 h 20 mn	Arrêt de la force motrice	+ 0,3	+ 0,9	+ 0,3
t4 = 9 h 21 mn	Arrêt du système de compensation	+ 0,95	+ 0,95	+ 0,3

Interprétation des valeurs du cos φ MAX et du cos φ en convention CEI

La valeur cos ϕ MAX correspond à la valeur minimum du cos ϕ de la charge, capacitive ou inductive. Cela fournit à l'utilisateur des informations sur la performance économique de son installation.

N'utilisez pas simplement la valeur de cos φ pour décider d'installer des inductances ou des condensateurs pour augmenter sa valeur.

En cas de situation critique, l'alarme sur le cos ϕ envoie une alerte conformément à la convention CEI intégrée dans le déclencheur MicroLogic. Utilisez cette alarme, associée à une alarme définissant le type de charge ou le quadrant de fonctionnement, pour surveiller automatiquement les deux situations critiques.

Réglage des alarmes sur cos φ en convention IEEE

Surveillez l'indicateur cos pour gérer la puissance :

- A la mise en service de la force motrice, une valeur trop élevée du cos φ (inductif), par exemple supérieure à -0,6, entraîne des pénalités. La valeur de compensation capacitive détermine la valeur de la puissance réactive Qfund.
- A l'arrêt de la force motrice, une valeur trop faible du cos φ (capacitif), par exemple inférieure à +0,6, entraîne des pénalités. Déconnectez l'élément de compensation capacitive.

Deux alarmes surveillent les indicateurs :

- Alarme 124 (surveillance du cos φ de type inductif) sur condition de valeur excessive pour le fonctionnement dans le quadrant 1 (énergie réactive inductive consommée)
- Alarme 121 (surveillance du cos φ de type capacitif) sur condition de valeur insuffisante pour le fonctionnement dans le quadrant 4 (énergie réactive capacitive consommée)

Vous définissez les paramètres de surveillance du cos φ (alarmes 121 et 124) d'après la convention IEEE à l'aide du logiciel EcoStruxure Power Commission.

Réglage des sorties du module SDx

Les deux alarmes définies peuvent être associées chacune à une SDxsortie du module , page 150 :

- A la sortie Out1, l'alarme de code 124 (surveillance du cos φ inductif)
- A la sortie Out2, l'alarme de code 121 (surveillance du cos φ capacitif)

A la mise en service de la force motrice au moment t2, la charge inductive est trop élevée et la sortie Out1 est activée (la sortie doit être configurée en mode avec accrochage permanent). L'afficheur du déclencheur MicroLogic indique :

Acquittement de l'écran Out1

L'acquittement de l'écran Out1 n'est possible que si l'alarme n'est plus active.

Après la mise en service de la compensation capacitive, l'alarme n'est plus active.

Appuyez sur la touche à deux reprises (validation et confirmation) pour acquitter la sortie Out1.

Communications des disjoncteurs

Présentation

Les disjoncteurs ComPact NSX munis de déclencheurs MicroLogic 5, 6 et 7 peuvent être intégrés dans un réseau de communication utilisant le protocole Modbus. Vous utilisez les données transmises par le réseau de communication pour assurer la supervision et la surveillance d'une installation.

La communication Modbus offre les possibilités suivantes :

- Lecture à distance
 - Etat du disjoncteur
 - Mesures
 - Informations d'aide à l'exploitation
- Commande à distance du disjoncteur

Pour plus d'informations sur le réseau de communications Modbus, reportez-vous à la documentation DOCA0091FR *ComPact NSX - Guide de la communication Modbus*.

Lecture à distance des états du disjoncteur

La lecture à distance de l'état du disjoncteur est accessible pour tous les disjoncteurs ComPact NSX équipés d'un module BSCM. Les informations suivantes sont disponibles via le réseau de communication :

- Position ouvert/fermé (OF)
- Indicateur de déclenchement (SD)
- Indicateur de défaut électrique (SDE)

Pour plus d'informations, reportez-vous à la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.

Lecture à distance des mesures

Vous accédez à la lecture des mesures avec les déclencheurs MicroLogic 5, 6 et 7

Pour plus d'informations sur les mesures, reportez-vous à la fonction de mesure, page 103.

Lecture à distance des informations d'aide à l'exploitation

Vous accédez à la lecture de l'aide à l'exploitation avec les déclencheurs MicroLogic 5, 6 et 7. Les informations suivantes sont disponibles :

- Réglages de protection, page 49
- · Réglages des alarmes, page 139
- Historiques et tableaux d'événements horodatés, page 169
- Indicateurs de maintenance, page 170

Commande à distance du disjoncteur

La commande à distance du disjoncteur est accessible à tout disjoncteur équipé d'un déclencheur MicroLogic, d'un module BSCM et d'un commande électrique communicant. Les commandes suivantes sont disponibles via le réseau de communication :

- Ouverture du disjoncteur
- Fermeture du disjoncteur
- Réarmement du disjoncteur

Pour plus d'informations, reportez-vous à la documentation DOCA0140FR ComPact NSX - Disjoncteurs et interrupteurs-sectionneurs100–630 A - Guide utilisateur.

Historiques et informations horodatées

Historique

Les déclencheurs MicroLogic génèrent les types d'historique suivants :

- historique des alarmes associées aux mesures (les 10 dernières alarmes sont enregistrées),
- historique des déclenchements (les 18 derniers déclenchements sont enregistrés),
- historique des opérations de maintenance (les 10 dernières opérations sont enregistrées).
- historique des réglages de la protection différentielle (réglages actuels et précédents enregistrés)
- Historique des tests de la protection différentielle. Les tests avec déclenchement et les tests sans déclenchement sont enregistrés dans le même historique (les 10 dernières opérations sont enregistrées)

Disponibilité

Vous pouvez consulter l'historique :

- Dans le logiciel EcoStruxure Power Commission
- Sur un contrôleur distant via le réseau de communication

Informations horodatées

Les informations horodatées affichent les dates d'informations importantes telles que les réglages de protection précédents et les valeurs minimum/maximum de courant, de tension et de fréquence réseau.

Le tableau des informations horodatées décrit :

- les configurations de protection précédentes et les dates correspondantes,
- les valeurs minimales et maximales des mesures de la tension et les dates correspondantes.
- les valeurs maximales des mesures de courant et les dates correspondantes,
- les fréquences réseau minimales et maximales et les dates correspondantes.

L'heure de réinitialisation des valeurs minimales et maximales est également disponible.

Indicateurs de maintenance

Compteurs du module BSCM

Les compteurs embarqués dans le module BSCM génèrent des informations relatives au nombre de manœuvres des contacts secs. Ces contacts secs qualifient :

- le nombre d'opérations ouvertures/fermeture (contact OF) et d'ouvertures sur défaut (contacts SD et SDE) du disjoncteur ComPact NSX
- le nombre de fermetures, d'ouvertures et de réinitialisation de la commande électrique

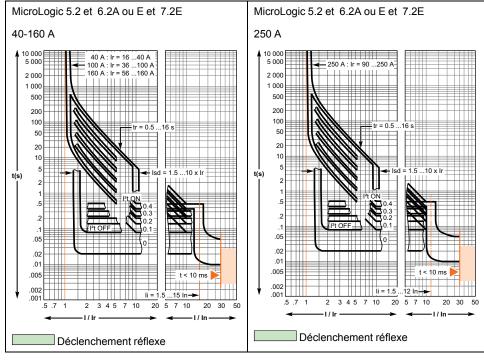
Compteurs des déclencheurs MicroLogic

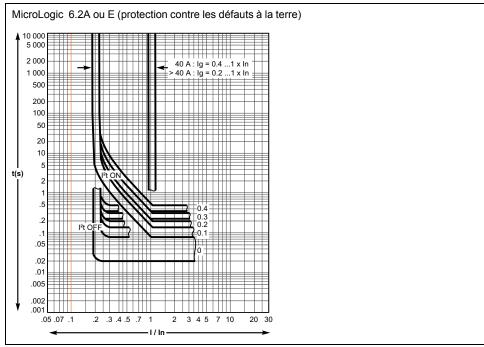
Vous accédez aux compteurs de maintenance intégrés dans le déclencheur MicroLogic à l'aide du réseau de communication.

- Des compteurs sont affectés à chaque type de protection :
 - Protection long retard
 - Protection court retard
 - Protection instantanée
 - Protection contre les défauts à la terre
 - Protection différentielle
 - Protection du moteur contre les blocages
 - protection contre le déséquilibre de phase
 - Protection du moteur contre le démarrage long
 - Protection du moteur contre les sous-charges
- Dix compteurs sont affectés aux alarmes associées aux mesures. Ces compteurs se réinitialise si l'alarme est reconfigurée.
- Un compteur indique le nombre d'heures de fonctionnement. Ce compteur est mis à jour toutes les 24 heures.
- Quatre compteurs sont affectés au profil de charge : Chaque compteur comptabilise le nombre d'heures de fonctionnement par tranche de taux de charge (par exemple, un compteur indique le nombre d'heures de fonctionnement pour la tranche 50 à 79 % de In).
- Six compteurs sont affectés au profil de température. Chacun d'eux compte le nombre d'heures de fonctionnement par section de température (par exemple, un compteur indique le nombre d'heures de fonctionnement pour la section de température 60-74 °C (60-165 °F)).
- Utilisez les compteurs de maintenance pour entrer des informations quantitatives concernant les opérations effectuées sur le déclencheur MicroLogic (comme le nombre de tests du bouton-poussoir de déclenchement) ou l'état du déclencheur MicroLogic (comme le nombre d'écrans **Err** ou d'opérations de verrouillage/déverrouillage des réglages de protection).
- Un compteur indique en pourcentage le taux d'usure des contacts du disjoncteur. Lorsque ce taux atteint 100 %, il faut changer les contacts.

Annexes

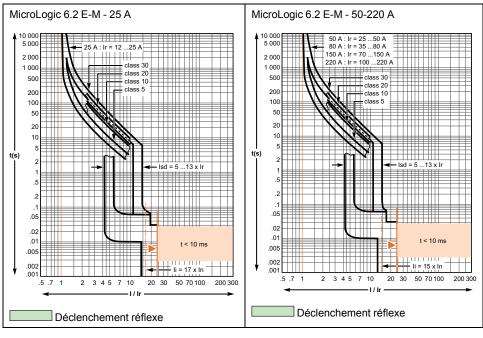
Contenu de cette partie

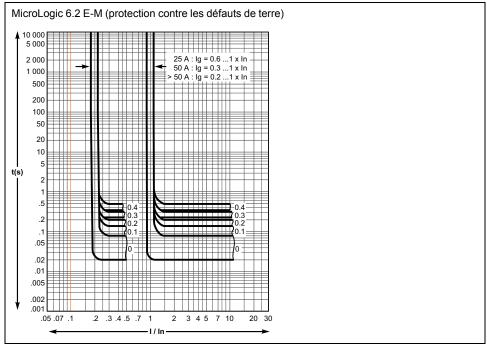

Autres caractéristiques


Contenu de ce chapitre

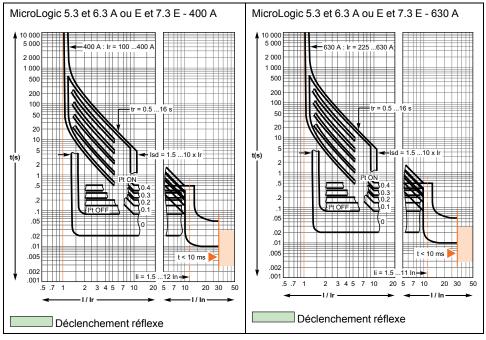
ComPact NSX100-250 - Protection de la distribution	173
ComPact NSX100-250 - Protection des départs-moteurs	174
ComPact NSX400-630 - Protection de la distribution	175
ComPact NSX400-630 - Protection des départs-moteurs	176
ComPact NSX100-630 - Déclenchement réflexe	177
ComPact NSX100-630 - Courbes de limitation	178

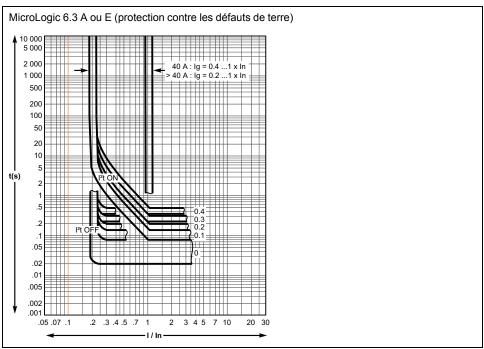
ComPact NSX100-250 - Protection de la distribution


MicroLogic Déclencheurs 5.2 et 6.2 A ou E et 7.2 E

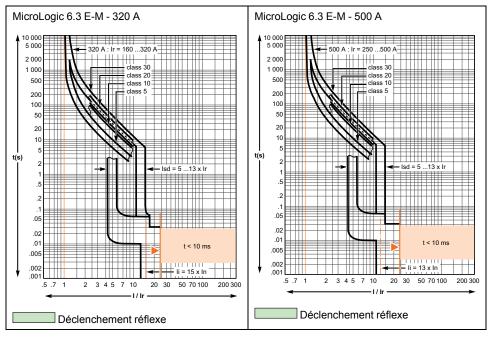


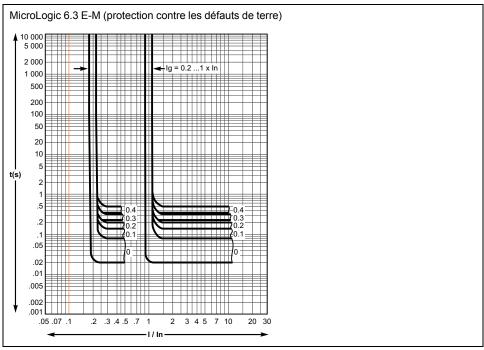
ComPact NSX100-250 - Protection des départs-moteurs


MicroLogic 6.2 E-M



ComPact NSX400-630 - Protection de la distribution


MicroLogic 5.3 et 6.3 A ou E et 7.3 E

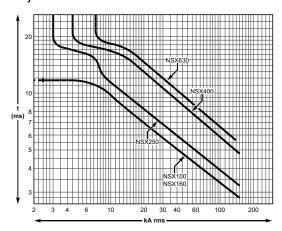


ComPact NSX400-630 - Protection des départs-moteurs

Déclencheur MicroLogic 6.3 E-M

ComPact NSX100-630 - Déclenchement réflexe

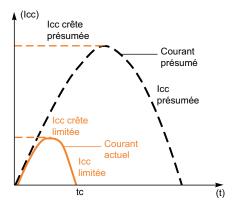
Présentation


Les appareils ComPact NSX intègrent le système de déclenchement réflexe exclusif.

Ce système coupe les courants de défaut très élevés.

Le disjoncteur est déclenché mécaniquement à l'aide d'un "piston" actionné directement par le court-circuit.

Pour les courts-circuits de valeur élevée, ce système assure une coupure plus rapide et garantit ainsi la sélectivité.


Les courbes de déclenchement réflexe sont exclusivement fonction du calibre du disjoncteur.

ComPact NSX100-630 - Courbes de limitation

Présentation

La capacité de limitation d'un disjoncteur est son aptitude à laisser passer, lors d'un court-circuit, un courant qui est inférieur au courant de court-circuit prospectif.

L'exceptionnelle capacité de limitation de la gamme ComPact NSX est due à la technique de double coupure rotative (répulsion naturelle très rapide des contacts et apparition de deux tensions d'arc en série avec un front d'onde très abrupt).

Ics = 100 % de Icu

L'exceptionnelle capacité de limitation de la gamme ComPact NSX réduit considérablement les forces créées par les défauts dans les appareils.

Il s'ensuit une augmentation importante de la performance de coupure.

En particulier, la capacité de coupure de service lcs est égale à 100 % de lcu.

La valeur lcu, définie par la norme IEC/EN 60947-2, est garantie par des tests comprenant les étapes suivantes :

- Couper trois fois consécutives avec un courant de défaut égal à 100 % de Icu
- Vérifier que le disjoncteur continue de fonctionner normalement, à savoir :
 - Il conduit le courant nominal sans hausse anormale de la température.
 - Les fonctions de protection s'exécutent au sein des limites spécifiées par la norme.
 - L'adaptation à l'isolement n'est pas altérée.

Allongement de la durée de service des installations électriques

Les disjoncteurs à limitation de courant réduisent considérablement les effets négatifs des courts-circuits sur les installations.

· Effets thermiques :

Réduction de la hausse de température dans les conducteurs, d'où une plus longue durée de service des câbles.

· Effets mécaniques :

Réduction des forces électrodynamiques, d'où un moindre risque de déformation et de rupture de barres de bus ou de contacts électriques.

Effets électromagnétiques :

Réduction des perturbations pour les appareils de mesure proches de circuits électriques.

Economie due à la technique de cascade

La technique de cascade est directement dérivée de la limitation de courant. Il est possible d'installer en aval d'un disjoncteur à limitation de courant un disjoncteur dont les capacités de coupure sont inférieures au courant de court-circuit prospectif. La capacité de coupure est renforcée par la capacité de limitation de l'appareil en amont. Il s'ensuit que des économies substantielles peuvent être réalisées sur les équipements et les armoires en aval de l'installation.

Courbes de limitation de courant et d'énergie

La capacité de limitation d'un disjoncteur est exprimée par deux courbes qui sont fonction du courant de court-circuit prospectif (le courant qui passerait si aucun dispositif de protection n'était installé) :

- Courant de crête réel (courant limité)
- Contrainte thermique (A²s), c'est-à-dire l'énergie dissipée par le court-circuit dans les conditions d'une résistance de 1 Ω.

Exemple:

Quelle est la valeur réelle d'un court-circuit prospectif de 150 kA efficaces (soit une crête de 330 kA) limité par un NSX250L en amont ?

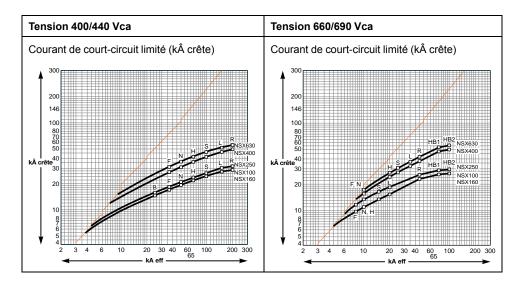
La réponse est une crête de 30 kA, page 180.

Contraintes maximales admissibles pour les câbles

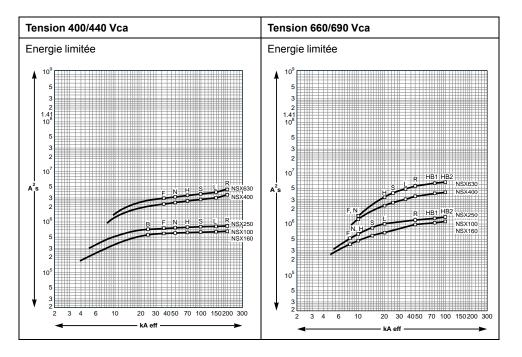
Le tableau suivant indique les contraintes thermiques maximales admissibles pour les câbles en fonction de leur isolation, du conducteur (cuivre ou aluminium) et de la surface de leur section transversale (CSA). Les valeurs de CSA sont indiquées en mm² et les contraintes thermiques en A²s.

CSA	Conducteur	1,5 mm²	2,5 mm²	4 mm²	6 mm²	10 mm²
PVC	Cu	2,97x10 ⁴	8,26x10 ⁴	2,12x10 ⁵	4,76x10 ⁵	1,32x10 ⁶
	Al	_	_	_	_	5,41x10 ⁵
PRC	Cu	4,1x10 ⁴	1,39x10 ⁵	2,92x10 ⁵	6,56x10 ⁵	1,82x10 ⁶
	Al	_	_	_	_	7,52x10 ⁵

CSA	Conducteur	16 mm²	25 mm ²	35 mm²	50 mm²
PVC	Cu	3,4x10 ⁶	8,26x10 ⁶	1,62x10 ⁷	3,31x10 ⁷
	Al	1,39x10 ⁶	3,38x10 ⁶	6,64x10 ⁶	1,35x10 ⁷
PRC	Cu	4,69x10 ⁶	1,39x10 ⁷	2,23x10 ⁷	4,56x10 ⁷
	Al	1,93x10 ⁶	4,7x10 ⁶	9,23x10 ⁶	1,88x10 ⁷


Exemple:

Un câble Cu/PVC de CSA 160 mm² est-il protégé de manière appropriée par un NSX160F ? Le tableau précédent indique que la contrainte admissible est de 1,32x10⁶ A²s.


Au point où un NSX160F (Icu = 35 kA) est installé, tous les courants de court-circuit sont limités avec une contrainte thermique inférieure à $6 \times 10^5 \text{ A}^2 \text{s}$.

La protection du câble est donc assurée jusqu'à la limite de la capacité de coupure du disjoncteur.

Courbes de limitation de courant

Courbes de limitation d'énergie

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison

+ 33 (0) 1 41 29 70 00

www.se.com

Les normes, spécifications et conceptions pouvant changer de temps à autre, veuillez demander la confirmation des informations figurant dans cette publication.

© 2022 Schneider Electric. Tous droits réservés.