
www.schneider-electric.com01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301
Fieldbus interface
Fieldbus manual
V2.01, 11.2008

2 Fieldbus interface

 Important information IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Important information

This manual is part of the product.

Carefully read this manual and observe all instructions.

Keep this manual for future reference.

Hand this manual and all other pertinent product documentation over to
all users of the product.

Carefully read and observe all safety instructions and the chapter "Be-
fore you begin - safety information".

Some products are not available in all countries.
For information on the availability of products, please consult the cata-
log.

Subject to technical modifications without notice.

All details provided are technical data which do not constitute warranted
qualities.

Most of the product designations are registered trademarks of their re-
spective owners, even if this is not explicitly indicated.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 Table of Contents

Fieldbus interface 3

Table of Contents

Important information. 2

Table of Contents . 3

Writing conventions and symbols. 7

1 Introduction . 9

1.1 About this manual . 9

1.2 CAN-Bus . 9

1.3 Fieldbus devices networked via CAN bus 10

1.4 Operating modes and functions in fieldbus mode 10

1.5 Documentation and literature references 11

2 Before you begin - safety information. 13

3 Basics. 15

3.1 CANopen technology . 15
3.1.1 CANopen description language 15
3.1.2 Communication layers . 15
3.1.3 Objects . 16
3.1.4 CANopen profiles . 18

3.2 Communication profile. 19
3.2.1 Object dictionary. 19
3.2.2 Communication objects . 21
3.2.3 Communication relationships 24

3.3 Service data communication . 26
3.3.1 Overview. 26
3.3.2 SDO data exchange . 26
3.3.3 SDO message . 27
3.3.4 Reading and writing data . 28

3.4 Process data communication . 31
3.4.1 Overview. 31
3.4.2 PDO data exchange . 32

3.5 Synchronization. 44

3.6 Network management services. 46
3.6.1 NMT services for device control 46
3.6.2 NMT services for connection monitoring 48

4 Installation . 51

4 Fieldbus interface

 Table of Contents IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

5 Commissioning. 53

5.1 Commissioning the device . 53

5.2 Address and baud rate . 54

5.3 Commissioning the fieldbus network 54
5.3.1 Starting fieldbus mode . 54
5.3.2 Troubleshooting . 55

5.4 SyCon CANopen configuration software 56
5.4.1 Creating a new network . 56
5.4.2 Selecting the CANopen master 56
5.4.3 Setting the bus parameters 57
5.4.4 Selecting and inserting nodes 58

6 Operation. 59

6.1 Overview. 59

6.2 Using SDO commands . 61
6.2.1 Writing parameters. 61
6.2.2 Reading a parameter . 62
6.2.3 Synchronous errors . 62

6.3 Changing operating states with PDO4 63
6.3.1 Switching the power stage on and off 64
6.3.2 Triggering a "Quick Stop" . 64
6.3.3 Resetting faults . 66

6.4 Examples for the operating modes with PDO4. 67
6.4.1 Operating mode Profile Position:

absolute positioning . 68
6.4.2 Operating mode Profile Position:

relative positioning . 69
6.4.3 Operating mode Profile Velocity. 69
6.4.4 Position setting. 70
6.4.5 Operating mode Homing . 71

6.5 Error signaling via PDO4 . 72
6.5.1 Synchronous errors . 72
6.5.2 Asynchronous errors . 72

7 Diagnostics and troubleshooting . 75

7.1 Fieldbus communication error diagnostics 75

7.2 Error diagnostics via fieldbus . 76
7.2.1 Message objects . 76
7.2.2 Messages on the device status 76

7.3 CANopen error messages . 77
7.3.1 Error register . 77
7.3.2 Error code table . 77
7.3.3 SDO error message ABORT 78

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 Table of Contents

Fieldbus interface 5

8 Object directory. 79

8.1 Overview . 79
8.1.1 Specifications for the objects 79
8.1.2 Objects, overview . 80

8.2 Objects of the product . 81

9 Glossary. 93

9.1 Units and conversion tables . 93
9.1.1 Length. 93
9.1.2 Mass . 93
9.1.3 Force. 93
9.1.4 Power . 93
9.1.5 Rotation . 94
9.1.6 Torque. 94
9.1.7 Moment of inertia . 94
9.1.8 Temperature . 94
9.1.9 Conductor cross section . 94

9.2 Terms and Abbreviations. 95

10 Index. 97

6 Fieldbus interface

 Table of Contents IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 Writing conventions and symbols

Fieldbus interface 7

Writing conventions and symbols

Work steps If work steps must be performed consecutively, this sequence of steps
is represented as follows:

� Special prerequisites for the following work steps

� Step 1

� Specific response to this work step

� Step 2

If a response to a work step is indicated, this allows you to verify that the
work step has been performed correctly.

Unless otherwise stated, the individual steps must be performed in the
specified sequence.

Bulleted lists The items in bulleted lists are sorted alphanumerically or by priority. Bul-
leted lists are structured as follows:

• Item 1 of bulleted list

• Item 2 of bulleted list

– Subitem for 2

– Subitem for 2

• Item 3 of bulleted list

Making work easier Information on making work easier is highlighted by this symbol:

Sections highlighted this way provide supplementary
information on making work easier.

SI units SI units are the original values. Converted units are shown in brackets
behind the original value; they may be rounded.

Example:
Minimum conductor cross section: 1.5 mm2 (AWG 14)

8 Fieldbus interface

 Writing conventions and symbols IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 1 Introduction

Fieldbus interface 9

1 Introduction

1.1 About this manual

This manual describes the fieldbus specifics for products in a fieldbus
network addressed via CANopen DS301.

1.2 CAN-Bus

The CAN bus (Controller Area Network) was originally developed for
fast, economical data transmission in the automotive industry. Today, the
CAN bus is also used in industrial automation technology and has been
further developed for communication at fieldbus level.

Features of the CAN bus The CAN bus is a standardized, open bus enabling communication be-
tween devices, sensors and actuators from different manufacturers. The
features of the CAN bus comprise

• Multimaster capability

Each device in the fieldbus can transmit and receive data independ-
ently without depending on an "ordering" master functionality.

• Message-oriented communication

Devices can be integrated into a running network without reconfigu-
ration of the entire system. The address of a new device does not
need to be specified on the network.

• Prioritization of messages

Messages with higher priority are sent first for time-critical applica-
tions.

• Residual error probability

Various security features in the network reduce the probability of
undetected incorrect data transmission to less than 10-11.

Transmission technology In the CAN bus, multiple devices are connected via a bus cable. Each
network device can transmit and receive messages. Data between net-
work devices are transmitted serially.

Network devices Examples of CAN bus devices are

• Automation devices, e.g. PLCs

• PCs

• Input/output modules

• Drives

• Analysis devices

• Sensors and actuators

10 Fieldbus interface

1 Introduction IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

1.3 Fieldbus devices networked via CAN bus

Different fieldbus devices can be operated in the same fieldbus seg-
ment. The CANopen bus provides a common basis for interchanging
commands and data between the product described and other network
devices.

Figure 1.1 Fieldbus devices in the network

1.4 Operating modes and functions in fieldbus mode

This manual only describes the protocol for the slave. See the chapters
"Operation" and "Parameters" for descriptions of the operating modes,
functions and all parameters of the slave:

Operating modes • Profile Velocity

• Profile position

• Homing

• Jog

 Functions • Definition of direction of rotation

• Motion profile generation

• Quick Stop

• Fast position capture

Settings The following settings can be made via the fieldbus:

• Reading and writing parameters

• Monitoring the inputs and outputs of the 24 V signal interface

• Activating diagnostics and fault monitoring functions

Fieldbus mode

L

N

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 1 Introduction

Fieldbus interface 11

1.5 Documentation and literature references

Manuals In addition to this fieldbus manual, the following manuals also belongs to
the product:

• Product manual, describes the technical data, installation, com-
missioning and all operating modes and functions.

CAN users and manufacturers
organization

CiA - CAN in Automation
Am Weichselgarten 26
D-91058 Erlangen
http://www.can-cia.org/

CANopen standards • CiA Standard 301 (DS301)
CANopen application layer and communication profile
V4.02, February 2002

• CiA Standard 402 (DSP402)
Device profile for drives and motion control
V2.0, July 2002

• ISO/DIS 11898: Controller Area Network (CAN) for high speed
communication;1993

• EN 50325-4: Industrial communications subsystem based on
ISO 11898 for controller device interfaces (CANopen); 2002

Literature Controller Area Network
Konrad Etschberger, Carl Hanser Verlag
ISBN 3-446-19431-2

12 Fieldbus interface

1 Introduction IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 2 Before you begin - safety information

Fieldbus interface 13

2 Before you begin - safety information

The information provided in this manual supplements the product man-
ual. Carefully read the product manual before you begin.

14 Fieldbus interface

2 Before you begin - safety information IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 15

3 Basics

3.1 CANopen technology

3.1.1 CANopen description language

CANopen is a device- and manufacturer-independent description lan-
guage for communication via the CAN bus. CANopen provides a com-
mon basis for interchanging commands and data between CAN bus
devices.

3.1.2 Communication layers

CANopen uses the CAN bus technology for data communication.

CANopen is based on the basic network services for data communica-
tion as per the ISO-OSI model model. 3 layers enable data communica-
tion via the CAN bus.

• Physical Layer

• Data Link Layer

• Application Layer

Figure 3.1 CANopen layer model

Physical Layer The physical layer defines the electrical properties of the CAN bus such
as connectors, cable length and cable properties such as bit-coding and
bit-timing.

Data Link Layer The data link layer connects the network devices. It assigns priorities to
individual data packets and monitors and corrects errors.

Application Layer The application layer uses communication objects (COB) to exchange
data between the various devices. Communication objects are elemen-
tary components for creating a CANopen application.

device communication

fielb bus communication

application Layer

data Link Layer

physical Layer

CAN-Bus

16 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.1.3 Objects

All processes under CANopen are executed via objects. Objects carry
out different tasks; they act as communication objects for data transport
to the fieldbus, control the process of establishing a connection or mon-
itor the network devices. If objects are directly linked to the device (de-
vice-specific objects), the device functions can be used and changed via
these objects.

Object dictionary The object dictionary of each network device allows for communication
between the devices. Other devices find all objects with which they can
communicate in this dictionary.

Figure 3.2 Device model with object dictionary

Objects for describing the data types and executing the communication
tasks and device functions under CANopen are included in the object
dictionary.

Object index Every object is addressed by means of a 16 bit index, which is repre-
sented as a four-digit hexadecimal number. The objects are arranged in
groups in the object dictionary.

Table 3.1 Object index

See page 79, 8.2 "Objects of the product" for a list of the CANopen ob-
jects.

Object group data types Data types are used so that the messages that are transmitted via the
network as bit streams have the same meaning for the transmitting and

C
A

N
-B

us

CANopen

Motor

1000h

3000h

6000h

FFFFh

Process data
 objects (PDO)

SYNC, EMCY

Power
amplifier

Communication

Application

Object
 directory

Device profile

Device
 functions

Specific functions

Service data
 objects (SDO)

Network
 management NMT

Index (hex) Object groups Supported
by the drive

0000h Reserved No

0001h-009Fh Static and complex data types No

00A0h-0FFFh Reserved No

1000h-1FFFh Communication profile, standardized in DS 301 Yes

2000h-5FFFh Manufacturer-specific device profiles Yes

6000h-9FFFh Standardized device profiles, e.g. in DSP 402 No

A000h-FFFFh Reserved No

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 17

receiving devices. Data types are declared by means of the objects of
the data types.

Object groups of the profiles CANopen objects carry out various tasks in fieldbus mode. Profiles
group the objects by tasks.

18 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.1.4 CANopen profiles

Standardized profiles Standardized profiles describe objects that are used with different de-
vices without additional configuration. The users and manufacturers or-
ganization CAN in Automation has standardized various profiles. These
include:

• DS301 communication profile

• DSP402 device profile

Figure 3.3 CANopen reference model

DS301 communication profile The DS301 communication profile is the interface between device pro-
files and CAN bus. It was specified in 1995 under the name DS301 and
defines uniform standards for common data exchange between different
device types under CANopen.

The objects of the communication profile in the device carry out the
tasks of data exchange and parameter exchange with other network de-
vices and initialize, control and monitor the device in the network.

Objects of the communication profile are:

• Process Data Objects = PDO

• Service Data Objects = SDO

• Objects with special functions for synchronization SYNC and for
error messages and error response EMCY

• Network management NMT objects for initialization, error monitor-
ing and device status monitoring.

DSP402 device profile The DSP402 device profile describes standardized objects for position-
ing, monitoring and settings of drives. The tasks of the objects include:

• Device monitoring and status monitoring (Device Control)

• Standardized parameterization

• Changing, monitoring and execution of operating modes

IMPORTANT: The product does not support the CiA 402 device profile.

Vendor-specific profiles The basic functions of a device can be used with objects of standardized
device profiles standardized. Only vendor-specific device profiles offer
the complete range of functions. The objects with which the special func-
tions of a device can be used under CANopen are defined in these ven-
dor-specific device profiles.

CAN-Bus

Physical Layer

Data Link Layer

Application Layer

CANopen Communication Profile (CiA DS 301)

Device Profile for Drives and Motion Control (CiA DSP 402)

Application

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 19

3.2 Communication profile

CANopen manages communication between the network devices with
object dictionaries and objects. A network device can use process data
objects (PDO) and service data objects (SDO) to request the object data
from the object dictionary of another device and, if permissible, write
back modified values.

The following can be done by accessing the objects of the network de-
vices

• Exchange parameter values

• Start motion functions of individual CAN bus devices

• Request status information

3.2.1 Object dictionary

Each CANopen device manages an object dictionary which contains all
objects for communication.

Index, subindex The objects are addressed in the object dictionary via a 16 bit index.
One or more 8 bit subindex entries for each object specify individual data
fields in the object. Index and subindex are shown in hexadecimal nota-
tion with a subscript "h".

The following example shows the index entries and subindex entries for
the object receive PDO4 mapping, 1603h for mapping in R_PDO4.

Table 3.2 Examples of index and subindex entries

Index Subindex Object Meaning

1603h 00h Number of elements Number of subindexes

1603h 01h 1st mapped object
R_PDO4

First object for mapping in
R_PDO4

1603h 02h 2nd mapped object
R_PDO4

Second object for mapping
in R_PDO4

1603h 03h 3rd mapped object
R_PDO4

Third object for mapping in
R_PDO4

20 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Structure of object dictionary The objects in the object dictionary are sorted by index values. Table 3.3
shows the index ranges of the object dictionary according to the CAN-
open specifications.

Table 3.3 Index ranges of the object dictionary

Object descriptions inthe manual For CANopen programming of a product, the following object groups are
described in detail:

• 1xxxh objects: Communication objects in this chapter

• 3xxxh objects: Manufacturer-specific objects to the extent they are
required for controlling the product

All operating modes and functions of the product are controlled by
means of manufacturer-specific objects. These functions and objects
are described in the device documentation.

The manufacturer-specific objects are stored in the index range starting
at 3000h. To derive the CAN index from the indexes given in the device
documentation, it is sufficient to add 3000h.

Example: The control word for a state transition has the index 28 and the subindex
1. In the CAN protocol, this results in the index 301Ch (3000h + 1Ch[=
28d]) and the subindex 1.

Index range
(hex)

Object groups Supported
by the drive

0000h Reserved No

0001h-001Fh Static data types No

0020h-003Fh Complex data types No

0040h-005Fh Manufacturer-specific data types No

0060h-007Fh Static data types for the device profiles No

0080h-009Fh Complex data types for the device profiles No

00A0h-0FFFh Reserved No

1000h-1FFFh Communication profile Yes

2000h-5FFFh Manufacturer-specific profiles Yes

6000h-9FFFh Standardized device profiles No

A000h-FFFFh Reserved No

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 21

3.2.2 Communication objects

Overview The communication objects are standardized with the DS301 CANopen
communication profile. The objects can be classified into 4 groups ac-
cording to their tasks.

Figure 3.4 Communication objects; the following applies to the perspective
of the network device: T_..: "Transmit", R_..: "Receive"

• PDOs (process data objects) for real-time transmission of process
data

• SDOs (service data object) for read and write access to the object
dictionary

• Objects for controlling CAN messages:

– SYNC object (synchronization object) for synchronization of net-
work devices

– EMCY object (emergency object), for signaling errors of a device
or its peripherals.

• Network management services:

– NMT services for initialization and network control (NMT: net-
work management)

– NMT Node Guarding for monitoring the network devices

– NMT Heartbeat for monitoring the network devices

Communication
objects

PDO

SYNC
EMCY

NMT Services
NMT Node guarding

T_PDO1 R_PDO1
T_PDO2 R_PDO2
T_PDO3 R_PDO3
T_PDO4 R_PDO4

SDO

Special objects

Network
management

T_SDO
R_SDO

NMT Heartbeat

22 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

CAN message Data is exchanged via the CAN bus in the form of CAN messages. A
CAN message transmits the communication object and a variety of ad-
ministration and control information.

Figure 3.5 CAN message and simplified representation of CANopen mes-
sage

CANopen message For work with CANopen objects and for data exchange, the CAN mes-
sage can be represented in simplified form because most of the bits are
used for error correction. These bits are automatically removed from the
receive message by the data link layer of the OSI model, and added to
a message before it is transmitted.

The two bit fields "Identifier" and "Data" form the simplified CANopen
message. The "Identifier" corresponds to the "COB ID" and the "Data"
field to the data frame (maximum length 8 bytes) of a CANopen mes-
sage.

COB ID The COB ID (Communication OBject Identifier) has 2 tasks as far as
controlling communication objects is concerned:

• Bus arbitration: Specification of transmission priorities

• Identification of communication objects

An 11 bit COB identifier as per the CAN 3.0A specification is defined for
CAN communication; it comprises 2 parts

• Function code, 4 bits

• Node address (node ID), 7 bits.

Figure 3.6 COB ID with function code and node address

1 11 1 1 1 1 7

End-Bits

AcknowledgeCRCData
Control

RTR-Bit
Identifier

Start-Bit

>=36 160..8 Byte

COB-ID data carrier

11 Bit

7 Bit4 Bit

0..8 Byte

1 2 3 4 5 6 70

CANopen message (simplified)

CAN message

1 COB-ID 2 3 4 1 2 3 4 5 6 7

Function code
0...15

Node-ID
0...127

Bit:10 0

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 23

COB IDs of the communication
objects

The following table shows the COB IDs of all communication objects
with the factory settings. The column "Index of object parameters"
shows the index of special objects with which the settings of the com-
munication objects can be read or modified via an SDO.

Table 3.4 COB IDs of all communication objects

COB IDs of PDOs can be changed as required. The
assignment pattern for COB IDs only specifies a basic
setting.

Function code The function code classifies the communication objects. Since the bits
of the function code in the COB ID are more significant, the function
code simultaneously controls the transmission priorities: Objects with a
lower function code are transmitted with higher priority. For example, an
object with function code "1" is transmitted prior to an object with func-
tion code "3" in the case of simultaneous bus access.

Node address Every network device is configured before it is operated on the network.
The device is assigned a 7 bit node address (node ID) between 1 (01h)
and 127 (7Fh). The device address "0" is reserved for "broadcast" trans-
missions which are used to send messages to all devices simultane-
ously.

Communication object Function
code

Node address,
node ID [1...127]

COB ID decimal (hexadecimal) Index of object
parameters

NMT Start/Stop Service 0 0 0 0 0 0 0 0 0 0 0 0 (0h) -

SYNC object 0 0 0 1 0 0 0 0 0 0 0 128 (80h) 1005h....1007h

EMCY object 0 0 0 1 x x x x x x x 128 (80h) + node ID 1014h, 1015h

T_PDO1 1) 0 0 1 1 x x x x x x x 384 (180h) + node ID 1800h

R_PDO1 1) 0 1 0 0 x x x x x x x 512 (200h) + node ID 1400h

T_PDO2 1) 0 1 0 1 x x x x x x x 640 (280h) + node ID 1801h

R_PDO2 1) 0 1 1 0 x x x x x x x 768 (300h) + node ID 1401h

T_PDO3 1) 0 1 1 1 x x x x x x x 896 (380h) + node ID 1802h

R_PDO3 1) 1 0 0 0 x x x x x x x 1024 (400h) + node ID 1402h

T_PDO4 1 0 0 1 x x x x x x x 1152 (480h) + node ID 1803h

R_PDO4 1 0 1 0 x x x x x x x 1280 (500h) + node ID 1403h

T_SDO 1 0 1 1 x x x x x x x 1408 (580h) + node ID -

R_SDO 1 1 0 0 x x x x x x x 1536 (600h) + node ID -

NMT error control 1 1 1 0 x x x x x x x 1792 (700h) + node ID

LMT Services 1) 1 1 1 1 1 1 0 0 1 0 x 2020 (7E4h), 2021 (7E5h)

NMT Identify Service 1) 1 1 1 1 1 1 0 0 1 1 0 2022 (7E6h)

DBT Services 1) 1 1 1 1 1 1 0 0 x x x 2023 (7E7h), 2024 (7F8h)

NMT Services 1) 1 1 1 1 1 1 0 1 0 0 x 2025 (7E9h), 2026 (7EAh)

1) Not supported by the device

24 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Example Selection of a COB ID

For a device with the node address 5, the COB ID of the communication
object T_PDO1 is:

384+node ID = 384 (180h) + 5 = 389 (185h).

Data frame The data frame of the CANopen message can hold up to 8 bytes of data.
In addition to the data frame for SDOs and PDOs, special frame types
are specified in the CANopen profile:

• Error data frame

• Remote data frame for requesting a message

The data frames contain the respective communication objects.

3.2.3 Communication relationships

CANopen uses 3 relationships for communication between network de-
vices:

• Master-slave relationship

• Client-server relationship

• Producer-consumer relationship

Master-slave relationship A network master controls the message traffic. A slave only responds
when it is addressed by the master.

The master-slave relationship is used with network management ob-
jects for a controlled network start and to monitor the connection of de-
vices.

Figure 3.7 Master - slave relationships

Messages can be interchanged with and without confirmation. If the
master sends an unconfirmed CAN message, it can be received by a
single or by several slaves or by no slave.

To confirm the message, the master requests a message from a specific
slave, which then responds with the desired data.

data

Slave

Slave

Slave

data

Slave

request

Master

Master

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 25

Client-server relationship A client-server relationship is established between 2 devices. The
"server" is the device whose object dictionary is used during data ex-
change. The "client" addresses and starts the exchange of messages
and waits for a confirmation from the server.

A client-server relationship with SDOs is used to send configuration data
and long messages.

Figure 3.8 Client-server relationship

The client addresses and sends a CAN message to a server. The server
evaluates the message and sends the response data as an acknowl-
edgement.

Producer-consumer relationship The producer-consumer relationship is used for exchanging messages
with process data, because this relationship enables fast data exchange
without administration data.

A "Producer" sends data, a "Consumer" receives data.

Figure 3.9 Producer-consumer relationships

The producer sends a message that can be received by one or more
network devices. The producer does not receive an acknowledgement
to the effect that the message was received. The message transmission
can be triggered

• by an internal event, e.g. "target position reached"

• by the synchronization object SYNC

• a request of a consumer

For details on the function of the producer-consumer relationship and on
requesting messages see chapter 3.4 "Process data communication".

Client

Server

data

data

request

data

data
Consumer

Consumer

Consumer

Consumer

Consumer

Producer

Producer

26 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.3 Service data communication

3.3.1 Overview

Service Data Object(SDO: Service Data Object) can be used to access
the entries of an object dictionary via index and subindex. The values of
the objects can be read and, if permissible, also be changed.

Every network device has at least one server SDO to be able to respond
to read and write requests from a different device. A client SDO is only
required to request SDO messages from the object dictionary of a dif-
ferent device or to change them there.

The T_SDO of an SDO client is used to send the request for data ex-
change; the R_SDO is used to receive. The data frame of an SDO con-
sist of 8 bytes.

SDOs have a higher COB ID than PDOs and therefore are sent over the
CAN bus at a lower priority.

3.3.2 SDO data exchange

A service data object (SDO) sends parameter data between two de-
vices. The data exchange conforms to the client-server relationship. The
server is the device to whose object dictionary an SDO message refers.

Figure 3.10 SDO message exchange with request and response

Message types Client-server communication is triggered by the client to send parameter
values to the server or to get them from the server. In both cases, the cli-
ent starts the communication with a request and receives a response
from the server.

Client

COB-ID data

COB-ID data

Server

R_SDO

(request)

(response)

CAN

T_SDO

R_SDO T_SDO

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 27

3.3.3 SDO message

Put simply, an SDO message consists of the COB ID and the SDO data
frame, in which up to 4 bytes of data can be sent. Longer data se-
quences are distributed over multiple SDO messages with a special pro-
tocol.

The device sends SDOs of up to 4 bytes data length (data). Greater
amounts of data such as 8 byte values of the data type "Visible String 8"
can be distributed over multiple SDOs and are transmitted successively
in 7 byte blocks.

Example The following illustration shows an example of an SDO message.

Figure 3.11 SDO message, example

COB ID and data frame R_SDO and T_SDO have different COB IDs.
The data frame of an SDO messages consists of:

• Command code (ccd) in which the SDO message type and the data
length of the transmitted value are encrypted

• Index and subindex which point to the object whose data is trans-
ported with the SDO message

• Data of up to 4 bytes

Evaluation of numeric values Index and data are transmitted left-aligned in Intel format. If the SDO
contains numerical values of more than 1 byte in length, the data must
be rearranged byte-by-byte before and after a transmission.

Figure 3.12 Rearranging numeric values greater than 1 byte

Subindex

Index

Command Code

COB-ID
(581h)

1 2 3 4 5 6 7
00

0
43 10 00 01 0292 00

581

Data

SDO

 00 02 01 92h10 00h

Index: Data:

Hex:

1 2 3 4 5 6 7
00

0
43 10 00 01 0292 00

581

28 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.3.4 Reading and writing data

Writing data The client starts a write request by sending index, subindex, data length
and value.

The server sends a confirmation indicating whether the data was cor-
rectly processed. The confirmation contains the same index and
subindex, but no data.

Figure 3.13 Writing parameter values

Unused bytes in the data field are shown with a slash in the graphic. The
content of these data fields is not defined.

ccd coding The table below shows the command code for writing parameter values.
It depends on the message type and the transmitted data length.

Table 3.5 Command code for writing parameter values

Client Server

1 2 3 4 5 6 70

COB-ID ccd Idx2 Idx1 Sidx data

1 2 3 4 5 6 70

COB-ID ccd Idx2 Idx1 Sidx data

write request

write response

23h

27h

2Bh

2Fh

60h

ccd=

ccd=

ccd=

ccd=

ccd=

data

data

data

data

Message type Data length used

4 bytes 3 bytes 2 bytes 1 byte

Write request 23h 27h 2Bh 2Fh Transmitting param-
eters

Write response 60h 60h 60h 60h Confirmation

Error response 80h 80h 80h 80h Error

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 29

Reading data The client starts a read request by sending the index and subindex that
point to the object or the object value whose value it wants to read.

The server confirms the request by sending the desired data. The SDO
response contains the same index and subindex. The length of the re-
sponse data is specified in the command code "ccd".

Figure 3.14 Reading a parameter value

Unused bytes in the data field are shown with a slash in the graphic. The
content of these data fields is not defined.

ccd coding The table below shows the command code for transmitting a read value.
It depends on the message type and the transmitted data length.

Table 3.6 Command code for transmitting a read value

Client Server

1 2 3 4 5 6 70

COB-ID ccd Idx2 Idx1 Sidx data

1 2 3 4 5 6 70

COB-ID ccd Idx2 Idx1 Sidx data

data

data

data

data

read request

read response

43h

47h

4Bh

4Fh

40hccd=

ccd=

ccd=

ccd=

ccd=

Message type Data length used

4
bytes

3
bytes

2
bytes

1 byte

read request 40h 40h 40h 40h Request read value

Read response 43h 47h 4Bh 4Fh Return read value

Error response 80h 80h 80h 80h Error

30 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Error response If a message could not be evaluated without errors, the server sends an
error message. For details on the evaluation of the error message see
chapter 7 "Diagnostics and troubleshooting".

Figure 3.15 Response with error message (error response)

Client Server

1 2 3 4 5 6 70

COB-ID ccd Idx2 Idx1 Sidx data

error response

80ccd: Byte 4-7
error code

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 31

3.4 Process data communication

3.4.1 Overview

This chapter describes the flow of information from the
perspective of your product in compliance with CiA
standard DS301. The designation "receive" relates to a
flow of data from the master to the product, while "transmit"
represents a flow of data from the product to the master.

Process data objects (PDO: Process Data Object) are used for real-time
data exchange of process data such as actual and reference or operat-
ing state of the device. Transmission is very fast because the data is sent
without additional administration data and a response from the recipient
is not required.

The flexible data length of a PDO message also increases the data
throughput. A PDO message can transmit up to 8 bytes of data. If only
2 bytes are assigned, only 2 data bytes are sent.

The length of a PDO message and the assignment of the data fields are
specified by PDO mapping. For more information see chapter 3.4.2.1
"Dynamic and static PDO mapping".

PDO messages can be exchanged between devices that generate or
process process data.

One PDO each is available for sending and receiving a PDO message:

• T_PDO to transmit the PDO message (T: "Transmit"),

• R_PDO to receive data (R: "Receive").

32 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.4.2 PDO data exchange

Figure 3.16 PDO data exchange

Data exchange with PDOs follows to the producer-consumer relation-
ship and can be triggered in 3 ways

• Synchronized

• Event-driven, asynchronous

• On request of a consumer, asynchronous

The SYNC object controls synchronized data processing. Synchronous
PDO messages are transmitted immediately like the standard PDO
messages, but are only evaluated on the next SYNC. For example, sev-
eral drives can be started simultaneously via synchronized data ex-
change.

The device immediately evaluates PDO messages that are called on re-
quest or in an event-driven way.

The transmission type can be specified separately for each PDO with
subindex 02h (transmission type) of the PDO communication parameter.
The objects are listed in 8 "Object directory".

Event-driven The "event" is a change of the PDO data. In this mode, the data is im-
mediately transmitted after a change. Please note that in the case of, for
example, a positioning movement, the actual position changes con-
stantly so that a large number of PDOs is transmitted. There are two
ways to avoid such a large number of PDOs:

• A) You can set an "Inhibit Timer" (object 1803h subindex 3). The
PDO is not sent until after this inhibit time has passed.

• B) By using a bit mask, you can limit the check for changes
(=event). See section "Bit mask for T_PDO4" for a description.

A further possibility of "creating" an event consists of activating an
"Event Timer" (object 1803h subindex 5). You activate this counter by en-
tering a value not equal to zero. When this counter is reached, this rep-
resents an additional event. This means that the PDO is transmitted
when a value changes or when the counter event occurs.

Synchronized In the case of this transmission mode, a PDO is transmitted in relation
to a SYNC object. See 3.5 "Synchronization" for a detailed description.

PDO Consumer
R_PDO

PDO Consumer
R_PDO

R_PDO
PDO Consumer

T_PDO
PDO Producer

COB-ID Data

CAN

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 33

Remotely requested Transmission of an asynchronous PDO is triggered when an external re-
quest is received. Such a "Remote Request" is represented by a special
bit in the CAN transmission frame; it has the same COB ID (communi-
cation object identifier) as the requested communication object.

An overview of the individual transmission types can be found in the ob-
ject dictionary, PDO parameters.

Bit mask for T_PDO4 A bit mask can be defined for the objects CAN.pdo4msk1 (30:9) and
CAN.pdo4msk2 (30:10) in T_PDO4. All bit positions containing a "zero"
are then no longer considered in the checks for changes (=event). This
allows you, for example, to limit checks to changes of the driveStat in-
formation.

Table 3.7 Parameters for the CAN bus

Example In this example, setting the object CAN.pdo4msk2 to zero keeps modi-
fications to the current position from triggering an event.

Figure 3.17 Setting the object CAN.pdo4msk2 to zero

NameIdx:Sub
dec. (hex.)

MeaningBit assignment Data type UnitDe-
fault (dez.)

R/W/
rem. Info

30:9 (1E:09h) The default value 4294967295 corresponds to 0xFFFFFFFF. UINT32 -
429496729
5

R/W/-

30:10
(1E:0Ah)

See object pdo4msk1 for a description. UINT32 -0 R/W/-

actual Position
reserved

modeStat
driveStat

21 43 65 87
FFhFFh FFhFFh

00h00h 00h00h

ByteT_PDO4
pdo4msk1
pdo4msk2

34 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Requesting process data One or more network devices with consumer function can request PDO
messages from a producer. The producer is identified by the COB ID of
the request and responds with the requested PDO.

Figure 3.18 Requesting a message with RTR = 1

The RTR bit (RTR: Remote Transmission Request) of a CAN message
is used to detect a request. The COB ID remains the same for both mes-
sages:RTR = 0: transmission of dataRTR = 1: request for data.

Setting RTR request You can set for each PDO separately whether it responds to RTR re-
quests. This is switched on or off via subindex 01, bit 30h of each PDO.
Subindex 02h (transmission type) of the objects defines the transmis-
sion type. The PDO only responds to a request via bit RTR if RTR trans-
mission is enabled for a PDO. The subindex values for the RTR bit are:

Table 3.8 Subindexes for using the bit

An overview of all values for the subindex 02h can be found in the object
dictionary for the corresponding object.

The product cannot request PDOs, but it can respond to the request of
PDOs.

3.4.2.1 Dynamic and static PDO mapping

Dynamic PDO mapping The settings for PDO mapping are defined in an assigned communica-
tion object for each PDO. If the PDO mapping settings for a PDO can be
changed, this is referred to as dynamic PDO mapping for the PDO. Dy-
namic PDO mapping enables flexible combination of different process
data during operation.

Static PDO mapping Static PDO mapping means that all objects are mapped in accordance
with a fixed setting in the corresponding PDO.

Properties of the integrated drive. The integrated drive supports 2 PDOs, the communication objects
T_PDO4 and R_PDO4. These two PDO4 are enabled by default.

These PDOs are mapped statically, i.e. they cannot be configured but
only read. The indexes for the permanently entered objects can be read
from the PDO mapping object range:

• Object 1403h: receive PDO4 communication parameter

• Object 1603h: receive PDO4 mapping

• Object 1803h: transmit PDO4 communication parameter

• Object 1A03h: transmit PDO4 mapping

RTR

Daten

ProducerConsumer

COB-Id 0

COB-Id 1

Objects 1403h, 1803h subindex 02h,
"transmission type"

Meaning

252 RTR active, synchronous

253 RTR active, asynchronous

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 35

3.4.2.2 Receive PDO R_PDO4 (master -> slave)

The master device can execute the following actions via the PDO4 chan-
nel to the slave:

• Control the state machine of the slave

– Enable/disable the power stage of the product

– Trigger and reset a "Quick Stop"

– Resetting faults

• Toggle the operating modes

– Profile Position operating mode, absolute and relative

– Profile Velocity operating mode

– Reference movement

– Position setting

• Set reference values

– Reference position

– Reference speed

– Type of reference movement

Structure of R_PDO4:

Figure 3.19 Structure of R_PDO4

Ref32 -> reference 32 bits - e.g. position
Ref16 -> reference 16 bits - e.g. velocity

modeCtrl
driveCtrl

21 43 65 87Byte

67 45 23 01
00 QR0 QSFR DIEN

Disable
Enable

Quickstop
Fault Reset

Quickstop Release

driveCtrl - 8 Bits

Bit

67 45 23 01
MT ACTION 0 MODE

Requested Mode

Action within Mode

Mode Toggle

modeCtrl - 8 Bits

Bit

36 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

State machine – drivectrl

The state machine is controlled via PDO4 or the SDO object
drivectrl, 28:1, in both cases via bits Bits 0 ... 4.

In PDO mode, a change form 0 to 1 triggers the corresponding function.

In the case of access via SDO, a write access with a set bit value is suf-
ficient, i.e. a change of edge is not required.

The value "0" is a special case: If during transmission all bits 0 ... 7 are
"zero", the product interprets this as "Disable" command and disables
the power stage. This applies to both PDO and SDO access.

Handling of errors If requests for controlling the state machine cannot be executed by the
product, the product ignores such request. There is no error response.

Controlling the state machine PDO4Bits 0 ... 4 SDO object drivectrl, 28:1Bits 0 ... 4

Bit 0: Power stage Disable Triggered when 0 changes to 1 Triggered at write access if bit value = 1

Bit 1: Power stage Enable

Bit 2: Quickstop

Bit 3: Fault Reset

Bit 4: Quickstop Release

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 37

Operating modes – modeCtrl

In PDO mode, the operating modes are controlled via object modeCtrl.
The master must enter the following values to activate an operating
mode or to change reference values:

• Reference values in fields "Ref16" and "Ref32"

• Select operating mode with modeCtrl, Bits 0 ... 2 (MODE)

• Select action for this operating mode with modeCtrl, bits 4 ... 6
(ACTION)

• Toggle modeCtrl, bit 7 (MT)

The following table shows the possible operating modes and the corre-
sponding reference values:

Mode bits
0... 2

Action
bits 4 ...
6

modeCtrl
1). Bits 0
... 6

Description Corre-
sponds to
object 2)

Reference value Ref16 Reference
value Ref32

1 (JOG) 0 01h Jog 41:3 Start (as object 41:1) -

2 (REF) 0 02h Position setting 40:3 - Position for posi-
tion setting

1 12h Reference movement 40:1 Type (as object 40:1) -

3 (PTP) 0 03h Absolute positioning 35:1 Reference speed Reference posi-
tion

1 13h Relative positioning 35:3 Reference speed Reference posi-
tion

2 23h Continue positioning 35:4 Reference speed -

4 (VEL) 0 04h Profile Velocity 36:1 Reference speed -

1) Column corresponds to the value to be entered in byte modeCtrl, but without ModeToggle (bit 7)

2) Column shows Index:Subindex (decimal) of the corressponding operating mode objects modes which are described in more
detail in the device documentation.

38 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Reference positions are entered in increments, reference speeds in
[min-1].

If operating mode, reference position and reference speed are transmit-
ted simultaneously in one PDO, data consistency is required. For this
reason, the product evaluates the operating mode data only if bit 7 was
toggled. Toggling means that a "0 -> 1" or a "1 -> 0" change of edge was
detected.

Bit 7 is mirrored in the response PDO4 from the product so that synchro-
nized operation is possible via PDO4.

Handling of errors Requests for operating mode are triggered by toggling the bit 7 . If these
requests cannot be executed, the product provides an error response as
described in section Transmit PDO4 - Handling of errors.

3.4.2.3 Transmit PDO T_PDO4 (product to master)

With the default product settings, the transmit PDO is sent asynchro-
nously and in an "event-driven" way; an "Inhibit Time" can be set.

The product provides the master with the following information via
PDO4:

• State of state machine

• Errors and warnings

• Active operating mode

• Status of active operating mode

– Operating mode terminated

– Error occurred

– Reference speed or reference position reached

– Actual position

• Slave referenced

• Acknowledgement of operating mode requests

• Status of the 24 V inputs and outputs

@ WARNING
UNINTENDED OPERATION

• Note that any changes to the values of these parameters are exe-
cuted by the drive controller immediately on receipt of the data
set.

• Verify that the system is free and ready for movement before
changing these parameters.

Failure to follow these instructions can result in death, serious
injury or equipment damage.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 39

Structure of T_PDO4:

Figure 3.20 Structure of T_PDO4

Status word driveStat The information in the status word driveStat corresponds to bits 0
...15 of object Status.driveStat, 28:2.

Contents of information:

• State of state machine

• Warning and error bits

• Status of the current operating mode

actual position (pact), 32 bits
IO_act, 8 bits

modeStat, 8 bits
driveStat, 16 bits

21 43 65 87Byte

67 45
MEMT 0ref_ok

23 01
0 mode

actual operation mode

drive referenced

Mode Toggle
Mode Error

modeStat

Bit

driveStat

Bit
x err x_end x_info 0 0 0 0 0 warn Sig_SR FltSig cos0
15 14 13 12 --- 8 7 6 5 3 --- 04

67 45 23 01

IO_act

Bit
IO1IO2IO30 STO_ASTO_B IO00

STO_A / STO_B
(PWRR_A / PWRR_B)

40 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Operating mode modeStat This field corresponds to bits 0 ... 2 of the object Status.xMode_act.
Bits 6 and 7 provide additional information that can be used for synchro-
nized operating mode control via the PDOs.

The field contains the following information:

3.4.2.4 Handshake with Mode Toggle Bit

Mode Toggle Synchronized processing is possible with the transmit data modeCtrl,
bit 7 (MT) and the receive data modeStat, bits 6 (ME) and 7 (MT). Syn-
chronized processing means that the master waits for feedback mes-
sages from the slave so it can respond appropriately.

Example of positioning The master starts a positioning movement at point in time t0. At points in
time t1, t2 ..., the master checks the responses from the slave. It waits
for the end of the positioning movement by checking the Input Assembly
for bit x_end = 1 (end of positioning).

Figure 3.21 Mode Toggle Handshake

(1) Master starts positioning with MT = 1 in byte modeCtrl
(2) Slave signals that positioning is active with MT = 1 in

modeStat and simultaneously with x_end = 0 in driveStat
(4) Slave signals end of positioning with x_end = 1 in

driveStat

Bit Name Description

0...2 mode currently set operating mode as in R_PDO4

5 ref_ok Is set if homing of the product by means of a reference movement or position setting was
successful.

6 ME, ModeError Set if a request of the master via R_PDO4 data was rejected by the product.

7 MT, ModeToggle Mirrors bit 7 (Mode Toggle) of R_PDO4

1

2 3

t0 t2t1Master Slave

Mode Toggle

Mode Toggle

x_end

t3

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 41

Example of short positioning The master starts a positioning movement that will only take a very short
time. The duration is shorter than the polling cycle of the master. At point
in time t1 the movement is already complete. Using bit x_end, the mas-
ter does not know whether the movement is already complete or has not
yet been started. However, it detects this with the MT bit from the slave:

The master may only evaluate data in which the received MT bit is iden-
tical to the last bit transmitted by the master.

Figure 3.22 Mode Toggle Handshake, short movement

(1) Master starts positioning with MT = 1 in byte modeCtrl
(2+3) Slave signals that positioning is active with MT = 1 in

modeStat and simultaneously with x_end = 0 in driveStat
(4) Slave signals end of positioning with x_end = 1 in

driveStat

Master
MT

Slave
MT

Slave
x_end

1 0 1 Slave has not yet detected command

1 1 0 Slave has detected command, positioning
running

1 1 1 Slave signals that positioning is complete

1

2 3

t0 t2t1Master Slave

Mode Toggle

Mode Toggle

x_end

42 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Handling of errors If the master toggles bit 7 (MT), this is interpreted by the slave as a re-
quest to start an operating mode or to change data of the current oper-
ating mode. If the request cannot be processed, the active operating
mode is not changed and the slave sets bit 6 in modeStat (ME =
ModeError).

The active operating mode is not changed and there is no state transi-
tion.

Bit 6 (ME) remains set until the master toggles bit 7 (MT) in modeCtrl
again, thus triggering a new command.

The master can read the corresponding error code by a read access to
parameter ModeError.

Possible reasons for a failure of the operating mode request:

• Reference values outside the value range

• Change of the operating mode during processing (impossible)

• Invalid operating mode requested

• The device is not in state 6 (Operation Enable) of the state
machine.

For more information see the product manual.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 43

3.4.2.5 Emergency service

The Emergency Service signals internal device errors via the CAN bus.
The error is sent to all network devices with an EMCY object according to
the "Consumer-Producer" relationship.

Figure 3.23 Error message with the EMCY object

EMCY message Causes of an EMCY comprise:

• asynchronous errors, error code = 1000hIn the case of an internal
device error, the product switches to fault state in accordance with
the device's state machine. At the same time, the product transmits
an EMCY message with error register and error code.

• PDO4 error during operating mode control, error code = 8200h If
the request for an operating mode via PDO4 fails, the product also
sends an EMCY message.

• CAN communication error, error code = 8100h

Figure 3.24 EMCY message

• Bytes 0, 1 (error code): CANopen error codeThis value is 1000,
8200h or 8100h, depending on the cause of the error.

• Byte 2: Error registerThe value is also stored in the object Error reg-
ister, 1001h.

• Byte 3 (Manufacturer-Specific Error Field):Manufacturer-specific
error, error class

Bytes 6 and 7 are 0. Bytes 4,5 contain a manufacturer-specific error
number.See the product manual for a list of the error numbers.

COB ID The COB ID for every device on the network supporting an EMCY object
is determined on the basis of the node address:

COB ID = Function code of EMCY object, 80h + Node-Id

EMCY-Consumer EMCY-Consumer

EMCY-Producer

COB-ID

CAN

EMCY-Consumer

data

Manufacturer specific error field

Error register

Error code Error code

COB-ID (80h+ Node-ID)

1 2 3 4 5 6 7
22

0
12 00 00 00 0000 00

81

0 1
12 22

22 12h

44 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.5 Synchronization

The synchronization object SYNC controls the synchronous exchange
of messages between network devices for purposes such as the simul-
taneous start of multiple drives.

The data exchange conforms to the producer-consumer relationship.
The SYNC object is transmitted to all devices by a network device and
can be evaluated by all devices that support synchronous PDOs.

Figure 3.25 SYNC message

Time values for synchronization Two time values define the behavior of synchronous data transmission:

• The cycle time specifies the time intervals between 2 SYNC mes-
sages. It is set with the object Communication cycle
period(1006h).

• The synchronous time window specifies the time span during which
the synchronous PDO messages must be received and trnasmitted.
The time window is defined with the object Synchronous window
length (1007h).

Figure 3.26 Synchronization times

Synchronous data transmission From the perspective of a SYNC recipient, in one time window the status
data is transmitted first in a T_PDO, then new control data is received via
an R_PDO. However, the control data is only processed when the next
SYNC message is received. The SYNC object itself does not transmit
data.

SYNC-Consumer SYNC-Consumer

SYNC- Producer

COB-ID

CAN

SYNC-Consumer

SYNC

SYNC

cycle time

synchronous
time window

T_PDO (status)

R_PDO (controller)

process
R_PDO data

CAN-Bus

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 45

Cyclic ad acyclic data transmission Synchronous exchange of messages can be cyclic or acyclic.

Figure 3.27 Cyclic and acyclic transmission

In the case of cyclic transmission, PDO messages are exchanged con-
tinuously in a specified cycle, e.g. with every SYNC message.

If a synchronous PDO message is transmitted acyclically, it can be
transmitted or received at any time; however, it will not be valid until the
next SYNC message.

Cyclic or acyclic behavior of a PDO is specified in the subindex
transmission type (02h) of the corresponding PDO parameter,
e.g. in the object 1st receive PDO parameter (1400h:02h) for
R_PDO1.

COB ID, SYNC object For fast transmission, the SYNC object is transmitted unconfirmed and
with high priority.

The COB ID of the SYNC object is set to the value 128 (80h) by default.
The value can be changed after initialization of the network with the ob-
ject COB-ID SYNC Message (1005h) .

T_PDO2: cyclical

T_PDO1: acyclical

SYNC

46 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

3.6 Network management services

Network management (NMT) is part of the CANopen communication
profile; it is used to initialize the network and the network devices and to
start, stop and monitor the network devices in network mode.

NMT services are executed in a master-slave relationship. The NMT
master addresses individual NMT slaves via their node address. A mes-
sage with node address "0" is directed to all NMT slaves simultaneously.

Figure 3.28 NMT services via the master-slave relationship

The device can only take on the function of an NMT slave.

NMT services NMT services can be divided into two groups:

• Services for device control, to initialize devices for CANopen com-
munication and to control the behavior of devices in network mode

• Services:for connection monitoring

3.6.1 NMT services for device control

NMT state machine The NMT state machine describes the initialization and states of an
NMT slave in mains operation.

Figure 3.29 NMT state machine and available communication objects

To the right, the graphic shows all communication objects that can be
used in the specific network state.

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Master

CAN

COB-ID data

Operational

Pre-Operational

Stopped

Reset
Application

Reset
Communication

Initialization

Power on

C
A

D
E

B
NMT

SDO, EMCY
NMT

PDO, SDO, SYNC
EMCY, NMT

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 47

Initialization An NMT slave automatically runs through an initialization phase after
the supply voltage is switched on (power on) to prepare it for CAN bus
operation. On completion of the initialization, the slave switches to the
state "Pre-operational" and sends a boot-up message. From now on, an
NMT master can control the operational behavior of an NMT slave in the
network via 5 NMT services, represented in the above illustration by the
letters A to E.

Persistent data memory When the supply voltage is switched on (power on), the device loads the
saved object data from the non-volatile EEPROM for persistent data to
the RAM.

NMT service Transition Meaning

Start remote node
(Start network node)

A Transition to state "Operational"
Start normal network mode with all network devices

Stop remote node
(Stop network node)

B Transition to state "Stopped"
Stops communication of the network device in the network. If connection mon-
itoring is active, it remains on. If the power stage is active (state "Operation
Enabled" or "QuickStop"), an error of error class 2 is triggered. The drive is
stopped and switched off.

Enter Pre-Operational
(Transition to "Pre-Opera-
tional")

C Transition to "Pre-Operational"
All communication objects except for PDOs can be used.

The state "Pre-Operational" can be used for configuration by SDOs:
- PDO mapping
- Start of synchronization
- Start of connection monitoring

Reset node
(Reset node)

D Transition to state "Reset application"
Load stored data of the device profiles and automatically transition to "Pre-
operational" via "Reset communication".

Reset communication
(Reset communication
data)

E Transition to state "Reset communication"
Load stored data of the communication profile and automatically switch to the
state "Pre-Operational.". If the power stage is active (state "Operation Ena-
bled" or "QuickStop"), an error of error class 2 is triggered. The drive is
stopped and switched off.

48 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

NMT message The NMT services for device control are transmitted as unconfirmed
messages with the COB ID = 0 . By default, they have the highest priority
on the CAN bus.

The data frame of the NMT device service consists of 2 bytes.

Figure 3.30 NMT message

The first byte, the "Command specifier", indicates the NMT service
used.

The second byte addresses the recipient of an NMT message with a
node address between 1 and 127 (7Fh). A message with the node ad-
dress "0" is directed to all NMT slaves.

3.6.2 NMT services for connection monitoring

Connection monitoring monitors the communication status of network
devices, so a response to the failure of a device or an interruption in the
network is possible.

Three NMT services for connection monitoring are available:

• "Node guarding" for monitoring the connection of an NMT slave

• "Life guarding" for monitoring the connection of an NMT master

3.6.2.1 Node/Life guarding

COB ID Communication object NMT error control (700h+node-Id) is
used for connection monitoring. The COB ID for every NMT slave is de-
termined on the basis of the node address:

COB ID = function code NMTerror control (700h) + node-Id..

NMT-
Slave

NMT-
Slave

NMT-
Slave

NMT-
Master 00010

Command specifierCOB-ID

Node-ID

Byte 0 1

Command Specifier NMT service Transition

1 (01h) Start remote node A

2 (02h) Stop remote node B

128 (80h) Enter Pre-Operational C

129 (81h) Reset node D

130 (82h) Reset communication E

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 3 Basics

Fieldbus interface 49

Structure of the NMT message After a request from the NMT master, the NMT slave responds with one
data byte.

Figure 3.31 Acknowledgement of the NMT slave

Bits 0 to 6 identify the NMT state of the slave:

• 4 (04h): "Stopped"

• 5 (05h): "Operational"

• 127 (7Fh): "Pre-Operational"

After each "guard time" interval, bit 7 switches toggles between "0" and
"1", so the NMT master can detect and ignore a second response within
the "guard time" interval. The first request when connection monitoring
is started begins with bit 7 = 0.

Connection monitoring must not be active during the initialization phase
of a device. The status of bit 7 is reset as soon as the device runs though
the NMT state "Reset communication".

Connection monitoring remains active in the NMT state "Stopped".

Configuration Node/Life Guarding is configured via:

• Guard time (100Ch)

• Life time factor (100Dh)

SlaveMaster
05h

05h

COB-ID
704h

704h

Node-ID=04h

704h

704h 85h

704h

704h 05h

guard
time

Bit 7 6 ... 0

00 0 0 0 0 11

Bit 7 6 0
85h 0 0 0 0 01 11= =

50 Fieldbus interface

3 Basics IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Connection error The NMT master signals a connection error to the master program if:

• the slave does not respond within the "guard time" period

• the NMT state of the slave has changed without a request by the
NMT master.

Figure 3.32 shows an error message after the end of the third cycle be-
cause of a missing response from an NMT slave.

Figure 3.32 "Node Guarding" and "Life Guarding" with time intervals

Boot-up message The communication profile DS 301, version 4.0, defines an additional
task for the NMT services: sending a boot-up message.

A network device informs all other network devices that it is ready for op-
eration using a boot-up message.

A boot-up message consists of the COB ID of the NMT object NMT Er-
ror Control and is transmitted without data. The default setting of the
COB ID is 1792 (700h) + node-Id

SlaveMaster
guard
time

request

response

response

request

request

no
response

message

life
time

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 4 Installation

Fieldbus interface 51

4 Installation

For information on installation of the device and connecting the device to
the fieldbus see the product manual.

Slave withDIP switches Before installing the slave in the system, you must set the network ad-
dress and the baud rate via the DIP switches in the connector housing.

See the chapter "Installation" in the product manual for information on
the DIP switch settings.

@ WARNING
LOSS OF CONTROL

• The designer of any control scheme must consider the potential
failure modes of control paths and, for certain critical functions,
provide a means to achieve a safe state during and after a path
failure. Examples of critical control functions are EMERGENCY
STOP, overtravel stop, power outage and restart.

• Separate or redundant control paths must be provided for critical
functions.

• System control paths may include communication links. Consid-
eration must be given to the implication of unanticipated transmis-
sion delays or failures of the link.

• Observe the accident prevention regulations and local safety
guidelines. 1)

• Each implementation of the product must be individually and thor-
oughly tested for proper operation before being placed into serv-
ice.

Failure to follow these instructions can result in death or serious
injury.

1) For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), Safety
Guidelines for the Application, Installation, and Maintenance of Solid State Control
and to NEMA ICS 7.1 (latest edition), Safety Standards for Construction and
Guide for Selection, Installation for Construction and Operation of Adjustable-
Speed Drive Systems.

@ WARNING
SIGNAL AND DEVICE INTERFERENCE

Signal interference can cause unexpected responses of device.

• Install the wiring in accordance with the EMC requirements.

• Verify compliance with the EMC requirements.

Failure to follow these instructions can result in death, serious
injury or equipment damage.

52 Fieldbus interface

4 Installation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 5 Commissioning

Fieldbus interface 53

5 Commissioning

5.1 Commissioning the device

For installation in the network, the device must first be properly installed
(mechanically and electrically) and commissioned.

Commission the device as per product manual. This prepares the device
for operation in the network.

@ DANGER
UNINTENDED CONSEQUENCES OF EQUIPMENT OPERATION

When the system is started, the drives are usually out of the opera-
tor's view and cannot be visually monitored.

• Only start the system if there are no persons in the hazardous
area.

Failure to follow these instructions will result in death or serious
injury.

@ WARNING
UNINTENDED OPERATION

• Do not write values to reserved parameters.

• Do not write values to parameters unless you fully understand the
function. For more information see the product manual.

• Run initial tests without coupled loads.

• Verify that the system is free and ready for the movement before
changing parameters.

• Verify the use of the bits with fieldbus communication: bit 0 is far
right (least significant). Bit 15 is far left (most significant).

• Verify the use of the word sequence with fieldbus communication.

• Do not establish a fieldbus connection unless you have fully
understood all communications principles.

Failure to follow these instructions can result in death, serious
injury or equipment damage.

54 Fieldbus interface

5 Commissioning IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

5.2 Address and baud rate

Up to 32 devices can be addressed in one CAN bus network branch and
up to 127 devices in the extended network. Each device is identified by
a unique address. The default node address for a device is 127.

The default baud rate is 125 kbaud.

Each device must be assigned its own node address, i.e.
any given node address may be assigned only once in the
network.

Setting address and baud rate The address is set directly at the device via parameter canAddr and the
baud rate via parameter canBaud.

The baud rate must be the same for all devices in the fieldbus.

5.3 Commissioning the fieldbus network

5.3.1 Starting fieldbus mode

Configuration with SyCon Note on using the Hilscher configuration software SyCon:

Do not change the setting Geräteprofil (value = 0) in the
Knotenkonfiguration dialog box!

If this value is changed, communication with the drive will no longer
work. However, the setting cannot be reset to the initial value.

To restore communication with the product:

� Click the Knoten BootUp button in the Knotenkonfiguration
dialog box.

� Click Prüfe Knoten Type and Profile in the Knoten Auf-
schaltreihenfolge dialog to skip this step.

Testing fieldbus operation After correct configuration of the transmission data, test fieldbus opera-
tion.

This requires installation of a CAN configuration tool that displays CAN
messages. The acknowledgement from the product is indicated by a
boot-up message:

� Switch the power supply of the product off and on again.

� Observe the network messages shortly after switching on the
device. The positioning controller sends a 1 byte boot-up message
after initialization of the bus: 128 (80h)+node-Id.

With the node address factory-set to 127 (7Fh), boot-up message 255
(FFh) is transmitted via the bus. The drive can then be put into operation
via NMT services.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 5 Commissioning

Fieldbus interface 55

5.3.2 Troubleshooting

Check the following settings if the slave does not respond:

� Did you start the slave and switch on the master?

� Are all cable connections ok (electrically and mechanically)?

� Did you set the correct address at the slave? Check the DIP switch
and HEX switch settings. The settings are described in the product
manual. Products without DIP switches have the following default
settings: CAN address 127 (7Fh) and baud rate 125 [kBit/s]. You
can change these settings via CAN itself or by means of the PC
commissioning tool via the RS 485 interface.

� Did you set the same baud rate and the same interface parameters
for the master and the slave?

If the slave still does not respond:

� Open the cover of the connector housing.

� When a slave works properly with the power stage disabled, the
LED in the connector housing flashes constantly at 0.5 Hz (1 sec-
ond on, 1 second off). If this is not the case, the product is inopera-
tive. See the product manual for information on errors and
troubleshooting.

� Compare the behavior of LED with the information in the table
below.

See the product manual for additional information on the cause of errors
and on troubleshooting.

Error Error class Cause of error Troubleshooting

LED off – No supply voltage. Check supply voltage and fuses.

LED flashes at 0.5 Hz(1 s
on, 1 s off)

.– Firmware works without errors,
power stage disabled.

Check cable connections. Check
DIP switch settings.

LED flashes at 6 Hz. 4 Incorrect flash checksum. Reinstall firmware. Replace slave.

LED flashes at 10 Hz.
Watchdog

4 Hardware error Switch slave off and on again.
Replace slave.

56 Fieldbus interface

5 Commissioning IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

5.4 SyCon CANopen configuration software

The CANopen network can be configured with the "SyCon" configura-
tion software. An additional EDS file is included in the SYCON subdirec-
tory on the product CD.

� Procedure:

5.4.1 Creating a new network

Create a new network via the menu item "File - New".

� Select CANopen as the fieldbus network.

� Confirm your selection with "OK".

5.4.2 Selecting the CANopen master

Use the menu item "Insert - Master" to select the network master. The
screenshot shows the example of a TSX CCP 110 board of a Premium
PLC.

The node ID and a brief description can be entered in the appropriate
fields.

� Confirm your selection with "OK".

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 5 Commissioning

Fieldbus interface 57

5.4.3 Setting the bus parameters

The menu item "Settings - Bus Parameter..." allows you to set the CAN-
open communication parameters. Please also consult the operating in-
structions of the SyCon configuration software.

� Confirm your selection with "OK".

58 Fieldbus interface

5 Commissioning IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

5.4.4 Selecting and inserting nodes

Use the menu item "Insert - Node" to select the network nodes. The ex-
ample shows a Lexium 05.

� Confirm your selection with "OK".

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 59

6 Operation

6.1 Overview

The programming examples show hands-on applications for network
operation. There are 2 access methods via the CANopen fieldbus: SDO
"Service Data Objects" and PDO "Process Data Objects".

Using SDOs An SDO access is a write or a read access to an individual object. The
available objects are described in the product manual and also summa-
rized in a table in the chapter "Parameters". This chapter describes the
use of SDOs on the basis of just a small number of objects since this
type of communication can be used with all available objects and the
structure is very similar in all cases.

Using PDOs PDOs are recommended for positioning mode because the information
is transmitted much more efficiently. The chapter provides various
hands-on examples of the application of PDO4 supported by the product
and describes the general procedure.

• The PDO from the master to the product is referred to as "R_PDO".

• The PDO from the product to the master is referred to as "T_PDO".

@ WARNING
UNINTENDED OPERATION

• Do not write values to reserved parameters.

• Do not write values to parameters unless you fully understand the
function. For more information see the product manual.

• Run initial tests without coupled loads.

• Verify that the system is free and ready for the movement before
changing parameters.

• Verify the use of the bits with fieldbus communication: bit 0 is far
right (least significant). Bit 15 is far left (most significant).

• Verify the use of the word sequence with fieldbus communication.

• Do not establish a fieldbus connection unless you have fully
understood all communications principles.

Failure to follow these instructions can result in death, serious
injury or equipment damage.

60 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Structure of the examples The PDOs are described from the perspective of the slave:

The examples describe:

• Task

• Initial conditions

• Required commands in the transmit data frame

• Response of the product in the receive data frame

• Possible restrictions for command execution.

You should be familiar with the following to be able to understand the ex-
amples:

• Operating concept and functionality of the product. For more infor-
mation see the product manual.

• Fieldbus protocol and connection to the master controller

• Functionality of the fieldbus profile.

Product manual The examples are intended to supplement the function descriptions in
the product manuals. The basic function principles of the operating
modes and functions are described in the product manual.

All parameters for the operating modes and functions are also listed in
the product manual.

See table 9.2, page 9-1 in the device manual for a description of the
number format of the parameter values in a fieldbus command.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 61

6.2 Using SDO commands

6.2.1 Writing parameters

Task The parameter Motion.acc, 29:26 (acceleration) is to be set to a value
of 10,000.

Index and subindex must be converted to hexadecimal notation and the
constant 3000h added to the index for the SDO access:

• Index:29 = 1Dh + 3000h = 301Dh

• Subindex: 26 = 1Ah

• Value:10000 = 00002710h

The value 23h is to be entered as a CCD (Client Command Specifier)
since the parameter has a 32 bit data type.

Transmit data

Refer to the column "Data type" in the parameter description for the data
type of the value to be written. The CAN protocol used transmits 16 bit
values and 32 bit values in the format "lowest value byte first – highest
value byte last". When an INT16 or a UINT16 value is transmitted, the
CCD corresponding to the data type must be included. The value must
be stored in the first two data bytes, the last two data bytes must be "0".

Receive data

Object COB ID CCD Idx Sdx Data Description

Tx 301Dh:1Ah Motion.acc 600h+ID 23h 1Dh 30h 1Ah 10h 27h 00 00 Sets the acceleration to
10000 min-1*s = 2710h as a 32 bit
value

Object COB ID CCD Idx Sdx Data Description

Rx 301Dh:1Ah Motion.acc 580h+ID 60h 1Dh 30h 1Ah XX XX XX XX The response data does not have
a meaning.

62 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

6.2.2 Reading a parameter

Task The parameter Status.n_act, 31:9 (actual speed) is to be read.

Index and subindex must be converted to hexadecimal notation and the
constant 3000h added to the index for the SDO access:

• Index:31 = 1Fh + 3000h = 301Fh

• Subindex 9 = 09h

The value "40h" must be entered as the CCD. This value identifies a
"Read Request".

Transmit data

The 4 data bytes have no significance for a read request.

Receive data

The product transmits the data as 32 bit values back to the master (CCD
is "43h"). It also sends back data as a 32 bit value which are described
as INT16 or UINT16 data types in the product manual. When an INT16
or a UINT16 value is read, it is therefore possible to evaluate all 4 data
bytes. However, for 16 bit data it is also correct to evaluate only the first
two data bytes and to ignore the last two data bytes.

6.2.3 Synchronous errors

Receive data with error frame "Error
Response"

If an SDO write or read command fails, the product responds with an er-
ror frame "Error Response". This may happen if, for example, you try to
read or write a non-existent object. The transmitted error number pro-
vides information on the exact cause.

The example shows the response to a write or read request for a non-
existent object 40:32.

The error number of a synchronous error message is stored as a
UINT16 value and the corresponding CCD (Error Response) is as-
signed the value 80h. Refer to 7.3.2 "Error code table" for a table with the
error numbers.

Object COB ID CCD Idx Sdx Data Description

Tx 301Fh:09h Sta-
tus.n_actT

600h+ID 40h 1Fh 30h 09h XX XX XX XX Reads the actual speed. The data
has no significance.

Object COB ID CCD Idx Sdx Data Description

Rx 301Dh:09h Status.n_act 580h+ID 43h 1Fh 30h 09h E8 03 00 00 The data 000003E8 corresponds
to 1000 min-1.

Object COB ID CCD Index Sub Data Description

Rx 3028h:20h 580h+ID 80h 28h 30h 20h 00 00 02 06 Error value 06020000h means
"object does not exist in object dic-
tionary"

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 63

6.3 Changing operating states with PDO4

The product operates in different operating states. The individual oper-
ating states are numbered from 1 to 9 . The operating states and the
transition conditions are described in more detail in the product manual,
chapters "Basics" and "Operation".

Table 6.1 Important operating states

Requests for switching operating states are transmitted to the product in
R_PDO4 in the field drivectrl. The product signals the current oper-
ating state back to the master in T_PDO4, field driveStat.

Table 6.2 shows the bit assignment of the field drivectrl in the object
R_PDO4:

Table 6.2 R_PDO4, drivectrl, bit assignment

Operating
state

Name Power
stage

Description

4 Ready To Switch On off Passive operating state,
motor without current

6 Operation Enable on Active operating state, current
available to motor

7 Quick Stop active on Fault state, power stage
remains enabled

9 Fault off Fault state, power stage is
disabled

Bit no. Value Meaning

0 01h Disable

1 02h Enable

2 04h Quick Stop

3 08h Fault Reset

4 10h Quick Stop release

64 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

6.3.1 Switching the power stage on and off

The power stage is enabled by the transition from operating state 4 to 6
. For this purpose, the two bits Enable and Disable are available in the
R_PDO4. One of them must be "1", the other "0".

Enabling the power stage Prerequisite: the product in in operating state 4.

To enable the power stage, a "0 -> 1" edge must be generated in
drivectrl, bit 1 (Enable). This can be done by deleting bit 0 (Disable)
and setting bit 1 . The master then waits until the product signals oper-
ating state 6 . This may take a while (approx. 1 second) since various
tests are run when the power stage is enabled.

Example

Disabling the power stage Prerequisite: Product is in operating state 6 or 7.

To disable the power stage, a "0 -> 1" edge must be generated in drivec-
trl, bit 0 (Disable). This can be done by setting Bit 0 (Disable) and de-
leting bit 1 (Enable). The product switches to operating state 4.

Example

6.3.2 Triggering a "Quick Stop"

A running motion command can be interrupted via the fieldbus at any
time with the Quick Stop command. The stop is triggered by a "0 -> 1"
edge in drivectrl, bit 2. After the state transition to operating state 7
(Quick Stop), the product decelerates with the set EMERGENCY STOP
ramp and comes to a standstill.

In order to start a new motion command, you must first set the product
to operating state 6 . To achieve this, do one of the following:

• Fault Reset"0 -> 1" edge in drivectrl, bit 3

• Quick Stop release"0 -> 1" edge in drivectrl, bit 4

Master <---> Slave

Disable is requested ---> drivectrl01h

Slave signals operating
state 4

<--- driveStat XXX4h

Request Enable ---> drivectrl02h

Slave signals operating
state 5

<--- driveStat XXX5h

Slave signals operating
state 6

<--- driveStat XXX6h

Master <---> Slave

Enable is requested ---> drivectrl 02h

Slave signals operating
state 6

<--- driveStat XXX6h

Request disable ---> drivectrl 01h

Slave signals operating
state 4

<--- driveStat XXX4h

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 65

Example

Master <---> Slave

"Enable" is requested ---> drivectrl 02h

Slave signals operating
state 6

<--- driveStat XXX6h

request "Quick Stop" and
"Enable"

---> drivectrl 06h

Slave signals operating
state 7

<--- driveStat XXX7h

Wait until the product has
come to a standstill and the
system is to resume opera-
tion

--->

Request "Quick Stop
Release" and "Enable"

<--- drivectrl 12h

Slave signals operating
state 6

---> driveStat XXX6h

Cancel "Quick Stop
Release"

<--- drivectrl 02h

66 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

6.3.3 Resetting faults

If an error occurs during operation, the product switches to operating
state 7 "Quick Stop" or operating state 9 "Fault", depending on the type
of error.

After having remedied the cause of the fault, you can reset the error
state with a Fault Reset ("0 -> 1" edge in drivectrl, bit 3).

If the product was originally in operating state 7, it will switch to operating
state 6 after the "Fault Reset".

If the product was originally in operating state 9, it will switch to operating
state 4 after the "Fault Reset". You then have to transmit a "0 -> 1" edge
in drivectrl, bit 1 "Enable", in order to enable the power stage.

Example

Table 6.3 Disabling the power stage

Note: In this example, the master deletes the Bit 1"Enable" during the
"Fault Reset" in order to implicitly effect a "0 -> 1" edge in Bit 1. This
switches the product back to operating state 6.

Master <---> Slave

Request Enable ---> drivectrl 02h

Slave signals operating
state 9 (Fault)

<--- driveStat XXX9h

Remedy cause of error

Request "Fault Reset" ---> drivectrl 08h

Slave signals operating
state 4

<--- driveStat XXX4h

Request "Enable" ---> drivectrl 02h

Slave signals operating
state 5

<--- driveStat XXX5h

Slave signals operating
state 6

<--- driveStatXXXX6h

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 67

6.4 Examples for the operating modes with PDO4

R_PDO4 With the R_PDO4 you can start motion commands and change them
while they are being processed.

R_PDO4 provides three fields for these purposes:

• modeCtrl Starting and changing operating modes

• "Ref16" and "Ref32" Operating mode-dependent reference values

The specified values for these three fields are not taken over by the prod-
uct until modeCtrl, bit 7 (ModeToggle) changes.

Proceed as follows to assign values to the product:

� Enter the desired operating mode and the corresponding values in
the fields modeCtrl, "Ref16" or "Ref32".

� Change modeCtrl, bit 7 (ModeToggle)

This avoids consistency problems within the R_PDO4.

T_PDO4 T_PDO4 allows you to monitor motion commands.

T_PDO4 provides three fields for this purpose:

• modeStat For Handshake purposes

• driveStat Signals motion status and errors

• p_actActual position of the product

ModeToggle The bit ModeToggle is available in the R_PDO4 and in the T_PDO4. The
master provides this bit in the and the product mirrors is in the . This pro-
cedure allows the master to detect whether the data transmitted by the
slave is current.

Example The master starts a positioning movement that will only take a very short
time. The master waits for the end of the positioning movement by
checking T_PDO4 for bit x_end = 1 (positioning end).

The master may receive data from the slave that still originate from a
point in time before the positioning movement was started. This data
also contains x_end = 1. The master detects that the data is obsolete
because the included bit ModeToggle does not match that of its motion
command.

The master may only evaluate data in which the received ModeToggle
bit is identical to the last bit transmitted by the master.

Acceleration Prior to positioning, you can first set the desired acceleration with an
SDO access (object Motion.acc, 29:26). Note that the acceleration
can only be changed when the product is at a standstill.

Assumptions The examples in this chapter are based on the following assumptions:

• Operating state 6 "Operation Enable"

• Homing has not yet been performed (bit ref_ok = 0)

• p_act = 0 (actual position)

• R_PDO4: modeCtrl, Bit 7 = 0 (ModeToggle)

68 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

6.4.1 Operating mode Profile Position: absolute positioning

To start an absolute positioning movement, the following settings must
be made in the R_PDO4:

� Enter the reference speed in "Ref16" and the target position in
"Ref32".

� Enter operating mode 03h (Profile Position operating mode, abso-
lute positioning) in the field modeCtrl.

� Change modeCtrl, bit 7, so the data is taken over by the product.

Example Absolute positioniing to position 100,000 (000186A0h)

at a reference speed of 1000 min-1 (03E8h)

Table 6.4 Operating mode Profile Position, absolute positioning at constant ref-
erence speed

Note: The data frame "positioning running" can be sent several times;
the current actual position is contained in the field p_act.

Example As the above example, but the reference speed is changed to 2000 min-

1 (07D0h) during the movement.

Table 6.5 Operating mode Profile Position, absolute positioning with change of
reference speed

Note: The data frame "positioning running" can be sent several times.
The current actual position is contained in the field p_act. When the ref-
erence speed is changed, the same target position is sent because it
does not change in this example.

Master <---> Slave

Triggering positioning R_PDO4 ---> drivectrl
02h

modeCtrl
83h

Ref16
03E8h

Ref32
000186A0h

Positioning runningx_err = 0,
x_end = 0

T_PDO4 <--- driveStat
0006h

modeStat
83h

p_act
XXXXXXXXh

Positioning completex_err = 0,
x_end = 1, x_info = 1

T_PDO4 <--- driveStat
6006h

modeStat
83h

p_act
000186A0h

Master <---> Slave

Triggering positioning R_PDO4 ---> drivectrl
02h

modeCtrl
83h

Ref16
03E8h

Ref32
000186A0h

Positioning runningx_err = 0,
x_end = 0

T_PDO4 <--- driveStat
0006h

modeStat
83h

p_act
XXXXXXXXh

Change reference speed R_PDO4 ---> drivectrl
02h

modeCtrl
03h

Ref16
07D0h

Ref32
000186A0h

Positioning runningx_err = 0,
x_end = 0

T_PDO4 <--- driveStat
0006h

modeStat
03h

p_act
XXXXXXXXh

Positioning complete x_err=0,
x_end = 1, x_info = 1

T_PDO4 <--- driveStat
6006h

modeStat
03h

p_act
000186A0h

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 69

6.4.2 Operating mode Profile Position: relative positioning

Relative positioning is similar to absolute positioning. You only need to
enter the value 13h (operating mode Profile Positioning, relative posi-
tioning) in field modeCtrl. Also note that several target positions trans-
mitted in succession are added up.

Example: Relative positioning by 100,000 (000186A0h) increments at a speed of
1000 min-1 (03E8h)

During the movement, the speed is to be changed to 2000 min-1
(07D0h).

Table 6.6 Profile Position operating mode, relative positioning with change of
reference speed

Note: The data frame "positioning" running can be sent several times;
the current actual position is contained in the field p_act. When the ref-
erence speed is changed, the value "0" must be sent as the new target
position because the new value is added to the previously calculated tar-
get position.

6.4.3 Operating mode Profile Velocity

In Profile Velocity operating mode, a reference speed for the motor is set
and a movement without a target position is started.

To start the Profile Velocity operating mode or to change the reference
speed in Profile Velocity operating mode, you must make the following
settings in R_PDO4:

� Enter the reference speed in Ref16t. (Ref32 has no significance
here)

� Enter the operating mode 04h (operating mode Profile Velocity) in
modeCtrl.

� Toggle modeCtrl, bit 7, so the data is taken over by the slave.

Master <---> Slave

Triggering positioning R_PDO4 ---> drivectrl
02h

modeCtrl
93h

Ref16
03E8h

Ref32
000186A0h

Positioning runningx_err = 0,
x_end = 0

T_PDO4 <--- driveStat
0006h

modeStat
83h

p_act
XXXXXXXXh

Change reference speed Trans-
mit relative postion "0"

R_PDO4 ---> drivectrl
02h

modeCtrl
13h

Ref16
07D0h

Ref32
00000000h

Positioning runningx_err = 0,
x_end = 0

T_PDO4 <--- driveStat
0006h

modeStat
03h

p_act
XXXXXXXXh

Positioning completex_err = 0,
x_end = 1, x_info = 1

T_PDO4 <--- driveStat
6006h

modeStat
03h

p_act
000186A0h

70 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Example The Profile Velocity operating mode is started with a reference speed of
1000 min-1 (03E8h).

The reference speed is changed to 2000 min-1 (07D0h) during the
movement.

The Profile Velocity operating mode is terminated when the reference
speed "0" is transmitted; standstill is waited for.

Note: The field p_act of the T_PDO4 contains the current position of the
drive in increments.

6.4.4 Position setting

During position setting, a new position is assigned to the current motor
position. This only shifts the coordinate system, the motor itself does not
move.

You must make the following settings for position setting in the R_PDO4:

• Enter the new position in Ref32. (Ref16 has no significance here)

• Enter operating mode 02h in modeCtrl ("Homing", "Position Set-
ting").

• Toggle modeCtrl, bit 7, so the data is taken over by the slave.

Example: The motor is at position -100,000 (FFFE7960h).

Position 200,000 is assigned to the motor (00030D40h).

Master <---> Slave

Start Profile Velocity operating
mode with 1000 min-1

R_PDO4 ---> drivectrl
02h

modeCtrl
84h

Ref16
03E8h

Ref32
XXXXXXXXh

Product accelerates xerr=0,
xend=0, xinfo=0

T_PDO4 <--- driveStat
0006h

modeStat
84h

p_act
XXXXXXXXh

Reference speed reached
xerr=0, xend=0, xinfo=1

T_PDO4 <--- driveStat
2006h

modeStat
84h

p_act
XXXXXXXXh

Change speed to 2000 min-1 R_PDO4 ---> drivectrl
02h

modeCtrl
04h

Ref16
07D0h

Ref32
XXXXXXXXh

Product accelerates xerr=0,
xend=0, xinfo=0

T_PDO4 <--- driveStat
0006h

modeStat
04h

p_act
XXXXXXXXh

Reference speed reached
xerr=0, xend=0, xinfo=1

T_PDO4 <--- driveStat
2006h

modeStat
04h

p_act
XXXXXXXXh

Change speed to 0 min-1 R_PDO4 ---> drivectrl
02h

modeCtrl
84h

Ref16
0000h

Ref32
XXXXXXXXh

Product decelerates xerr=0,
xend=0, xinfo=0

T_PDO4 <--- driveStat
0006h

modeStat
84h

p_act
XXXXXXXXh

Profile Vel. mode terminated
xerr=0, xend=1, xinfo=1

T_PDO4 <--- driveStat
6006h

modeStat
84h

p_act
XXXXXXXXh

Master <---> Slave

Product signals position-100,000 T_PDO4 <--- driveStat
XXXXh

modeStat
XXh

p_act
FFFE7960h

Position setting to 200,000 R_PDO4 ---> drivectrl
02h

modeCtrl
82h

Ref16
XXXXh

Ref32
00030D40h

Position taken over x_err = 0,
x_end = 1, x_info = 0

T_PDO4 <--- driveStat
4006h

modeStat
A2h

p_act
00030D40h

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 71

6.4.5 Operating mode Homing

During the reference movement a limit switch or reference switch is ap-
proached and then a new value is assigned to this position.

Before a reference movement is started, the parameters must be set by
means of SDO write access to satisfy the requirements. See the product
manual for detailed information on parameterization and on performing
a reference movement.

To start a reference movement the following settings must be made in
the R_PDO4:

• Enter the type of reference movement in Ref16 (Ref32 has no sig-
nificance here).

The available types of reference movement are described in the
device manual.

• In modeCtrl, enter operating mode 12h"Homing".

• Toggle modeCtrl, bit 7, so the data is taken over by the slave.

Example A reference movement to the negative limit switch (LIMN) is to be per-
formed; this is reference movement type 2.

Table 6.7 Reference movement

Master <---> Slave

Trigger reference movement R_PDO4 ---> drivectrl
02h

modeCtrl
92h

Ref16
0002h

Ref32
XXXXXXXXh

Reference movement runningx-
err=0, xend=0

T_PDO4 <--- driveStat
0006h

modeStat8
2h

p_act
XXXXXXXXh

Reference movement complete
xerr=0, xend=1

T_PDO4 <--- driveStat
4006h

modeStat
A2h

p_act
00000000h

72 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

6.5 Error signaling via PDO4

6.5.1 Synchronous errors

If a request for an operating mode sent via R_PDO4 cannot be proc-
essed by the product, the product rejects processing and sets
modeStat, bit 6 ("ModeError") in the T_PDO4. This does not interrupt
the current process. To determine the cause of the error, the master can
read the error number from the object CAN.modeError, 30:11 with an
SDO access.

Example The product rotates in Profile Velocity operating mode.

Table 6.8 Synchronous error, invalid operating mode request

NOTE: When the request for position setting is rejected, the product
continues to run in Profile Velocity operating mode; there is no change.

However, the product sends an EMCY message with the corresponding
error number to the master .

6.5.2 Asynchronous errors

Asynchronous errors are triggered by internal monitoring (e.g. temper-
ature) or by external monitoring (e.g. limit switch). If an asynchronous er-
ror occurs, the product responds by braking or by disabling the power
stage.

Asynchronous errors are indicated in the following way:

• Change to operating state 7 "Quick Stop" or to operating state 9
"Fault".

The change is represented in T_PDO4, driveStat, bits 0 ... 3.

• Setting of driveStat, bit 5 (fault detected by internal monitoring)
or driveStat, bit 6 (fault detected by internal monitoring)

• In the event of an error message by internal monitoring:

Setting of the bit corresponding to the fault in object
Status.FltSig_SR, 28:18.

In the event of an error message by external monitoring:Setting of
the bit corresponding to the fault in object Status.Sign_SR, 28:15

• In addition, an error number is assigned to each error. In the event
of an asynchronous error, the corresponding error number can be
read from the object Status.StopFault (32:7).

Master <---> Slave

Profile Velocity operating
modex_end = 0

T_PDO4 <--- driveStat
0006h

modeStat
04h

p_act
XXXXXXXXh

Request: Dimension setting to 0 R_PDO4 ---> drivectrl
02h

modeCtrl
82h

Ref16
XXXXh

Ref32
00000000h

Request rejected "ModeError" =
1

T_PDO4 <--- driveStat
0006h

modeStat
C4h

p_act
XXXXXXXXh

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 6 Operation

Fieldbus interface 73

Example: External monitoring triggers a fault message; positive limit switch "LIMP"
was hit.

Table 6.9 Asynchronous error, triggering of an external

Note: When the limit switch is detected, the motor is decelerated with the
EMERGENCY STOP ramp until it comes to a standstill and the bit
x_err is set. After the motor has come to a standstill, bit x_end is set.

Master <---> Slave

Positioning running xerr=0,
xend=0

T_PDO4 <--- driveStat
0006h

modeStat
03h

p_act
XXXXXXXXh

Limit switch detected xerr=1,
xend=0

T_PDO4 <--- driveStat
8047h

modeStat
03h

p_act
XXXXXXXXh

Motor stopped xerr=1, xend=1 T_PDO4 <--- driveStat
C047h

modeStat
03h

p_act
XXXXXXXXh

74 Fieldbus interface

6 Operation IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 7 Diagnostics and troubleshooting

Fieldbus interface 75

7 Diagnostics and troubleshooting

7.1 Fieldbus communication error diagnostics

A properly operating fieldbus is essential for evaluating operating and er-
ror messages.

Connections for fieldbus mode If the product cannot be addressed via the fieldbus, first check the con-
nections. The product manual contains the technical data of the device
and information on network and device installation. Check the following:

• 24Vdc power supply

• Power connections to the device

• Fieldbus cable and fieldbus wiring

• Network connection to the device

You can also use the commissioning software for troubleshooting.

Baud rate and address If it is impossible to connect to a device, check the baud rate and node
address.

• The baud rate must be the same for all devices in the network.

• The node address of each device must be between 1 and 127 and
unique for each device.

To set the baud rate and node address see chapter 5.2 "Address and
baud rate".

Fieldbus function test After correct configuration of the transmission data, test fieldbus mode.
This requires installation of a CAN configuration tool that displays CAN
messages. Feedback from the product is indicated by a boot-up mes-
sage:

• Switch the power supply off and on again.

• Observe the network messages after switching on. After initializa-
tion of the bus, the device sends a boot-up message (COB ID 700h
+ node ID and 1 data byte with the content 00h).

• With the factory setting 127 (7Fh) for the node address, the boot-up
message is sent via the bus . The device can then be put into oper-
ation via NMT services.

If network operation cannot be started, the network
function of the device must be checked by your local
representative. Contact your local sales representative.

76 Fieldbus interface

7 Diagnostics and troubleshooting IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

7.2 Error diagnostics via fieldbus

7.2.1 Message objects

A number of objects provide information on the operating and error
state:

• Object Statusword (6041h)
Operating states, see product manual

• Object EMCY (80h+ Node-ID)
Error message from a device with fault state and error code, see
chapter 3.4.2.5 "Emergency service"

• Object Error register (1001h)
Fault state

• Object Error code (603Fh)
Error code of the most recent error

• Devices use the special SDO error message ABORT to signal
errors in exchanging messages by SDO.

7.2.2 Messages on the device status

Synchronous and asynchronous errors are distinguished in the evalua-
tion and handling of errors.

Synchronous errors The device signals a synchronous error directly as a response to a mes-
sage that cannot be evaluated. Possible causes comprise transmission
errors or invalid data. For a list of synchronous errors see chapter 7.3.1
"Error register".

Asynchronous errors Asynchronous errors are signaled by the monitoring units in the device
as soon as a device fault occurs. An asynchronous error is signal via bit
3, "Fault", of the object statusword (6041h). In the case of errors
that cause a an interruption of the movement, the device transmits an
EMCY message.

Asynchronous errors are also reported via bits 5..7 of the object
driveStat (2041h).

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 7 Diagnostics and troubleshooting

Fieldbus interface 77

7.3 CANopen error messages

CANopen error messages are signaled in the form of EMCY messages.
They are evaluated via the objects Error register (1001h) and
Error code (603Fh). For information on the object EMCY see chapter
3.4.2.5 "Emergency service".

CANopen signals errors that occur during data exchange via SDO with
the special SDO error message ABORT.

7.3.1 Error register

The object Error register(1001h) indicates the error state of a de-
vice in bit-coded form. The exact cause of error must be determined with
the error code table. Bit 0 is set as soon as an error occurs.

7.3.2 Error code table

The error code is evaluated with the object error code (603Fh), an
object of the DSP402 device profile, and output as a four-digit hexadec-
imal value. The error code indicates the cause of the last interruption of
movement. See the Troubleshooting chapter of the product manual for
the meaning of the error code.

Bit Message Meaning

0 Generic error An error has occurred

1 - reserved

2 - reserved

3 - reserved

4 Communication Network communication error

5 Device profile-specific Error in execution as per device profile

6 - reserved

7 Manufacturer-specific Vendor-specific error message

78 Fieldbus interface

7 Diagnostics and troubleshooting IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

7.3.3 SDO error message ABORT

An SDO error message is generated as a response to an SDO trans-
mission error. The cause of error is contained in error code, byte 4 to
byte 7.

Figure 7.1 SDO error message as a response to an SDO message

The table below shows all error messages that may occur during data
exchange with the product.

Client Server

1 2 3 4 5 6 70

COB-ID ccd Idx2 Idx1 Sidx data

error response

80ccd: Byte 4-7
error code

Error code Meaning

0504 0000h Time-out during SDO transfer

0504 0001h Command specifier CS incorrect or unknown

0601 0000h Access to object impossible

0601 0001h No read access, because write-only object (wo)

0601 0002h No write access, because read object (ro)

0602 0000h Object does not exist in object dictionary

0604 0041h Object does not support PDO mapping

0604 0042h PDO mapping: number or length of objects exceed the byte
length of the PDO

0607 0010h Data type and parameter length do not match

0607 0012h Data type does not match, parameter too long

0607 0013h Data type does not match, parameter too short

0609 0011h Subindex not supported

0609 0030h Value range of parameter too large (relevant only for write
access)

0609 0031h Parameter values too great

0609 0032h Parameter values too small

0800 0000h General error

0800 0022h Device status keeps data from being transmitted and saved.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 79

8 Object directory

8.1 Overview

This object dictionary only describes the protocol for the product as per
CANopen DS 301. The objects for controlling operating modes, func-
tions and all parameters can be found in the product manual for the prod-
uct.

8.1.1 Specifications for the objects

Index The index specifies the position of the object in the object dictionary. The
index value is specified as a hexadecimal value.

Object code The object code specifies the data structure of the object.

Access ro: "Read Only"value can be read only

rw: "Read Write"value can be read and written

wo: "Write Only"value can be written only

PDO R_PDO: mapping for R_PDO possible

T_PDO: mapping for T_PDO possible

No specification: PDP mapping not possible with the object

Value range Specifies the permissible range in which the object value is defined and
valid.

Default value Load the saved factory settings to reset the product to the default values.

Object code Meaning Coding

VAR A single value, for example of the type
Integer8, Unsigned32 or Visible String8.

7

ARR (ARRAY) A data field in which every entry is of the
same data type.

8

REC (RECORD) A data field that contains entries that are
a combination of single data types.

9

Data type Value range Data length

Boolean 0 = false, 1 = true 1 byte

INT8 -128 ..+127 1 byte

INT16 -32768 ..+32767 2 byte

INT32 -2147483648 ..+2147483647 4 byte

UINT8 0 ..255 1 byte

UINT16 0 ..65535 2 byte

UINT32 0 ..4294967295 4 byte

Visible String8 ASCII characters 8 byte

Visible String16 ASCII characters 16 byte

80 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Can be saved yes: values can be saved to the memory of the product and are available
when the product is switched on again.

–: values are lost when the product is switched off.

8.1.2 Objects, overview

Index Subindex Designation Obj. code Data type Access

1000h device type VAR UINT32 ro

1001h error register VAR UINT8 ro

1008h manufacturer device name VAR String ro

100Ch guard time VAR UINT16 rw

100Dh life time factor VAR UINT8 rw

1015h inhibit time EMCY VAR UINT16 rw

1018h identity object RECORD Identity ro

1018h 0 number of elements VAR UINT8 ro

1018h 1 Vendor id VAR UINT32 ro

1018h 2 product code VAR UINT8 ro

1403h receive PDO4 communication parameter RECORD PDO_Com ro

1403h 0 number of elements VAR UINT8 ro

1403h 1 COB ID used by R_PDO4 VAR UINT32 ro

1403h 2 transmission type R_PDO4 VAR UINT8 rw

1403h 3 inhibit time R_PDO4 VAR UINT16 rw

1403h 4 compatibility entry R_PDO4 VAR UINT8 rw

1403h 5 event timer R_PDO4 VAR UINT16 rw

1603h receive PDO4 mapping RECORD PDO_Map ro

1603h 0 number of elements VAR UINT8 ro

1603h 1 1st mapped object R_PDO4 VAR UINT32 ro

1603h 2 2nd mapped object R_PDO4 VAR UINT32 ro

1603h 3 3rd mapped object R_PDO4 VAR UINT32 ro

1603h 4 4th mapped object R_PDO4 VAR UINT32 ro

1803h transmit PDO4 communication parameter RECORD PDO_Com ro

1803h 0 number of elements VAR UINT8 ro

1803h 1 COB ID used by T_PDO4 VAR UINT32 ro

1803h 2 transmission type T_PDO4 VAR UINT8 rw

1803h 3 inhibit time T_PDO4 VAR UINT16 rw

1803h 4 reserved T_PDO4 VAR UINT8 rw

1803h 5 event timer T_PDO4 VAR UINT16 rw

1A03h transmit PDO4 mapping RECORD PDO_Map ro

1A03h 0 number of elements VAR UINT8 ro

1A03h 1 1st mapped object T_PDO4 VAR UINT32 ro

1A03h 2 2nd mapped object T_PDO4 VAR UINT32 ro

1A03h 3 3rd mapped object T_PDO4 VAR UINT32 ro

1A03h 4 4th mapped object T_PDO4 VAR UINT32 ro

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 81

8.2 Objects of the product

1000h Device type

The object specifies the device profile used as well as the device type.

Object description

Value description

1001h Error register

The object specifies the error state of the product. The manufacturer-
specific object Status.StopFault 32:7 provides detailed informa-
tion on the cause of the error.

Errors are signaled by an EMCY message as soon as they occur.

Object description

Value description

Index 1000h

Object name device type

Object code VAR

Data type Unsigned32

Subindex 00h, device type

Meaning Device type and profile

Access read-only

PDO mapping –

Value range –

Default value 0

Can be saved –

Index 1001h

Object name error register

Object code VAR

Data type Unsigned8

Subindex 00h, error register

Meaning error register

Access read-only

PDO mapping –

Value range –

Default value –

Can be saved –

82 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Bit coding, subindex 00h

1008h Manufacturer device name

The object specifies the device name (e.g. “IFS ”)

Object description

Value description

100Ch Guard time

The object specifies the time span for node guarding of an NMT slave.

Object description

Value description

Bit Access Value Meaning

0 ro – Error! (generic error)

1 ro – Current

2 ro – Voltage

3 ro – Temperature

4 ro – Communication profile (communication error)

5 ro – Device profile (device profile error)

6 ro – Reserved

7 ro – Manufacturer-specific

Index 1008h

Object name manufacturer device name

Object code VAR

Data type String

Subindex 00h, manufacturer device name

Meaning Manufacturer name

Access read-only

PDO mapping –

Value range –

Default value –

Can be saved –

Index 100Ch

Object name guard time

Object code VAR

Data type Unsigned16

Subindex 00h, guard time

Meaning Time span for node guarding [ms]

Access read-write

PDO mapping –

Value range 0...65535

Default value 0

Can be saved –

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 83

The time span for connection monitoring of an NMT master results from
the time span "guard time" multiplied by the factor "life time", object
Life time factor (100Dh).

The time span can be changed in the NMT state "Pre-Operational".

100Dh Life time factor

The object specifies the factor that, together with the time span "guard
time", results in the time interval for connection monitoring of an NMT
master. Within this period, the NMT slave device expects a monitoring
request via node guarding from the NMT master.

life time = guard time * life time factor

The value "0" deactivates monitoring of the NMT master.

Object description

Value description

If there is no connection monitoring through the NMT master during the
time interval "life time", #Variable:device-name# signals an error and
switches to error state.

The time factor can be changed in the NMT state "Pre-Operational".

The time span "guard time" is set with the object Guard time (100Ch).

1015h Inhibit time emergency message

The object specifies the waiting time for the repeated transmission of
EMCY messages as a multiple of 100μs.

Object description

Index 100Dh

Object name life time factor

Object code VAR

Data type Unsigned8

Subindex 00h, life time factor

Meaning Time factor for the node guarding protocol

Access read-write

PDO mapping –

Value range 0...255

Default value 0

Can be saved –

Index 1015h

Object name inhibit time EMCY

Object code VAR

Data type Unsigned16

84 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Value description

1018h Identity Object

The object provides information on the product. Subindex 01h (vendor
Id) contains the vendor identification, subindex 02h (product Id) contains
the vendor-specific product code.

Value description

Subindex 00h, inhibit time EMCY

Meaning Waiting time for repeated transmission of an EMCY

Access read-write

PDO mapping –

Value range 0...65535

Default value 0

Can be saved –

Index 1018h

Object name Identity Object

Object code RECORD

Data type Identity

Subindex 00h, number of elements

Meaning Number of subindexes

Access read-only

PDO mapping –

Value range 1...4

Default value 2

Can be saved –

Subindex 01h, vendor id

Meaning Vendor ID

Access read-only

PDO mapping –

Value range 0...4294967295

Default value 0x0100002E

Can be saved –

Subindex 02h, product code

Meaning Product identification

Access read-only

PDO mapping –

Value range 0...4294967295

Default value 0x01

Can be saved –

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 85

1403h Receive PDO4 communication parameter

The object stores settings for the fourth receive PDO R_PDO4.

Object description

Value description

Index 1403h

Object name receive PDO4 communication parameter

Object code RECORD

Data type PDO Communication parameter

Subindex 00h, number of elements

Meaning Number of subindexes

Access read-only

PDO mapping –

Value range –

Default value 5

Can be saved –

Meaning Identifier of the R_PDO4

Subindex 01h, COB-ID R_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x40000500+nodeID

Can be saved –

Subindex 02h, transmission type R_PDO4

Meaning Transmission type

Access read-write

PDO mapping –

Value range –

Default value 254

Can be saved –

Subindex 03h, inhibit time R_PDO4

Meaning Delay time for repeated transmissions (1=100 μsec)

Access read-write

PDO mapping –

Value range 0...65535

Default value 0

Can be saved –

86 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Bit assignment subindex 01h

Bit 31 A R_PDO can only be used if bit 31="0".

Bit 30 RTR bit If a device supports R_PDOs with RTR (remote transmission request),
it can request a PDO from a PDO producer with RTR = "0" in accordance
with the producer-consumer relationship.

The product cannot request PDOs, but it can respond to the request for
a PDO, see RTR bit for T_PDO1 settings (1800h).

Bit coding, subindex 02h The control for evaluating R_PDO data is specified via subindex 02h.
The values 241..251 are reserved.

Subindex 04h, compatibility entry R_PDO4

Meaning For compatibility purposes only

Access read-write

PDO mapping –

Value range –

Default value –

Can be saved –

Subindex 05h, event timer R_PDO4

Meaning Time setting for event triggering

Access read-write

PDO mapping –

Value range –

Default value 0

Can be saved –

Bit Acces
s

Value Meaning

31 rw 0b 0: PDO is active 1: PDO is inactive

30 ro 0b 0: RTR (see below) is possible 1: RTR is not per-
mitted

29 ro 0b 0: 11 bit identifier (CAN 2.0A) 1: 29 bit identifier
(CAN 2.0B)

28-11 ro 0000h Only relevant if bit 29=1 is not used by the product.

10-7 rw 0100h Function code, bit 10-7 of the COB ID

6-0 ro – Node address, bit 6-0 of the COB ID

Transmission type cyclic acyclic synchronous asynchronous RTR-controlled

0 – X X – –

1-240 X – X – –

252 – – X – X

253 – – – X X

254 – – – X –

255 – – – X –

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 87

If an R_PDO is transmitted synchronously (transmission type=0..252),
the product evaluates the received data depending on the SYNC object.

• In the case of acyclic transmission (transmission type=0), the evalu-
ation depends on the SYNC object, but not the transmission of the
PDO. A received PDO message is evaluated with the following
SYNC.

A value between 1 and 240 specifies the number of SYNC cycles
after which a received PDO is evaluated.

The values 252 to 254 are relevant for updating T_PDOs, but not for
sending them.

• 252: Updating of transmit data with receipt of the next SYNC

• 253: Updating of transmit data with receipt of a request from a PDO
consumer

• 254: Updating of data in an event-controlled way, the triggering
event is specified in a manufacturer-specific way

R_PDOs with the value 255 are updated immediately upon receipt of the
PDOs. The triggering event is the data that is transmitted corresponding
to the definition of the device profile in the PDO.

Subindex 03h The "Inhibit time" interval is only relevant for T_PDOs.

A T_PDO is retransmitted after expiration of the "Inhibit time" interval at
the earliest. The value is specified as a multiple of 100 μs, however, it is
rounded down to milliseconds as an integer value.

Subindex 04h The value is reserved and not used. Write or read access triggers an
SDO error message.

Subindex 05h The time interval "event timer" is only relevant for T_PDOs. A T_PDO is
transmitted after expiry of the time interval "event timer". At the same
time, the time interval is restarted. The "transmission type" must be set
to one of the values 254 or 255 via subindex 02h.

Settings R_PDO4 is processed asynchronously and in an event-controlled way.

The byte assignment of R_PDO4 is specified via PDO mapping with the
object Receive PDO4 mapping (1603h) and cannot be modified. The
assignment is described in 3.4.2.2 "Receive PDO R_PDO4 (master ->
slave)".

The COB ID of the object can be changed in the NMT state "Pre-Oper-
ational".

1603h Receive PDO4 mapping

The object specifies the objects mapped in R_PDO4 and transmitted
with the PDO. When the object is read, subindex 00h, the number of
mapped objects is read.

Object description
Index 1603h

Object name receive PDO4 mapping

Object code RECORD

Data type PDO Mapping

88 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Value description
Subindex 00h, number of elements

Meaning Number of subindexes

Access read-only

PDO mapping –

Value range –

Default value 4

Can be saved –

Subindex 01h, 1st mapped object R_PDO4

Meaning First object for mapping in R_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0108

Can be saved –

Subindex 02h, 2nd mapped object R_PDO4

Meaning Second object for mapping in R_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0208

Can be saved –

Subindex 03h, 3rd mapped object R_PDO4

Meaning Third object for mapping in R_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0510

Can be saved –

Subindex 04h, 4th mapped object R_PDO4

Meaning Fourth object for mapping in R_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0620

Can be saved –

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 89

Bit coding from subindex 01h Every subindex entry from subindex 01h on specifies the object and the
byte length of the object. The object is identified via the index and the
subindex, which refer to the object dictionary of the device.

Settings The assignment of the R_PDO4 is preset and cannot be modified.

The assignment is described in 3.4.2.2 "Receive PDO R_PDO4 (master
-> slave)".

1803h Transmit PDO4 communication parameter

The object stores settings for the fourth transmit PDO T_PDO4.

Object description

Value description

Bit Meaning

31..16 Index

15..8 Subindex

7..0 Object length in bytes

Index 1803h

Object name Transmit PDO4 communication parameter

Object code RECORD

Data type PDO Communication Parameter

Subindex 00h, number of elements

Meaning Number of subindexes

Access read-only

PDO mapping –

Value range –

Default value 5

Can be saved –

Subindex 01h, COB ID used by T_PDO4

Meaning Identifier of the T_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x00000480+nodeID

Can be saved –

Subindex 02h, transmission type T_PDO4

Meaning Transmission type

Access read-write

PDO mapping –

Value range –

Default value 254

Can be saved –

90 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

The meaning of the bit states and subindex values is described with the
object receive PDO4 communication parameter (1403h).

Settings R_PDO4 is transmitted asynchronously and in an event-driven way.

The byte assignment of T_PDO4 is specified via PDO mapping with the
object transmit PDO4 mapping (1A03h) and cannot be modified.
The assignment is described in 3.4.2.3 "Transmit PDO T_PDO4 (prod-
uct to master)".

The COB ID of the object can be changed in the NMT state "Pre-Oper-
ational".

1A03h Transmit PDO4 mapping

The object specifies the objects mapped in T_PDO4 and transmitted
with the PDO. When the object is read, subindex 00h, the number of
mapped objects is read.

Object description

Subindex 03h, inhibit time T_PDO4

Meaning Delay time for repeated transmission (in [100μsec]). The
value is rounded down to milliseconds as an integer
value.

Access read-write

PDO mapping –

Value range 0...65535

Default value 0

Can be saved –

Subindex 04h, reserved T_PDO4

Meaning Reserved (for compatibility purposes only)

Access read-write

PDO mapping –

Value range –

Default value –

Can be saved –

Subindex 05h, event timer T_PDO4

Meaning Time setting for event triggering

Access read-write

PDO mapping –

Value range –

Default value 0

Can be saved –

Index 1A03h

Object name transmit PDO4 mapping

Object code RECORD

Data type PDO Mapping

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 8 Object directory

Fieldbus interface 91

Value description
Subindex 00h, number of elements

Meaning Number of subindexes

Access read-only

PDO mapping –

Value range –

Default value 4

Can be saved –

Subindex 01h, 1st mapped object T_PDO4

Meaning First object for the mapping in T_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0410

Can be saved –

Subindex 02h, 2nd mapped object T_PDO4

Meaning Second object for the mapping in T_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0308

Can be saved –

92 Fieldbus interface

8 Object directory IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

The meaning of the bit states is described with the object receive
PDO4 mapping (1603h).

Settings The PDO assignment for T_PDO4 cannot be modified. The assigne-
ment is described in 3.4.2.3 "Transmit PDO T_PDO4 (product to mas-
ter)".

Subindex 03h, 3rd mapped object T_PDO4

Meaning Third object for the mapping in T_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0708

Can be saved –

Subindex 04h, 4th mapped object T_PDO4

Meaning Fourth object for the mapping in T_PDO4

Access read-only

PDO mapping –

Value range –

Default value 0x301E0820

Can be saved –

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 9 Glossary

Fieldbus interface 93

9 Glossary

9.1 Units and conversion tables

The value in the specified unit (left column) is calculated for the desired
unit (top row) with the formula (in the field).

Example: conversion of 5 meters [m] to yards [yd]
5 m / 0.9144 = 5.468 yd

9.1.1 Length

9.1.2 Mass

9.1.3 Force

9.1.4 Power

in ft yd m cm mm

in - / 12 / 36 * 0.0254 * 2.54 * 25.4

ft * 12 - / 3 * 0.30479 * 30.479 * 304.79

yd * 36 * 3 - * 0.9144 * 91.44 * 914.4

m / 0.0254 / 0.30479 / 0.9144 - * 100 * 1000

cm / 2.54 / 30.479 / 91.44 / 100 - * 10

mm / 25.4 / 304.79 / 914.4 / 1000 / 10 -

lb oz slug kg g

lb - * 16 * 0.03108095 * 0.4535924 * 453.5924

oz / 16 - * 1.942559*10-3 * 0.02834952 * 28.34952

slug / 0.03108095 / 1.942559*10-3 - * 14.5939 * 14593.9

kg / 0.45359237 / 0.02834952 / 14.5939 - * 1000

g / 453.59237 / 28.34952 / 14593.9 / 1000 -

lb oz p dyne N

lb - * 16 * 453.55358 * 444822.2 * 4.448222

oz / 16 - * 28.349524 * 27801 * 0.27801

p / 453.55358 / 28.349524 - * 980.7 * 9.807*10-3

dyne / 444822.2 / 27801 / 980.7 - / 100*103

N / 4.448222 / 0.27801 / 9.807*10-3 * 100*103 -

HP W

HP - * 746

W / 746 -

94 Fieldbus interface

9 Glossary IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

9.1.5 Rotation

9.1.6 Torque

9.1.7 Moment of inertia

9.1.8 Temperature

9.1.9 Conductor cross section

min-1 (RPM) rad/s deg./s

min-1 (RPM) - * π / 30 * 6

rad/s * 30 / π - * 57.295

deg./s / 6 / 57.295 -

lb·in lb·ft oz·in Nm kp·m kp·cm dyne·cm

lb·in - / 12 * 16 * 0.112985 * 0.011521 * 1.1521 * 1.129*106

lb·ft * 12 - * 192 * 1.355822 * 0.138255 * 13.8255 * 13.558*106

oz·in / 16 / 192 - * 7.0616*10-3 * 720.07*10-6 * 72.007*10-3 * 70615.5

Nm / 0.112985 / 1.355822 / 7.0616*10-3 - * 0.101972 * 10.1972 * 10*106

kp·m / 0.011521 / 0.138255 / 720.07*10-6 / 0.101972 - * 100 * 98.066*106

kp·cm / 1.1521 / 13.8255 / 72.007*10-3 / 10.1972 / 100 - * 0.9806*106

dyne·cm / 1.129*106 / 13.558*106 / 70615.5 / 10*106 / 98.066*106 / 0.9806*106 -

lb·in2 lb·ft2 kg·m2 kg·cm2 kp·cm·s2 oz·in2

lb·in2 - / 144 / 3417.16 / 0.341716 / 335.109 * 16

lb·ft2 * 144 - * 0.04214 * 421.4 * 0.429711 * 2304

kg·m2 * 3417.16 / 0.04214 - * 10*103 * 10.1972 * 54674

kg·cm2 * 0.341716 / 421.4 / 10*103 - / 980.665 * 5.46

kp·cm·s2 * 335.109 / 0.429711 / 10.1972 * 980.665 - * 5361.74

oz·in2 / 16 / 2304 / 54674 / 5.46 / 5361.74 -

°F °C K

°F - (°F - 32) * 5/9 (°F - 32) * 5/9 + 273.15

°C °C * 9/5 + 32 - °C + 273.15

K (K - 273.15) * 9/5 + 32 K - 273.15 -

AWG 1 2 3 4 5 6 7 8 9 10 11 12 13

mm2 42.4 33.6 26.7 21.2 16.8 13.3 10.5 8.4 6.6 5.3 4.2 3.3 2.6

AWG 14 15 16 17 18 19 20 21 22 23 24 25 26

mm2 2.1 1.7 1.3 1.0 0.82 0.65 0.52 0.41 0.33 0.26 0.20 0.16 0.13

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 9 Glossary

Fieldbus interface 95

9.2 Terms and Abbreviations

AC Alternating current

CAN (Controller Area Network), standardized open fieldbus as per ISO
11898, allows drives and other devices from different manufacturers to
communicate.

CANopen Device- and manufacturer-independent description language for com-
munication via the CAN bus

CiA CAN in Automation, CAN interest group, standardization group for CAN
and CANopen.

COB ID Communication OBject IDentifier; uniquely identifies each communica-
tion object in a CAN network

DC Direct current

Default value Factory setting.

DriveCom Specification of the DSP402 state machine was created in accordance
with the DriveCom specification.

DS301 Standardizes the CANopen communication profile

DSP402 Standardizes the CANopen device profile for drives

E Encoder

EDS (Electronic Data Sheet); contains the specific properties of a product.

Electronic gear Calculation of a new output speed for the motor movement based on the
input speed and the values of an adjustable gear ratio; calculated by the
drive system.

EMC Electromagnetic compatibility

EMCY object Emergency Object

Encoder Sensor for detection of the angular position of a rotating component. In-
stalled in a motor, the encoder shows the angular position of the rotor.

Error Discrepancy between a computed, observed or measured value or con-
dition and the specified or theoretically correct value or condition.

Error class Classification of errors into groups. The different error classes allow for
specific responses to faults, for example by severity.

Fault Operating state of the drive caused as a result of a discrepancy between
a detected (computed, measured or signaled) value or condition and the
specified or theoretically correct value or condition.

Fault reset A function used to restore the drive to an operational state after a de-
tected error is cleared by removing the cause of the error so that the er-
ror is no longer active (transition from operating state "Fault" to state
"Operation Enable").

I/O Inputs/outputs

Input device A device that can be connected via the RS232 interface; either the hand-
held HMI device or a PC with commissioning software.

Limit switch Switches that signal overtravel of the permissible range of travel.

96 Fieldbus interface

9 Glossary IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Power stage The power stage controls the motor. The power stage generates current
for controlling the motor on the basis of the positioning signals from the
controller.

Heartbeat Used for unconfirmed connection acknowledgement messages from
network devices.

HMI Human Machine Interface: hand-held operating device.

Power amplifier See power stage

Life guarding For monitoring the connection of an NMT master

Mapping Assignment of object dictionary entries to PDOs

Node ID Node address assigned to a device on the network.

NMT Network Management (NMT), part of the CANopen communication pro-
file; tasks include initialization of the network and devices, starting, stop-
ping and monitoring of devices

Node guarding Monitoring of the connection to the slave at an interface for cyclic data
traffic.

Object dictionary List of all parameters, values and functions available in the device. Each
entry is uniquely referenced via index (16 bit) and subindex (8 bit).

Parameter Device data and values that can be set by the user.

PDO Process Data Object

Persistent Indicates whether the value of the parameter remains in the memory af-
ter the device is switched off.

Quick Stop Function used to enable fast deceleration of the motor via a command
or in the event of an error.

R_PDO Receive PDO

SDO Service Data Object

SYNC object Synchronization object

T_PDO Transmit PDO

Warning If the term is used outside the context of safety instructions, a warning
alerts to a potential problem that was detected by a monitoring function.
A warning is not an error and does not cause a transition of the operating
state.

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 10 Index

Fieldbus interface 97

10 Index

A
Abbreviations 95
ABORT 76, 78
Acyclic data transmission 45
Address 54

Checking 75
Asynchronous errors 76

B
Baud rate 54

Checking 75
Before you begin

Safety information 13
Bit field data 22
Bit field identifier 22
Bit fields

Data 22
Identifier 22

Boot Up
Message 47

Bus arbitration 22

C
CAN

message 22
CAN 3.0A 22
CANopen

Communication profile, NMT 46
error messages 77
Message 22
Standards 11

ccd
See command code

Checking
Address 75
Baud rate 75

Client-Server 25
Client-server

SDO data exchange 26
COB ID 22

for node guarding 48
of communication objects 23
SDO 27
SYNC object 45

COB Id
bus arbitration 22
Identification of communication objects 22
tasks 22

Coding
Command code 28, 29

Command code

98 Fieldbus interface

10 Index IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Read value 29
SDO 27
Write value 28

Command specifier 48
Command-code

See command code
Commissioning 53
Commissioning the device 53
Communication objects

COB IDs 23
Controlling 22
Identification 22
overview 21

Communication profile
DS301 18

Communication relationship
client - server 24
master - slave 24
producer - consumer 24

Connection error
Node guarding 50

Connection monitoring
NMT services 48

Cyclic data transmission 45

D
Data

Persistent data 47
Reading 29
SDO 27
Writing 28

Data frame 24
of the NMT device service 48
SDO 27

Data length
Flexible 31

Data transmission
Acyclic 45
Cyclic 45
Synchronous 44

Device profile
DS402 18

Diagnostics 75
Documentation and literature references 11
DS301

communication profile 18
DS402

Device profile 18

E
EMCY

object 21
Emergency object

See EMCY object
Error

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 10 Index

Fieldbus interface 99

messages for CANopen 77
Response with SDO 30

Error code
table 77

Error diagnostics
Connections to for fieldbus operation 75
Function test of fieldbus 75

error register 77
Example

SDO message 27
Selection of a COB ID 24

F
Function code 23
function code

See Function code
Function test

Fieldbus 75

G
Glossary 93

H
Homing 71

I
Identification

of communication objects 22
Index

SDO 27
Interruption of movement

Cause 77
Introduction 9

L
Layer model

Application Layer 15
Data Link Layer 15
Physical Layer 15

Life guarding 48

M
Master - Slave 24
Message 22

CANopen 22
NMT 48, 49
SDO 27

Message objects 76
EMCY(80h+ node ID) 76
Error code (603Fh) 76
error register (1001h) 76
Status word (6041h) 76

Message-oriented communication 9

100 Fieldbus interface

10 Index IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Messages
Asynchronous errors 76
Error code (603Fh) 77
Error register (1001h) 77
on the device status 76
Synchronous errors 76

Mode Toggle 40
Multimaster capability 9

N
Network management

See NMT
NMT

Message 48
Network services 46
Recipient of a message 48
Services

Initialization 47
services 21, 46

for connection monitoring 48
for device control 46

State machine 46
State of slave 49
Structure of a message 49

Node address 22, 23, 48
Node guarding 48

COB ID 48
Connection error 50

Node ID 22

O
Object groups

overview 16
Operating mode

homing 71
profile velocity 69

Operation 59
Overview

communication objects 21
object groups 16

P
PDO 21, 31

Producer-consumer 32
Prioritization of messages 9
Process Data Object

see PDO
process data objects

see PDO
Producer-Consumer 25
Producer-consumer

PDO 32
SYNC 44

Profile velocity 69

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

IL•1F CANopen DS301 10 Index

Fieldbus interface 101

Profiles
standardized 18
Vendor-specific 18

R
Real-time data exchange 31
Recipient

of an NMT message 48
Residual error probability 9
Response

to SDO error 30

S
SDO 21, 26

COB ID 27
Command code 27
Data 27
Data frame 27
Error message 76
error message 78
Error response 30
Index, Subindex 27
message 27
Message types 26
Response 29
Transmission error 78

Service Data Object
See SDO

Service data objects 21
See SDO

Services
For connection monitoring 46
For device control 46
NMT 21, 46

Specification
CAN 3.0A 22

State machine
NMT 46

Subindex
SDO 27

SYNC object 21, 44
COB ID 45
with PDO 32

Synchronization 44
Time values 44

Synchronization object
See SYNC object

Synchronous
Data transmission 44
Errors 76

T
Tasks

of the COB Id 22

102 Fieldbus interface

10 Index IL•1F CANopen DS301

01
98

44
11

13
58

6,
 V

2.
01

, 1
1.

20
08

Terms 95
Time values

For synchronization 44
Troubleshooting 75

U
Units and conversion tables 93

V
Vendor-specific

Profiles 18

	IL.1F CANopen DS301
	Important information
	Table of Contents
	Writing conventions and symbols
	1 Introduction
	1.1 About this manual
	1.2 CAN-Bus
	1.3 Fieldbus devices networked via CAN bus
	1.4 Operating modes and functions in fieldbus mode
	1.5 Documentation and literature references

	2 Before you begin - safety information
	3 Basics
	3.1 CANopen technology
	3.1.1 CANopen description language
	3.1.2 Communication layers
	3.1.3 Objects
	3.1.4 CANopen profiles

	3.2 Communication profile
	3.2.1 Object dictionary
	3.2.2 Communication objects
	3.2.3 Communication relationships

	3.3 Service data communication
	3.3.1 Overview
	3.3.2 SDO data exchange
	3.3.3 SDO message
	3.3.4 Reading and writing data

	3.4 Process data communication
	3.4.1 Overview
	3.4.2 PDO data exchange

	3.5 Synchronization
	3.6 Network management services
	3.6.1 NMT services for device control
	3.6.2 NMT services for connection monitoring

	4 Installation
	5 Commissioning
	5.1 Commissioning the device
	5.2 Address and baud rate
	5.3 Commissioning the fieldbus network
	5.3.1 Starting fieldbus mode
	5.3.2 Troubleshooting

	5.4 SyCon CANopen configuration software
	5.4.1 Creating a new network
	5.4.2 Selecting the CANopen master
	5.4.3 Setting the bus parameters
	5.4.4 Selecting and inserting nodes

	6 Operation
	6.1 Overview
	6.2 Using SDO commands
	6.2.1 Writing parameters
	6.2.2 Reading a parameter
	6.2.3 Synchronous errors

	6.3 Changing operating states with PDO4
	6.3.1 Switching the power stage on and off
	6.3.2 Triggering a "Quick Stop"
	6.3.3 Resetting faults

	6.4 Examples for the operating modes with PDO4
	6.4.1 Operating mode Profile Position: absolute positioning
	6.4.2 Operating mode Profile Position: relative positioning
	6.4.3 Operating mode Profile Velocity
	6.4.4 Position setting
	6.4.5 Operating mode Homing

	6.5 Error signaling via PDO4
	6.5.1 Synchronous errors
	6.5.2 Asynchronous errors

	7 Diagnostics and troubleshooting
	7.1 Fieldbus communication error diagnostics
	7.2 Error diagnostics via fieldbus
	7.2.1 Message objects
	7.2.2 Messages on the device status

	7.3 CANopen error messages
	7.3.1 Error register
	7.3.2 Error code table
	7.3.3 SDO error message ABORT

	8 Object directory
	8.1 Overview
	8.1.1 Specifications for the objects
	8.1.2 Objects, overview

	8.2 Objects of the product

	9 Glossary
	9.1 Units and conversion tables
	9.1.1 Length
	9.1.2 Mass
	9.1.3 Force
	9.1.4 Power
	9.1.5 Rotation
	9.1.6 Torque
	9.1.7 Moment of inertia
	9.1.8 Temperature
	9.1.9 Conductor cross section

	9.2 Terms and Abbreviations

	10 Index

