User's manual

LT6-P Telemecanique

Multifunction protection relays

■ Merlin Gerin ■ Square D ■ Telemecanique

1. Contents

2. Glossary / definitions	3
3. LT6 application circuit diagrams	4 to 6
4. Description of the product and its accessories	7 to 9
4.1. The products and their operating range	7
4.2. Presentation of the front face	7
4.3. Product internal circuit diagram	9
4.4. Parameter entry software under Windows: LA9P620	9
5. Description of the connections	10 to 13
5.1. Discrete inputs	10
5.2. Discrete outputs	11
5.3. Power input / outputs	11
5.4. Serial link	12
5.5. Customer connections	13
6. Protection functions of the LT6	14 to 20
6.1. Configuration table of the LT6	14
6.2. Thermal overload	15
6.3. Thermal overload alarm	16
6.4. Thermal monitoring by PTC thermistor	16
6.5. Phase unbalance and phase loss	17
6.6. Earth fault	17
6.7. Undercurrent	18
6.8. Prolonged starting	18
6.9. Torque limitation, locked rotor	19
6.10. Monitoring cos and voltage measurement	19
6.11. Direction of rotation monitoring	20
7. Tripping and reset conditions	21 and 22
7.1. Tripping of the LT6 relay	21
7.2. LT6 relay fault	21
7.3. The RESET function of the LT6	21

1. Contents

7.4. Starting and stopping the alarm functions	22
7.3. TEST function	22
8. Description of the complementary functions	23 to 28
8.1. Motor control	23
8.2. Motor maintenace	24
8.3. Voltage Threshold	26
8.4. Short-circuit detection	27
8.5. Monitoring function	27
8.5. Communication watchdog	28
9. The LT6 communication function	29 to 38
9.1. The physical layer	29
9.2. Communication protocol	30
9.3. Examples of architecture	32
9.4. Database structure	34
10. LA9P620 operational software	39 to 46
11. Characteristics	47 to 51
12. Tripping curves	52 and 53
13. References	54 and 55
14. Dimensions, mounting	56 to 58
15. Application schemes	59 to 69

PTC	Positive Temperature Coefficient. Resistor with a resistance value which increases with temperature and which increases very rapidly as the nominal operating temperature is reached.
RDF	Residual Differential Fault (earth leakage)
rms	Root mean square value of a signal
I	Line current
Ir	Set value of the line current for thermal protection
ld	Phase unbalance current (calculated value)
lΔ	Residual differential fault current (earth leakage current)
lΔr	Set value of the residual differential fault current (earth leakage current)
lv	Monitoring value of the underload current, a multiple of Ir
Imax	The highest value of the three phase currents $(I_{phase1eff}, I_{phase2eff} and I_{phase3eff})$.
Imini	The lowest value of the three phase currents $(I_{phase1eff}, I_{phase2eff} and I_{phase3eff})$.
lav	Sum (I _{phase1eff} , I _{phase2eff} , I _{phase3eff}) / 3.
lsd	Monitoring threshold of the starting current, a multiple of Ir
I _{LC}	Torque limitation current
I _{cc}	Short-circuit current
Discrete	On/Off
θn	Nominal temperature of the iron circuit reached with ${\sf I}={\sf I}{\sf r}$ after an infinite time.
θr	Set temperature for the thermal overload alarm.

The LT6 can be used as a standard overload protection relay in a standard circuit arrangement, with the protection functions preprogrammed.

It can equally be used in an automation circuit arrangement, enabling the programmable controller to read the measurements available in the LT6 data base.

Finally it offers the possiblity of contactor control.

Description of installation for the three types of use:

Use of the LT6 as a protection relay

In the event of a fault, the internal contact (95-96) of the LT6 causes the power contactor (KM1) to open.

Adjustment of the protection parameters of the LT6 can be carried out using a PC with LA9P620 software.

Use of the LT6 as a remote protection and measurement relay

The PLC controls the contactors from its output contacts.

In the event of a fault, contact (95-96) of the LT6 causes the power contactor (KM1) to open.

Using the serial link, the PLC can interrogate the various LT6 relays on the measurements available in the data base.

Use of the LT6 as a protection relay, remote measurement and control

The LT6 causes the power contactor (KM1) to open in the event of a fault. It measures the current per phase, the earth leakage current, the motor temperature-rise and communicates them to the PLC when requested to do so by the latter. It assures control of the power contactor by receiving commands from the PLC. All data exchange is via serial link.

4.1. The products and their operating range:

Product reference	Rating	Model	Control supply	Discrete I/O voltage
LT6P0M005FM	1and 5 A 50/60 Hz (110 to 690 V)	Motor	110/230 V ± 20 %	90 to 150 V DC/AC 50/60 Hz
LT6P0M025FM	25 A 50/60 Hz (110 to 690 V)	protection	DC/AC 50/60 Hz	& 90 V to 276 V AC 50/60 Hz

For ratings above 25 A, it is necessary to use external current transformers. For further details, refer to the pages 48 to 50.

Note: the product operates for a frequency of 50/60 Hz. If this changes the accuracy of the LT6 measurements will be affected.

4.2. Presentation of the front face

- 1, 2 Rotary switches for setting the rated motor current
 - 3 DIP switches for communication configuration
 - 4 7-segment fault display
 - 5 16-pin plug-in input connector
 - 6 SUB-D 9-pin connector for the serial link
 - 7 11-pin plug-in output connector
 - 8 5-pin plug-in connector for the measurement
 - 9 Test pushbutton
- 10 Reset pushbutton
- 11 Rotary switch for setting the trip class
- 12 Power terminals

4.2.1. 7-segment display

Use of the DIP switch: the positions of the DIP switch are taken into account on power up.

"Local Adjust-Line Adjust"

"Local adjust" position:

- The settings on the front face are used by the LT6.

"Line adjust" position:

- The settings transmitted by the communication line are used by the LT6.
- The values transmitted by the communication line are unaffected by the settings on the front face.

"Manu Reset - Auto Reset"

(see section 7.3)

address: 2 cases arise depending on the protocol

Jbus/Modbus: Address from 1 to 63 using the "parity" switch as address weight 32

UNI-TELWAY: Address from 1 to 31 using the "parity" switch as parity for address wiring. Parity = On if the number of address bits is even. Parit y= Off if the number of address bits is odd.

4.2.3. Current and trip class setting switches

These are Gray code switches. (see section 6.2 "Thermal overload" protection function)

4.2.4. TEST and RESET pushbutton (see section 7.3 Reset function)

4.3. Product internal circuit diagram

4.4. Parameter entry software under Windows 95, 98, NT4, 2000 and XP: LA9P620

This software is to be installed in a PC in a Windows 3.1 environment.

An interconnection cable forms part of the supply and is used to connect the LT6 to the 9-pin serial link port of the PC (COM1:).

To use the software, the LT6 must be configured in Modbus/Jbus.

The software enables easy access to all the configuration parameters of the LT6 via Windows dialogue boxes (see description section 10).

5.1. Discrete inputs

- The inputs :
 - The discrete inputs are DC from 90 V to 150 V and AC 50/60 Hz from 90 V to 276 V (110 230 V \pm 20%)
 - The consumption of an input in logic state 1 is at least 1 mA.
 - For an input to be recognised as being in logic state 1 by the software, it must be in stable hardware logic state 1 for at least 4 ms.
- The discrete command "Stop channels A and B", which has priority over all other discrete commands, operates in fail-safe "wire broken" mode (off: state 1 on: state 0)
- The inputs are arranged in two groups:
 - a) The "motor control" group: Start channel A, Start channel B, Stop channels A & B, Line / Local, Reset.
 - b) The "Inputs" group: Input C, Input D, Input E. These inputs are free and can be read by serial link (bits 80,5 80,6 80,7)
 - Each of these groups has a separate common (enabling the use of 2 different voltages).
 - Input E is used by the LT6 for voltage measurement. (see section 6-10)

- PTC thermistor inputs:
 - Use of PTC thermistor probes (see catalogue).
 - If this function is not used, a 1 k Ω resistor (supplied with the product) must be connected across terminals T1 and T2.
- · Homopolar toroid inputs:
 - Use of MG homopolar toroids (see Low-voltage Distribution catalogue 95/96 pages D72 to D74).
- Auxiliary supply voltage (110 230 V ± 20% DC or 50/60 Hz AC):
 - The LT6 (aux) is immmune to micro-interrupts of duration ≤ 300 ms at a repetition frequency of 0.05 Hz, for utilisation at Un.
 - An auxiliary supply voltage < 80 V \pm -10% for a time of \geq 300 ms is considered to be an interruption of the supply voltage.
 - In the event of an interruption of the auxiliary supply voltage, the LT6 stores the setting parameters.

A micro-interrupt lasting more than 4 microseconds causes inputs I5 (A/B channel off) and I2 (local/line) to go to 0 and opens channels A and B (to prevent the power relay hunting).

5.2. Discrete outputs

- Channel A and B outputs are electromechanical relay contacts:
 See characteristics on page 50
- The signalling outputs (alarm and trip) are electromechanical relay contacts: - PLC compatibility: minimum level of utilisation 5 V 10 mA.

5.3. Power input / outputs

- · Cabling capacity:
 - solid cable, flexible cable, flexible cable with cable end: 1.5 to 6 mm²
 - ring tags:

internal Ø 2 to 4.2 mm, external Ø 1 to 10 mm.

- Use of external current transformers:
 - based on IEC 185 and IEC 71 recommendations,
 - input connection 1A (L11 L21 L31) or 5A (L15 L25 L35) depending on the secondary current,
 - minimum power: LT6 consumption = 50 mVA per phase, also take into account the currrent in the CT secondary, and the resistance of the cable,
 - recommended accuracy limit:
 - . class of accuracy 5P or 10P (error for currents between In and 2 In: ± 1% or ± 3%),
 - . phase offset for rated current ± 18 mrd,
 - . compound error: 5% or 10%.

Note:

Use of measurement transformer: standard, saturation threshold not controlled, suitable for current

Use of protection transformer:

measurement (I to 2I), and possibly for infrequent starting. specific for motor protection, known saturation threshold, suitable for all motor-starter applications.

5.4. Serial link

Connection by SUB-D 9-pin connector with RS 232 link (PC link) or RS 485 link (PLC link)

Pin	Utilisation RS 232		Utilisation RS 485
1			
2	Transmission	(Tx)	
3	Reception	(Rx)	D(A)
4	Data Terminal Ready	(DTR)	OVL
5	Signal Ground	(SG)	D(B)
6	Data Set Ready	(DSR)	
7	Clear To Send	(CTS)	
8	Request To Send	(RTS)	
9			

Pin arrangement of the SUbD 9-pin connector:

Connection to PC: reversible cable SUB-D 9-pin female-female connectors (supplied with the LA9P620 Kit)

Connection to PLC TSX SCA 62:

SUB-D 15 points SCA62

SUB-D 9 points LT6

5.5. Customer connections

Marking of the discrete input terminals (Viewed from the front of the product) with pitch of 5.08

Terminal marking	11	12	13	14	15	16	17	18	NC	C1	C2	NC	D1	D2	D3	D4
Description	Reset	Line/ Local	Start A	Start B	Stop A & B	State C	State D	State E		Com Sec 1	Com Sec 2			Rése	rved	
Description	Section N°1					Sec	tion	N°2	Non	Com	nons	Non				
Description	Discrete inp				uts			Con.			Con.					

Marking of the output terminals (Viewed from the front of the product) with pitch of 7.62

Terminal marking	95	96	01	O2	97	98	93	94	NC	A2	A1
Description	Char con	nnel A ntact	Char con	nnel B tact	Tr	ip	Ala	arm	Non connect	Auxi sup	liary ply

Marking of the measurement terminals (Viewed from the front of the product)

Sequence number	5	4	3	2	1
Terminal marking	T1	T2	NC	H1	H2
Description	PTC the	ermistor	Non connect	Homopo	lar toroid

Marking of the power terminals (Viewed from the front of the product) of the LT6P0M005FM

Description Terminal marking Terminal marking Description

	1A current inputs			5A current inputs				
)	L11	L21	L31	L15	L25	L35		
J	2T1	4T2	6T3					
	Curren	t output	(1&5A)					

Marking of the power terminals (Viewed from the front of the product) of the LT6P0M025FM

Description Terminal marking Terminal marking Description

Cu	Current inputs								
L11	L11 L21 L31								
2T1	4T2	6T3							
Cu	Current output								

The following protection functions are only guaranteed if the current in the 3 phases (Irms) is higher than 20% of the current setting (Ir). For lower currents, absence of spurious control is guaranteed.

	Fu	nctions	F	Parameters	6	
Protection	Factory enabled	Enabled/ Inhibited by serial link	Name of the value	Initial values	Setting range	
Thermal overload			Ir (% rating) Class overload alarm	20 % 5 100 % θn	20 / 109 % 5 / 30 0 / 100 %	(1) (1)
Temperature- rise (PTC)						
Phase unbalance			Id (% de Iav) Tripping time during start. Time before tripping	30 % lav 0.7 s 5 s	10 / 30 % lr 0 / 10 s 0 / 10 s	
Earth fault			I _{Δr} Time before tripping	30 A 5 s	0.3/30A 0/5s	
Prolonged starting			I _{SD} (% de Ir) Starting time	150 % lr 10 s	100 / 500 % lr 0 / 30 s	
Undercurrent			I _V (% de Ir) Time before tripping	30 % Ir 10 s	30 / 90 % lr 0 / 30 s	
Torque limitation			I _{LC} (% de Ir) Time before tripping	200 % Ir 10 s	150 / 800 % lr 0 / 30 s	
Cosφ			$\begin{array}{c} \text{Cos} \phi\\ \text{Time before tripping} \end{array}$	0.1 10 s	-1/1 0/10s	
Phase rotation monitoring			enabled	no	yes/no	

6.1. Configuration table of the LT6

(1) these values can be enabled and set on the front of the product

Complementary functions	Factory enabled	Enabled/ Inhibited by serial link	Name of the value	Initial values	Setting range
Voltage threshold			Voltage threshold Time before shed. Reconnection Time before reconnect.	70 % Un 10 000 s 90 % Un 10 000 s	68 / 120 % Un 0 / 100 000 s 68 / 120 % Un 0 / 100 000 s
Short-circuit detection			lcc	15 xlr	
Reset			Time before reset θ°C iron before reset	0s 100% өп	0 / 1 000 s 40 / 100 % θn
Motor control			control of A and B outputs	Reverser	Reverser independent 2-step
Self-cooled				Self- cooled	Self / Force cooled
Communi- cation watchdog			outputs A and B are opened in the event of a communication loss		

6.2. Thermal overload

This function enables thermal monitoring of the motor by monitoring the current taken. This function is always enabled

Adjustment on the front face: (Dip switch = local adjust)

Current Ir:

Two rotary switches (Gray code) enable the user to set the product to the current of the motor to be protected from 20% to 109% of the rating selected by the wiring (1 A, 5 A or 25 A):

- The "COARSE SETTING" switch enables adjustment from 20% to 100% of the rating in steps of 10% of the rating.
- The "FINE SETTING" switch enables adjustment from 0% to 9% of the rating in steps of 10% of the rating.
- The sum of the setting of the two switches is equal to the value of the rated current of the motor to be protected.

example: motor 108 A - CT ratio = 200/1: setting $\frac{108 \times 100}{200 \times 1}$ = 54% (50% + 4%)

Trip class:

A rotary switch (Gray code) enables the user to select the operating class of the product.

- The setting range is: Class 5 to class 30 in steps of 5.

Adjustment by communication line (words 84 - 85 - bit 110,F): (Dip switch = line adjust) enables the user:

- to set the product to the rated current (from 20 to 109% in steps of 1%) of the motor to be protected,
- to select the trip class (from 5 to 30 in steps of 5),
- to declare the motor "self-cooled" or "force-cooled" (the cooling time of a self-cooled motor at standstill = 4 x the cooling time of a force-cooled motor).

Note: the front face and line values may be different: the LT6 makes its choice according to the position of the dip switch (local/line)

Reminder of the standard:

	-					
Motor state	l/Ir	10A	10	20	30	⇒ Class
Cold	7.2	2 <t≤10< td=""><td>4<t≤10< td=""><td>6<t≤ 20<="" td=""><td>9<t≤30< td=""><td>⇒ Tripping time</td></t≤30<></td></t≤></td></t≤10<></td></t≤10<>	4 <t≤10< td=""><td>6<t≤ 20<="" td=""><td>9<t≤30< td=""><td>⇒ Tripping time</td></t≤30<></td></t≤></td></t≤10<>	6 <t≤ 20<="" td=""><td>9<t≤30< td=""><td>⇒ Tripping time</td></t≤30<></td></t≤>	9 <t≤30< td=""><td>⇒ Tripping time</td></t≤30<>	⇒ Tripping time

• IEC 947-4 § 7.2.1.5.1 case e)

 CEI 947-4 § 7.2.1.5.1 cas c 	c) et d) classe 5 = classe 10A
---	--------------------------------

Motor state	l/Ir	10A	10	20	30	\Rightarrow Class
Hot	1.5	< 120	< 240	< 480	< 720	\Rightarrow Tripping time (s)

Characteristics:

The product conforms to standards IEC 947-4 and IEC 255-8.

The relay responds to one of the I²t laws (copper/iron...).

For the calculations, the value of current used is the true RMS value (including harmonics).

(s)

Note:

The long iron time constant has a tripping threshold equal to 125% of θ n. The short copper time constant has a tripping threshold equal to 200% of θ n. The measurement accuracy (product only) and over a range from 0.3 Ir min. to 8 Ir max. is better than ± 4% [from -25 to + 70° C] at nominal frequencies of 50/60 Hz.

During a supply interrupt of less than 20 mn, the LT6 considers that the motor is stopped and is no longer cooled. The thermal state when power is restored takes this stoppage into account. For longer supply failures, the thermal state of the motor is zero.

6.3. Thermal overload alarm

Accessed by discrete output 93-94 or by bit 80, F, it is used to signal the thermal state of the motor based on the value of a threshold described below. This function is always enabled.

Adjustment by the communication line (word 86):

- Setting the value of the overload threshold from 0 to 100% of the nominal iron thermal state in steps of 1% by word 86. Setting to 0% provides a contact which is closed on power up. This contact opens in the event of a product fault or loss of the auxiliary power supply.

Initial state of the product

- The value of the overload threshold is set to 100% of θ niron.

6.4. Thermal monitoring by PTC thermistor

This function enables thermal monitoring of the motor by built-in (PTC) thermistor probes.

This function is always enabled. Inhibiting this function is carried out by inserting a 1 k Ω resistor across terminals T1T2 to prevent the product tripping on infinite resistance.

Reminder of the standard:

Thermistor marked A IEC 34-11 (for 3 probes < 250 Ω in series)

- Trip values: > 4 000 ohms.
- Tripping range: 1 650 to 4 000 ohms.
- Resetting range: 1 650 to 750 ohms.
- Reset values: < 750 ohms.

Product characteristics:

The configuration below enables the connection of up to 6 probes in series in the same circuit while conforming to the standard (except that the total resistance of the probes circuit will be < 1500 ohms).

- Tripping on open circuit detection: this function is assured by the trip function.
- Trip values:
- 2 900 ohms ± 200 ohms. 1 575 ohms ± 75 ohms.
- Reset values: 1 575 ohms ± 75 ohms
 Short-circuit detection trip: 17 ohms ± 3 ohms.
- Short-circuit detection reset: 24 ohms ± 3 ohms.
- Tripping time (event \rightarrow action) is > 500 ms (interference suppression) and \leq 600 ms.

Note: use of PT100 probes is impossible (different standard).

6.5. Phase unbalance and phase loss

This function monitors the symmetry of the rms currents in the phases.

Adjustment by the communication line (words 87 - 88 - 89):

- The phase unbalance threshold is from 10 to 30% of lav in steps of 1%
- The acceptable unbalance time before tripping (t2) is adjustable from 0 to 10 s in steps of 0.1 s.
- On motor starting, the time before tripping (t1) is from 0 to 10 s in steps of 0.1 s.

This dual adjustment enables fast tripping on starting in the event of phase loss and thus prevents the motor starting in the wrong direction (e.g. in the case of driving loads).

- Zones covered by the time delay:

Initial state of the product:

- This function is enabled.
- Tripping on phase unbalance is preset to 30% of Ir.
- t2 = 5.0 seconds.
- On motor starting: t1= 0.7 seconds.

Characteristics:

- The accuracy of the tripping time is ± 0.1 s.
- Unbalance is calculated between the highest I_{ms} of the 3 phases and I_{av}.

6.6. Earth fault

This function monitors insulation faults by a homopolar toroid (fire prevention).

Adjustment by the communication line (words 90 - 91):

Enables the user:

- To adjust sensitivity from 0.3 to 30 A in steps of 0.1 A.
- To adjust the tripping time delay from 0.1 to 5 seconds in steps of 0.1 s.
- A command can be used to inhibit this function (bit 110,3).

Initial state of the product:

- This function is enabled.
- Sensitivity = 30 A and tripping time delay = 5 s.

Characteristics:

Conforms to standard IEC 755 (class TB).

- Sensitivity is from 0.3 to 30 A (I_{Ar}).
- Maximum tripping times: $I_{A}/I_{Ar} = 1 \Rightarrow 5 \text{ s}; I_{A}/I_{Ar} \ge 2 \Rightarrow 0.1 \text{ s}$
- Non operation for $0.5 I_{Ar}$ and for $I \ge 6 I_{r}$.
- The accuracy of this measuring chain $I_{\Lambda}/I_{\Lambda r}$ is less than 10% from 0.3 to 30 A ($I_{\Lambda r}$ max).
- The accuracy of the tripping time is $\pm 0,1$'s.

Note: To assure the safety of persons, it is recommended to use a differential relay type Vigirex from Merlin Gerin.

In effect, the LT6 does not meet the standard for Class TA: residual currents of 30 mA and tripping time for $I_A I_{A'} = 5 \Rightarrow 0.04s$.

6.7. Undercurrent

This function monitors the draining of pumps... (when associated with the power factor monitoring cos $\phi)$

Adjustment by the communication line (words 94 - 95):

- The tripping threshold Iv from 30% to 90% of Ir in steps of 1%.
- The permissible time before tripping from 0 to 30 seconds in steps of 0.1 s.
- A command can be used to enable this function (bit 110,4).

Initial state of the product:

- The function is inhibited.
- Tripping threshold Iv is 30%
- The permissible time before tripping is 10 seconds.

Characteristics:

The undercurrent value is defined by the ratio Imax / Ir.

6.8. Prolonged starting

Tripping of the product after exceeding a current thresholds at the end of a programmed time.

Adjustment by the communication line (words 92 - 93):

Enables the user:

- To adjust the starting time from 0 to 30 seconds in steps of 0.1 s.
- To adjust the current at the end of starting: Isd from 100% to 500% of Ir in steps of 1% of Ir
- To enable this function (bit 110,6).

Initial state of the product:

- Tripping time delay is equal to 10 seconds.
- Current Isd is preset to 150% of Ir.
- The function is inhibited.

Characteristics:

- The accuracy of the tripping time is ± 0.1 s.

6.9. Torque limitation, locked rotor

This function can be used, for example, to monitor the jamming of a crusher ...

Adjustment by the communication line (words 96 - 97):

- The tripping threshold (I_{LC}) from 150% to 800% of Ir in steps of 1% of Ir.
- The permissible time before tripping from 0 to 30 seconds in steps of 0.1 s.
- A command can be used to enable this function (bit 110,5).

Initial state of the product:

- The tripping time is equal to 10 s.
- The tripping threshold (I_{1c}) at 200% of Ir.
- The function is inhibited.

Characteristics:

Calculation of the torque limitation current.

- The accuracy of the tripping time is ± 0.1 s.
- Zone covered by the time delay:

6.10. Monitoring $\cos \phi$ and voltage and frequency measurement

This function monitors the difference in phase angle between the motor current and the motor voltage.

The voltage measurement enables the user to:

- improve undercurrent (underload) monitoring,
- make an evaluation of power (with the measurement of the voltage).

Adjustment by the communication line (words 98 - 99):

- The tripping threshold of $\cos \varphi$ is adjustable from 1 to + 1 in steps of 0.01.
- The tripping time for $\cos\varphi$ is adjustable from 0 to 10 s in steps of 0.1 s.
- The function can be enabled by the line (bit 110,8).

Initial state of the product:

- The tripping threshold for $\cos \phi$ is 0.
- The tripping time is equal to 10 s.
- The function is inhibited.

Characteristics:

- Voltage measurement is carried out via the discrete input E (I8). This input receives an image of the voltage U2 (taken between L1 and L3) and the current I3.
 - It is calibrated from 150 to 276 V (68% to 120%) where 100% = 230 V.
- The LT6 recognises the direction of phase rotation and corrects as a consequence.

- If the current is measured using a CT, the phase difference caused is not corrected as the accuracy of the CT is better than \pm 18 mrd.
- If the voltage is derived from a voltage transformer, the wires of the secondary must be changed over to cancel the phase difference (π).
- The LT6 does not correct phase differences due to the connection of the relay in the motor windings.
- The reference system for the calculation is as follows:

Rotation reference:

- The accuracy of measuring $\cos j$ is $\pm 3^{\circ}$ at nominal voltage, with a deviation of 5% over 10 years.

Measurement of the voltage and frequency (words 74-75):

- The accuracy of voltage measurement is \pm 5% at rated voltage, with a deviation of 5% over 10 years.
- The accuracy of frequency measurement is ±2%.

6.11. Direction of rotation monitoring

This function monitors the direction of rotation of the protected motor.

Case of "reverser" programming:

Phases L1, L2, L3 (or any circular permutation) are assigned respectively to inputs L11, L21, L31 of the LT6 when channel A is commanded, and to L21, L11, L31 (or any circular permutation) when channel B is commanded.

Case of "2-step" or "independent" programming:

Phases L1, L2, L3 (or any circular permutation) are assigned respectively to inputs L1, L2, L3 of the LT6.

Characteristics:

- The line can be used to enable the function. (Initial state of the product: function inhibited) (bit 110,7).
- The direction of phase rotation is monitored by reading the current in each phase.
- A direction of rotation other than that selected trips the relay.
- Tripping time (event \rightarrow action) is >100 ms (interference suppression) and <300 ms.

7.1. Tripping of the LT6 relay

The protection functions which trip the product are:

1 2 3 4	- Thermal trip (iron) - Thermal trip (copper) - PTC thermistor - Phase unbalance and phase loss	5 6 7 8	 Earth fault Undercurrent Torque limitation Prolonged starting 	9 10 11	- Direction of rotation - Cos φ - Test button
------------------	--	------------------	--	---------------	---

In all these cases:

Channels A and B open and the trip signalling contact closes. The LT6 is in the stop condition, i.e. "Start channel A" bit and "Start channel B" bit equal to zero (bits 83,0 to 83,3).

- Following the first trip, a second cause of tripping may appear, whereas channels A and B are both open. In this case the product reacts as follows:
 - the 7-segment display signals the first cause of tripping, together with bits 81,0 to 81,F,
 - the register of the last 5 trips signals all the trips (1st, 2nd,...) (the fault code given above from 1 to 11 is written in word 0).

7.2. LT6 relay fault

The functions which cause the product to show a fault are:

13	- Watchdog	14	- Measurement input	15	- PTC thermistor short-circuit
----	------------	----	---------------------	----	--------------------------------

In all these cases:

Channels A and B open and the trip signalling contact closes.

The LT6 is in the stop condition, i.e. "Start channel A" bit and "Start channel B" bit equal to zero (the fault code given above from 13 to 15 is written in word 0).

7.3. The RESET function of the LT6

- Any trip or fault of the LT6 leads to the necessity of a "Reset". Without a "Reset" channels A & B cannot be restarted.
- The type of reset (Manual/Auto) is defined by the DIP switch on the front of the product.
- In "Automatic" the relay resets itself as soon as the trip conditions have disappeared and in the conditions: "* *Reset is only possible if.*" described below. Automatic reset is only authorised if the trip is a thermal trip. Any other type of trip must be reset manually.

- In "Manual" the relay can only be reset by a "Reset" operation. Reset can only occur be a sequence from state 0 to state 1. Blocking in the "Reset" position does not prevent tripping. Resetting can be obtained from 3 different sources:
 - the "reset" button on the front face (can be inhibited by a command from the communication line),
 - the communication line (if discrete input I2 = 1) by activating bit 83,2,
 - the discrete input I1 (if discrete input I2 = 0).
- Note: loss of supply voltage, even if prolonged, does not cause the relay to reset. In this case, the cause of tripping is stored (product display and bits 81,0 to 81,F).
- "Reset" is only enabled if:
 - 1 The thermal state (iron and copper) is less than a value programmable from 40 to 100% of θ n in steps of 1%. The initial state of the value is 100% (word 105).
 - 2 At the end of a time delay programmable from 0 to 1000 seconds in steps of 10 s. This time delay is initiated immediately after tripping and has an initial value of zero (word 104).
 - 3 The LT6 calculates the time needed for a reset to be enabled. The longest time (Thermal state or time delay) can be accessed in word "Time before reset enabled" (word 72). This value is refreshed every second.

7.4. Starting and stopping the alarm functions

This value is updated every second.

The "Thermal overload alarm" is the only function to act through the discrete output "Alarm".

On tripping on the "Thermal overload alarm" function and any function which exceeds its parameter setting without exceeding its tripping time (phase unbalance, earth fault, undercurrent, torque limitation, $\cos \phi$ functions).

Example: The phase unbalance and phase loss function is programmed with a threshold of 10% and a tripping time of 10 s.

Unbalance greater than 10%>									
Alarm				U	Trip				
t = 0 s	2	4	6	8	t = 10 s 11	12	13	14	15

The corresponding "alarm" bit is set to 1 for the duration of the alarm (bits 82,0 to 82,5).

Note: The 7-segment display shows only the thermal overload alarm.

Stopping of the alarm functions: as soon as there is no alarm.

7.5. TEST function

This function can be carried out:

- locally using the pushbutton on the front face,
- by the communication line by activating bit 83,3.

The Test causes channels A and B to open, and the fault signalling contact to close.

8.1. Motor control

Motor control and monitoring.

8.1.1. The motor control discrete I/O

The LT6 is the control interface for the motor it protects.

- Two outputs of the LT6 (channel A and channel B) can be used to control 2 motor line contactors (*example:* Control of a reverser).
- Two inputs can receive the state of the motor line contactors (channels C and D).
- Three inputs (start channel A, start channel B and stop channels A and B) can be used to control the motor line contactors (in local control).

8.1.2. Choice of motor control

Discrete input I2 can be used to select "line" (state 1, supply on) or "local" (state 0, supply off).

- "Local": Three discrete inputs (I3, I4, I5) can be used to control channels A and B. The communication line can be used to know the state of the inputs and has no effect on the control of the channel A and B outputs.
- "Line": The communication line can be used to control channels A and B (bits 83,0 and 83,1) and to know the state of the inputs (bits 80,0 to 80,7). The three discrete inputs above have no effect on the control of the channel A and B outputs.

The change of selection stops both channels simultaneously.

8.1.3. Choice of operation of channels A and B

The communication line enables the user to choose the following operating modes for channels A & B:

- "Reverser": Channels A and B cannot be activated at the same time. The initial condition to start one of the two channels is: both channels are inactive and Imax/Ir < 0.2 for a time greater than 100 ms.

- "2-step ": Channels A and B are commanded for 2-step starting of the controlled motor. In this case, the "start channel B" command is inoperative. Any interruption of the cycle below sets the cycle to step 1).

1)	$\frac{\text{Imax/Ir} < 0.2 \text{ for a time} \ge 2 \text{ s}}{\frac{\text{Imax/Ir} < 0.2}{\text{Imax}}}$	"Motor stopped" "Beginning of starting"
2)	(Imax/Ir > 0.2)	Degining of Starting
-,	or (Delay >1.5 x Class)	"End of 1st starting time"
4)	Opening of A	-
5)	$Imax/Ir < 0.2$ for a time ≥ 0.1 s	
6)	Closing of B	
7)	lmax/lr > 0.2	"Start of 2nd step"
8)	(Imax/Ir > Isd then Imax/Ir < Isd)	
	or (Delay >1.5 x Class)	"End of starting"
		-

This mode of operation can be used for star-delta, part-winding, primary resistor starting, etc...

- "Independent" : Channels A and B can be commanded at the same time or separately. They are independent.

- Only one of these modes of operation is enabled at a time.
- In the event of conflict, the order of priority is: 1 = reverser 2 = independent 3 = 2-step.
 e.g. request reverser and independent ⇒ reverser
 request independent with reverser allready active ⇒ reverser
- A change of operating mode can only be made when channels A and B are not controlled.
- The initial state of the product is "reverser". The change can be carried out via the communication line (bits 110,A 110,B 110,C).
- Discrete command "stop channels A and B" stops both channels simultaneously, when the product is in local mode.
- A trip, a stop command or an auxiliary supply interrupt positions the product to "channel A and B stopped", irrespective of the mode "line" or "local".
- A "Reset", the reappearance of the supply voltage, etc..., do not constitute a command to close channel A or channel B. For channels A or B to be switched on, the start signal must be present.
- If discrete inputs "start channel A" and "stop channel A & B" are set to 1, a "reset" or the appearance of the auxiliary supply causes "reverser", "independent" or "2-step" operation as described above. The same applies to channel B.
- A stop signal or a stop condition for channels A and B always has priority over one or more start signals for channels A and B.

8.2. Motor maintenance

In order to facilitate the maintenance of the controlled motor, a certain number of parameters are available.

8.2.1. The last 5 trips

Saved in E^2PROM , they are managed in the form of a shift register (first in / first out) with 5 files . They are available in words 0 to 49.

- Content of a file:

Description					
Cause of tripping					
Long thermal time constant (iron)					
Short thermal time constant (copper)					
Rms current phase 1					
Rms current phase 2					
Rms current phase 3					
Unbalance current Id					
Value $I_{\Delta r}$ (Earth fault)					
Cos φ					
Voltage					
Cos φ Voltage					

- The values in the files are the values at the time the LT6 trips.
- Bit 83,C when set to 1 by the user resets all these words.

* Trip cause codes: (bits 81,1 to 81,F)

Description	
Iron thermal trip	0
Copper thermal trip	1
PTC thermistor	2
Phase unbalance and loss	3
Earth fault	4
Undercurrent	5
Torque limitation	6
Prolonged starting	7
Direction of rotation	8
Cos φ trip	9
Test button	А
Watchdog fault	D
Measurement input fault	E
PTC thermistor short-circuit	F

8.2.2. Trip cause counters

• These are stored in the E²PROM memory.

List of counters:

(words	50	to	60)
--------	----	----	-----

Description					
Iron thermal trip					
Copper thermal trip					
PTC thermistor					
Phase unbalance and loss					
Earth fault					
Undercurrent					
Prolonged starting					
Torque limitation					
Direction of rotation					
Test button					
Cos φ					

When the value of a counter reaches $7FFF_h$ (32767) it changes automatically to 0000_h (0). Bit 83,D set to 1 by the user enables the counters to be reset. The LT6 automatically resets this word to 0.

8.2.3. The motor line utilisation counters

 List of counters: (words 61 to 64)

	Description
Number o	f starts
Motor ope	rating time
Number o	f channel A closing ops
Number o	f channel B closing ops

• Number of starts: As defined in the section 8.1.3.

• Operating time:

- Time during which I > 0.2 Ir.
- The resolution is 1 second.
- Every 3600 s, 1 hour is added to the hours counter in the E²PROM.
- Each time the auxiliary supply is switched off it is accepted that the RAM loses the contents of the seconds counter.
- When the value of an E²PROM counter reaches 7FFF_h (32767) it automatically changes to 0000_h (0).

- Number of channel A, channel B closing operations and Number of motor starts.
 - Each time channel A or channel B closes the corresponding E²PROM counter is incremented.
 - When the value of an E²PROM counter reaches 7FFF_h (32767) it automatically changes to 0000_{h} (0). Bit 83,E set to 1 by the user enables the counters to be reset. The LT6 automatically sets this word to 0.

8.2.4. Actual values

The following values can be accessed for actual value (refreshed every second)

- Content of the measurements: (words 65 to 75)
- $\begin{tabular}{|c|c|c|c|} \hline Désignation \\ \hline Long thermal constant (iron) \\ \hline Short thermal constant (copper) \\ \hline Rms current phase 1 \\ \hline Rms current phase 2 \\ \hline Rms current phase 3 \\ \hline Unbalance current Id \\ \hline Value I_{Ar} (Earth fault) \\ \hline Time before Reset enabled \\ \hline Cos \phi \\ \hline Voltage \\ \hline Frequency \\ \hline \end{tabular}$

8.3. Voltage threshold

This function enables deactivation of non priority functions of a system by opening channels A and B of the LT6 if the voltage drops below a certain threshold.

Note: this function requires the voltage to be measured by the LT6 (see section 5.10).

Adjustment by the communication line (words 100 to 103):

- The undervoltage and reconnection thresholds from 68% to 120% of Un in steps of 1% .
- The times before undervoltage and reconnection. From 0 to 100 000 s in steps of 10 s (24 hours).

Initial state of the product:

- The times before undervoltage and reconnection are set to 10 000 s.
- The undervoltage threshold is set to 70% of Un.
- The reconnection threshold is set to 90% of Un.
- The function is inhibited.

Characteristics:

- Undervoltage:
 - When the voltage reaches the load shedding threshold level, the corresponding alarm is activated.
 - If the voltage level remains below the load shedding threshold for the programmed time, channels A and B open.
 - This function is enabled even with channels A and B off: if a start signal arrives when the product is in lundervoltage condition, the signal is stored and the reconnection function will execute the stored signal.
 - This state is signalled by bit 80,B.

- Reconnection:
 - When the voltage reaches the reconnection threshold level:
 - . the corresponding alarm is stopped.
 - . If the voltage level remains above the reconnection threshold for the programmed time, channels A and B will close if they have an on signal.
 - Reconnection takes into account the selected operation: "reverser", "independent" or "2-step".
- Operation of the data base variables:
 - Bits 80,C and 80,D store the start/stop signals coming from the communication line (bits 83,0 and 83,1) or the discrete inputs (bits 80,0, 80,1 and 80,2).

Undervoltage \Rightarrow

- Bits 80,C and 80,D are unchanged. The setting to 1 of 80,B means that 95-96 and O1-O2 output contacts are open.

During undervoltage time \Rightarrow

- Bits 80,C and 80,D can be controlled (0 or 1) but 95-96 and O1-O2 output contacts keep openned.. Bit 80,B = 1.

Reconnection \Rightarrow

- Closing or 2-step starting depending on bits 80,C and 80,D and 110,A, B, C.
- The reconnection threshold must be \geq the undervoltage threshold.

8.4. Short-circuit detection

This function enables short-circuit signalling

- This function is always enabled.
- Short-circuit detection threshold: I_{cc} = 15 x Ir peak detected on one of the three phases.
- The accuracy of the value of I_{cc} is $\ge 20\%$.
- The short-circuit detection word (bit 78,2) is activated as soon as the fault appears and is acknowledged when it is read.

8.5. Monitoring function

Monitoring systems, built into the product, constantly check the correct operation of the LT6, and immediately control the opening of channels A & B in the event of failure.

- "Watchdog"

The LT6 has a "Watchdog" independent of the microprocessor which operates on transitions. The microprocessor saves the parameters in E²PROM each time they are modified. (Parameters: configuration of the LT6: words 84 to 110).

Tripping the watchdog activates the microprocessor reset.

If the microprocessor does not restart, all the outputs receive a signal to open.

The watchdog reiterates the resets until the LT6 can reinitialise.

The thermal stae is 1 by default.

No output will be activated without a signal.

The parameters are reset to the values saved if these values are reliable.

The "watchdog" bit (78,7) is set to 1.

If the values saved <u>are not reliable</u> the LT6 takes the initial values in ROM and the values on the front face (Ir and class).

In this case the thermal state by default is 1.

Use of the initial state is signalled by the "initial state" bit being set to 1. (bit 79,F)

Note: setting bit 79,F to 1 does not prevent new parameters being entered. Bit 83,F set to 1 by the user enables loading of the initial values (with stopping of channels A and B).

- "Analogue input monitoring"

- The LT6 checks the coherence of its analogue inputs.
- Each analogue measurement has two inputs on the micro controller : A direct input and an amplified input which is used to measure low values. The LT6 regularly checks the coherence of the values read on these two inputs.
- If 10 successive measurements are not coherent, a signal is given to open all the outputs.
- The "measurement input fault" word is set to 1 (bit 81,E).

8.6. Communication watchdog

This function selects the fallback mode of the LT6 in the event of a communication loss in excess of 10 seconds.

Two choices:

- Open channels A and B and return to "Ready" as soon as the communication is restored,
- No action taken on the outputs that remain in the state they were in before the communication loss.

9.1. The physical layer

Two types of link on the same SUB D 9-pin connector on the front of the product:

- RS 485,
- RS 232.

(Circuit isolated from the other LT6 relay functions).

2. Configuration of the communication line

• The station address is defined by 6 switches on the front of the product:

Parity for UNI-TELWAY or weight 32 for Modbus

Example : Station 5 UNI-TELWAY

The address is recognised by the LT6 during power up. If the address is changed when the LT6 supply is on, it is necessary to switch the LT6 off and then back on for the new address to be taken into account.

- The protocol is defined by 1 switch on the front of the product: Jbus/Modbus UNI-TELWAY.
- The transmission speed is automatically recognised by the product. Two speeds are possible: 4 800 and 9 600 Bits/s.

9.2. Communication protocol:

Two protocols:

- UNI-TELWAY
- Jbus/ Modbus

The LT6 is slave for both protocols.

1. Characteristics of UNI-TELWAY protocol:

Connection : SUBD 9-pin male

Address : one only per product, from 1 to 31 with configuration by switch on the front of the product Speed : automatic recognition (4800 or 9600 bits/s)

Number of messages stored on reception : 3

Number of messages stored on transmission : 0

Detection of absence of polling : more than 3 s

Type of object recognised	Byte (8 bits)	Word (16 bits)	Signed integer (16 bits)
segment	104	104	104
type of object	6	7	7
maximum size	218	109	109
min address max address	W0 W110	W0 W110	W0 W110
read access read/write access	W0 to W110 W83 to W110	W0 to W110 W83 to W110	W0 to W110 W83 to W110

UNI-TELWAY request codes:

Family	Service	Request		Confirm		Description
		Hex	Dec	Hex	Dec	
Access to data	Read a word	04	04	34	52	(W)
	Read objects	36	64	66	102	Bit, word, bit or word strings
	Write a word	14	20	FE	254	(W)
	Write objects	37	55	FE	254	Bit, word, bit or word strings
Unsolicited data	Unsolicited data	FC	252	-	-	Sends data without first receiving a request 26 - 01 - 1.02 - LT6P
General use	Device identification	0F	15	3F	63	Gives the type of product, the version and the commercial reference
	Protocol version	30	48	50	96	
	Status	31	49	61	97	Status of a device
	Mirror	FA	250	FB	251	Test of system and the communication path
	Read error counters	A2	162	D2	210	For device communication fault
	Reset counters	A4	164	FE	254	Reset

Unsolicited data

- The LT6 informs the master of all trips or alarms by sending unsolicited data.
- The unsolicited data is the record of the last trip.
- This message is sent to a "text block" in the master.
- The number of the text block is written in word N°106.
- This function is only enabled if word 98 is >-1 and <33.
- The initial value of word 106 is "-1".
- The destination address of the text block is: Network = 0 ; Station = 254 ; Gate = atext block address + 16 (decimal).
- As the data is not acknowledged by the master, it is repeated three times with one transmission every 3 seconds.

2. Characteristics of Jbus/Modbus protocol:

Connection: SUBD 9-pin male

Address: one only per product from 1 to 63 with configuration by switch on the front of the product

Speed: automatic recognition (4800 or 9600 bits/s)

Transmission parameters: 1 start bit, 8 data bits, 1 stop bit, no parity,

9600 or 4800 bits/s

Separation time:

- 2 characters of one message: less than the transmission time for 3 characters
- 2 messages: greater than the transmission time for 3 characters

Jbus/Modbus frame: RTU Mode

The frame defined for Jbus/Modbus protocol does not include message header or end of message bytes. Its definition is as follows:

address request	data	CRC 16
-----------------	------	--------

Data is transmitted in binary.

CRC 16: cyclical redundancy check.

Detection of the end of the frame is by a silence longer than or equal to 3 characters.

Jbus/Modbus functions:

These can be broken down into:

- · main functions used for data exchange,
- complementary functions for exchange diagnostics.

Code	Kind of functions	D	Maximum number of words
03	Read N output words (W0 to W110)		111
04	Read N input words (W0 à W110)		111
06	Write an output word	D	
08	Diagnostic with subcodes 00, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12		
11	Read events counter		
16	Write N output words	D	

The functions marked "D" can be used for general dissemination. The message transmitted by the master must then specify slave number 0. There is never a confirm message in reply.

9.3. Examples of architecture

9.3.1. UNI-TELWAY architecture

References for connection to Unitelway bus and TELEMECANIQUE programmable controllers

 Screened twisted pair cable: Tap-off box: 2-channel subscriber connector: 	TSX SCA 100 (200, 500) TSX SCA 50 TSX SCA 62
 Communication coupler for TSX 17-20 PLC: for TSX 37-2* PLC: for TSX 47, 67, 87, 107 PLC: built-in Unitelway port for proce 	TSX SCG 1161 TSX SCP 114 TSX SCM 21*6 TSX P47 425 TSX 37 2* ***

Note: this does not include all the possibilities available with the "terminal" port.

9.3.2. Modbus architecture

The multiplexer NW-BM85-000 of MODICON consist of:

- 1 communication port with MODBUS PLUS (medium redondance option), in order to communicate with the upper level.
- 4 communication port with MODBUS, with RS 232 support. They allow , adding a $\,$ RS 232 / $\,$ RS 485 adaptator to connect several LT6P.

9.4. Database structure (values refreshed every second)

	Last 5 trips (50 signed integers of 16 bits) Saved in E2PROM	0					
	Trip cause counters (11 signed integers of 16 bits)	50					
	Motor maintenance (3 signed integers of 16 bits)	61					
	Saved in E ² PROM	64					
READ ONLY	Measured values	65					
	(11 signed integers of 16 bits) thermal constants saved in E ² PROM	75					
	Front face settings (2 integers of 16 bits)	76 77					
	Operating faults (coded on bits with 1 word of 16 bits)	78					
	Status of the front face switches (coded on bits with 1 word of 16 bits)	79					
	I/O status (coded on bits with 1 word of 16 bits)	80					
	Type of LT6 trip (coded on bits with 1 word of 16 bits)	81					
	Status of fleeting alarms (coded on bits with 1 word of 16 bits)	82					
READ	Motor and product commands (coded on bits with 1 word of 16 bits)	83					
AND WRITE	Protection threshold parameter setting (22 signed integers of 16 bits) Saved in E ² PROM	84					
	Activation of the protection Saved in E ² PROM	110					
		-					
Word	Bit	Name	Initial values	Unit	Valures Min / Max	Operation	Comments
--	--------	---	-------------------	--	---	--	------------------------
RE	AD ONL	Y					
0 1 2 3 4 5 6 7 8 9		Trip cause Th. state long const (Fe) Th. state short const (Cu) Rms current phase 1 Rms current phase 2 Rms current phase 3 Unbalance current Id Value $I_{\rm M}$ (Earth fault) Cos ϕ Voltage		0.010n 0.010n 1% Ir 1% Ir 1% Ir 1% Iav 0.1 A 0.01 1%	0 / 15 0 / 200 0 / 200 0 / 1600 0 / 1600 0 / 1600 0 / 1600 0 / 100 0 / 999 -100 / 100 68 / 120	E ² = Trip cause code E ² Trip (N) E ² This record is also: E ² "the unsolicited data" E ² E ² E ² E ² E ² E ²	Register of the
10 11 12 13 14 15 16 17 18 19		Trip cause Th. state long const (Fe) Th. state short const (Cu) Rms current phase 1 Rms current phase 2 Rms current phase 3 Unbalance current Id Value I _A (Earth fault) Cos φ Voltage		0.010n 0.010n 1% Ir 1% Ir 1% Ir 1% Iav 0.1 A 0.01 1%	0 / 15 0 / 200 0 / 200 0 / 1600 0 / 1600 0 / 1600 0 / 100 0 / 999 -100 / 100 68 / 120	E ² = Trip cause code E ² Trip (N - 1) E ² E ² E ² E ² E ² E ² E ² E ²	last 5 trips
20 21 22 23 24 25 26 27 28 29		Trip cause Th. state long const (Fe) Th. state short const (Cu) Rms current phase 1 Rms current phase 2 Rms current phase 3 Unbalance current Id Value I _A , (Earth fault) Cos ϕ Voltage		0.010n 0.010n 1% Ir 1% Ir 1% Ir 1% Iav 0.1 A 0.01 1%	0 / 15 0 / 200 0 / 200 0 / 1600 0 / 1600 0 / 1600 0 / 100 0 / 999 -100 / 100 68 / 120	E ² = Trip cause code E ² Trip (N - 2) E ² E ² E ² E ² E ² E ² E ² E ²	
30 31 32 33 34 35 36 37 38 39		$\begin{array}{l} \mbox{Trip cause} \\ \mbox{Trip cause} \\ \mbox{Th. state long const (Fe)} \\ \mbox{Th. state short const (Cu)} \\ \mbox{Rms current phase 1} \\ \mbox{Rms current phase 2} \\ \mbox{Rms current phase 3} \\ \mbox{Unbalance current Id} \\ \mbox{Value l}_{\rm Ar} \mbox{(Earth fault)} \\ \mbox{Cos } \phi \\ \mbox{Voltage} \end{array}$		0.010n 0.010n 1% Ir 1% Ir 1% Ir 1% Iav 0.1 A 0.01 1%	0 / 15 0 / 200 0 / 200 0 / 1600 0 / 1600 0 / 1600 0 / 100 0 / 999 -100 / 100 68 / 120	E ² = Trip cause code E ² E ²	
40 41 42 43 44 45 46 47 48 49		Trip cause Th. state long const (Fe) Th. state short const (Cu) Rms current phase 1 Rms current phase 2 Rms current phase 3 Unbalance current Id Value I _A (Earth fault) Cos ϕ Voltage		0.010n 0.010n 1% Ir 1% Ir 1% Ir 1% Iav 0.1 A 0.01 1%	0 / 15 0 / 200 0 / 200 0 / 1600 0 / 1600 0 / 1600 0 / 100 0 / 999 -100 / 100 68 / 120	E ² = Trip cause code E ² Trip (N - 4) E ² E ²	
50 51 52 53 54 55 56 57 58 59 60		Iron thermal trip Copper thermal trip PTC thermistor Phase unbalance/loss Earth fault Undercurrent Torque limitation Prolonged starting Direction of rotation Cos φ Test button		1 1 1 1 1 1 1 1 1 1 1	0 / 32767 0 / 32767	E ² = Also stored in E ² PROM E ² E ² E ² E ² E ² E ² E ² E ²	Trip cause counters

61 62 63 64	Number os starts Motor operating time N° channel A close ops N° channel B close ops		1 1 hour 1 1	0 / 32767 0 / 32767 0 / 32767 0 / 32767 0 / 32767	E ² see glossary E ² E ² E ²	Motor maintenance
65 66 67 68 69 70 71 72 73 74 75	Long therm const (FE) Short therm const (CU) Rms current phase 1 Rms current phase 2 Rms current phase 3 Unbalance current Id Value I _A : (Earth fault) Time bef. reset enabled Cos φ Voltage Fréquency	50 50	0.010n 0.010n 1% Ir 1% Ir 1% Ir 1% Ir 0.1 A 1 s 0.01 1% 0.1 Hz	0 / 200 0 / 200 0 / 1600 0 / 1600 0 / 1600 0 / 200 0 / 200 0 / 1000 - 100 / 100 0 / 200 0 / 700	E ² E ² Time calculated by the LT6	Actual values These values are always calculated even if the corresponding functions are not enabled
76 77	"Ir" front face "Classe" front face	20 5	1% 5	20 / 109 5 / 30	Combination of 2 switches	Initial value of the 3 front face switches
78, 0 78, 1 78, 2 78, 3 78, 4 78, 5 78, 6 78, 7 78, 8 78, 8 78, 8 78, 8 78, 8 78, C 78, C 78, C 78, C 78, F	Fault Supply fault Short-circuit detection UNI-TELWAY fault JBus/Modbus fault Line ⇔ Local Adj. line ⇔ Adj. local Watchdog fault	0 0 0 0 0 0 0 0 0		0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	1 = All product faults 1 = Supply fault 1 = Short-circuit 1 = UNI-TELWAY fault 1 = Jous/Modbus fault 1 = Change. discrete "Line/Local" 1 = Change. Dip "adj. line/local" 1 = Fault	Fleeting states These 16 bits are set to 1 on fault detection. They must be read to be reset to zero
79, 0 79, 1 79, 2 79, 3 79, 4 79, 6 79, 7 79, 9 79, 9 79, 9 79, 9 79, 7 79, 7 79, 7 79, 7 79, 7 79, 7 79, C 79, C 79, F 79, F	Dip "Adress" (Parity) Dip "Adress" (16) Dip "Adress" (8) Dip "Adress" (2) Dip "Adress" (2) Dip "Adress" (2) Dip "VNI-TELWAY/Jbus" Dip "NI-TELWAY/Jbus" Dip "Adjust line/local" Reserved Reset Test Initial values	0 0 0 0 1 1 1 1 0 0 0 0 0		0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	1 = Even parity 1 = 16 1 = 8 1 = 4 1 = 2 1 = 1 1 = UNI-TELWAY 1 = Manual reset 0 = Local adjust 1 = "Reset" button actuated 1 = "Dependion with initial values 1 = Operation with initial values	State of discrete inputs Front face (words 84 to 110)
80, 0 80 1	Start channel A	0		0/1		State of discrete
80, 2 80, 3 80, 4 80, 5 80, 6 80, 7	Stop channels A and B Local-Line Reset Input C Input D Input E	0 0 0 0 0 0		0/1 0/1 0/1 0/1 0/1 0/1 0/1		inputs
80, 8 80, 9 80, A	Motor starting Motor running	0 0		0 / 1 0 / 1	$1 = \text{Starting cycle} \\ 1 = (I > 0.2 \text{ Ir})$	Motor status
80, B 80, C 80, D 80, E 80, F	Outputs load shed Channel A Channel B Trip Alarm	0 0 0 0 0		0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1	1 = Outputs at 0 as load shed 1 = Contact channel A closed 1 = Contact channel B closed 1 = Product tripped 1 = Alarm	State of discrete outputs

81,	0	Iron thermal trip	0	0 / 1		
81,	1	Copper thermal trip	0	0/1	These bits are set to 1 by a	
81,	2	PTC thermistor	0	0/1	product trip and are reset	
81,	3	Phase unbalance/loss	0	0/1	to Zero by a "Reset" which	
81,	4	Earth fault	0	0/1	may be automatic or	
81,	5	Undercurrent	0	0/1	manual	
81,	6	Torque limitation	0	0/1		
81,	7	Prolonged starting	0	0/1		Trips
81,	8	Direction of rotation	0	0/1		
81,	9	Cos φ	0	0/1		
81,	A	Test button	0	0/1		
81,	В			0/1		
81,	С			0/1		
81,	D			0/1	These bits are set to 1 by a	Fault
81,	Е	Measurement input fault	0	0/1	product fault and are reset	
81,	F	PTC therm short-circuit	0	0/1	to Zero by a "Reset"	
82,	0	Therm overload alarm	0	0/1	,	
82,	1	Phase unbalance/loss	0	0/1		
82,	2	Earth fault	0	0/1	These bits are at 1, if the	
82,	3	Undercurrent	0	0/1	corresponding thresholds are	
82,	4	Torque limitation	0	0/1	exceeded independently of time	Alarms
82,	5	Cos φ	0	0/1		
82,	6			0/1		
82,	7			0/1		
82,	8			0/1		
82,	9					
82,	A					
82,	В					
82,	С					
82,	D					
82,	E					
82,	F					
		1				

READ AND WRITE

83, 83, 83, 83,	0 1 2 3	Start / Stop channel A Start / Stop channel B Reset Test	0 0 0 0		0/1 0/1 0/1 0/1	1 = Start ch. A ; 0 = Stop ch. A 1 = Start ch. B ; 0 = Stop ch. B 1 = Reset ; reset by the LT6 1 = Test ; reset by the LT6	Motor control (4 bits ⇒ (Reset on trip / fault)
83, 83, 83, 83, 83, 83, 83, 83, 83,	4 5 7 8 9 A E						
83, 83, 83, 83,	C D E F	Reset tripping values Reset tripping counter Reset maintenance counter Load initial values	0 0 0 0		0 / 1 0 / 1 0 / 1 0 / 1	1 = Reset tripping values 1 = Reset tripping counters 1 = Reset Motor maintenance 1 = Work with initial values	Product control
84 85 86		Value of Ir (% rating) Value of Class Overload alarm thresh.	20 5 100	1% 5 1% θn	20 / 109 5 / 30 0 / 100	E ² = Also stored in E ² PROM E ² Thermal overload E ²	
87 88 89		Id threshold (% of Iav) Tripping time on starting Tripping time in operat'n	30 7 50	1% 0.1 s 0.1 s	10 / 30 0 / 100 0 / 100	E ² E ² Phase unbalance E ²	
90 91		I _x threshold Tripping time	300 50	0.1 A 0.1 s	3 / 300 0 / 50	E ² E ² Earth fault	
92 93		I _{sd} thgreshold (% of Ir) Strarting time	150 100	1% 0.1 s	100 / 500 0 / 300	E ² E ² Prolonged starting	
94 95		l _v threshold (% de lr) Tripping time	30 100	1% 0.1 s	30 / 90 0 / 300	E ² E ² Undercurrent	
96 97		I _{LC} threshold (% de lr) Tripping time	200 100	1% 0.1 s	150 / 800 0 / 300	E ² E ² Torque limitation	Parameters
98 99		Cos ϕ threshold Tripping time	10 100	0.01 0.1 s	- 100 / 100 0 / 100	E² Cos φ	Transmitted by

100 101 102 103 104 105 106		Level of voltage threshold Time before shedding Level of reconnection Time before reconnection Time before reset enab. 0°C Fe bef. reset enab.	70 1000 90 1000 0 100 - 1	1% Un 10 s 1% Un 10 s 1 s 1% θn 1	68 / 120 0 / 10000 68 / 120 0 / 10000 0 / 1000 40 / 100 - 1 / 32	E ² E ² E ² Voltage threshold E ² Reset E ² Reset	communication line
107 108 109		Value of motor In Communication watch dog	0		0 / 32767 0/1	E ² value set by user E ² 1 = watchdog enabled	
110, 110, 110, 110, 110, 110, 110, 110,	0 1 2 3 4 5 6 7 8 9	Thermal overload PTC thermistor Phase unbalance/loss Earth fault Undercurrent Torque limitation Prolonged starting Direction of rotation Cos φ Load shedding	1 1 1 0 0 0 0 0 0 0		0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	E ² 1 = Trip / Thermal overload E ² 1 = Trip / PTC thermistor E ² 1 = Trip / Déséquilibre E ² 1 = Trip / Défaut terre E ² 1 = Trip / Undercurrent E ² 1 = Trip / Undercurrent E ² 1 = Trip / Limit. couple E ² 1 = Trip / Direction of rotation E ² 1 = Trip / Cos φ E ² 1 = Load shedding active	
11 0, 110, 110,	A B C	Reverser Independent 2-step	1 0 0		0/1 0/1 0/1	E^2 1 = Reverser control E^2 1 = A&B independent control E^2 1 = 2-step starting control	Only one of these 3 bits at any one time
110, 110, 110,	D E F	Front face Test button Front face Reset button Sefl-cooled/Force-cooled	1 1 1		0/1 0/1 0/1	$E^2 0$ = Test button active $E^2 0$ = Reset button active $E^2 1$ = Self-cooled	

Note: the product does not have a clock to indicate the time of the fault. It is considered preferable to use a system clock so avoiding time differences between the various LT6 relays.

Characteristics:

- Configuration with Windows 95, 98, NT4, 2000 and XP.
- 2 diskettes 3 1/2"
- 1 reversible 2m cable
- Operation with Modbus protocol only (the LT6 must be configured for Modbus)

Software installation:

- Insert the diskette in drive A:
- Open the file manager
- Open disk A:
- Launch Setup.exe by selecting the file using a double click
- Follow the installation instructions

or use the command "Execute" in the programme manager.

Description of the screens

Menu used to change : password, address, communication port and to quit the application

Menu used to access the screen which can be accessed in road : actual measurements, state of product parameters, trip record, counters Menu used to access the screens which can be accessed in write ; protection and control parameters Displays the screen for reading the actual values Displays the screen for reading the state of the product parameters Displays the screen for reading the last 5 trips Displays the screen for reading the trip and maintenance counters 8.74 Displays the screen for control parameter entry Screens which can be accessed only if the password is entered Displays the screen for protection parameter entry Enter password Enter LT6 address Enter communication port ("enter" by default) ("comm 1" by default) ("1" by default)

Product status Display

Display the 5 last trips

Last trips		
Trip values Thermal iron ($pprox heta_n$) Thermal copper ($pprox heta_n$) Ia ($pprox$ Ir) Ib ($pprox$ Ir) Ic ($pprox$ Ir)	0 Phase loss, unbalance 0 Earth fault (A) 0 Cos φ 0 Voltage (%Un) 0 OK	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •
	Done	Trip Reset

10. LA9P620 operational software

Counters Display

Protection parameter setting

Commands setting

Set	the LT6 with the initial values
Commands	
TEST RESET	Factory settings
	B
Start Stop	Start Stop
Configuration	Motor ventilation
Reversing 📀	Self v. 🔎
Independent control C 2 steps C	Extern v. C
Front panel pushbutton	
Test Enabled	Reset Enabled
Communication watchdog Yes	C No
Load shedding	
Tripping level (%Un)	70
Tripping time (10s)	1000
Reset level (%Un)	90
Reset time (10s)	1000
Conditions before RESET	
Delay before RESET (s)	
Iron and Copper thermal (×θ _n) 100
Done LT6 Valu	Send

Environment

Conforming to standards			IEC 947-4-1, IEC 34-11, IEC 755, VDE 0106, VDE 0660.
C€ Marking			Meets the essential requirements of the Low Voltage equipement (LV) & Electromagnetic Compatibility (EMC) European Community Directives.
Approvals pending			UL 508, CSA, PTB
Protective treatment			"TH"
Degree of protection	Conforming to IEC 947-1		IP 20 (1)
Shock resistance	Conforming to IEC 68-2-27		15 gn, 11 ms
Vibration resistance	Conforming to IEC 68-2-6		2 gn (3 to 100 Hz)
Ambient air temperature around the device	Storage	°C	- 35+ 85
	Operation	°C	- 20+ 70
Flame resistance	Conforming to UL 94		VO
Maximum operating altitude		m	2000
Operating position	In relation to normall vertical mounting plane		
Resistance to electrostatic discharge	Conforming to IEC 1000-4-2 level 3	kV	8
Resistance to electromagnetic interference	Conforming to IEC 1000-4-3 level 3	V/m	10
Resistance to fast transient currents	Conforming to IEC 1000-4-4 level 4	kV	2
Resistance to conducted radio-frequency disturbances			Conforming to IEC 1000-4-6 level 3
Rated undissipated pulse withstand (U imp)	Conforming to IEC 947-1	kV	6
Rated dissipated puls withstand			Conforming to IEC 1000-4-5 level 3
Resistance to low frequency disturbances, supply harmonics			Conforming to IEC 947-2 Appendix F Clause F4.1
Resistance to micro-breaks (1) Only applicable when power cablin not fitted with cable end.	ng to relay exceeds the followir	ng sizes	Conforming to IEC 1000-4-11 : 1.5 mm ² fitted with cable end or 2.5 mm ²

Power circuit characteristics

		1			
Relay type			LT6-P0005FM	LT6-P00025FM	
Rated insulation voltage (Ui)	Conforming to IEC 947-1	v	\sim 690	\sim 690	
Operating frequency		Hz	50/60	50/60	
Rated operational current		A	1 or 5 (1)	25	
Cabling Solid cable	1 or 2 conductors	mm²	1.56		
Flexible cable without cable end	1 or 2 conductors	mm²	1.56		
Flexible cable with cable end	1 or 2 conductors	mm²	1.54		
Terminal tightening torque		N.m	1.7		
Associated protection By circuit breaker	≤ 25 A		1 A rating : ≤ GV2-L05 5 A rating :	≤ GV2-L22	
	> 25 A using current transformers		≤ GV2-L10 Merlin Gerin MCCB NS●●●MA		
By fuses	≤ 25 A		1 A rating : ≤ aM 2 A, gG 4 A 5 A rating : ≤ aM 6 A, gG 16 A ≥ aM 32 A.	≤ aM 25 A, gG/gM 50 A	
	Using current transformers		gG/gM 63 A		

Control circuit supply characteristics

Rated insulation voltage (Ui)	Conforming to IEC 947-1	V	\sim 380
Operating voltage		v	$_{-\!-\!-}$ or \sim 50/60 Hz : 90276
Cabling Solid cable	Plug-in connector 1 or 2 conductors	mm²	0.51
Flexible cable without cable end	1 or 2 conductors	mm²	0.51
Flexible cable with cable end	1 conductor	mm²	0.51
	2 conductors	mm²	0.50.75
Terminal tightening		N.m	0.7

(1) Using external current transformer for operating currents exceeding 25 A.

Discrete input characteristics

Conforming to IEC 947-1	v	\sim 250
	v	<u> </u>
Minimum transient value	mA	≥ 1 (changing from 0 state to 1 state in t ≥ 4 ms)
	kΩ	56
	Conforming to IEC 947-1 Minimum transient value	Conforming to IEC 947-1 V V V Minimum transient value mA kΩ

Discrete output characteristics

Rated insulation voltage (Ui)	Conforming to IEC 947-1	v	~ 380
Type of output	Relay		1 N/O per channel
Associated fuse protection	Conforming to IEC 947-5	A	6 (type gG)
a.c. loads Rated voltage		v	\sim 250
Permissible power for category DC-15 Associated with contactor		VA	500 (le = 0.5 A, Ue = \sim 250 V, lth = 5 A, cos φ = 0.4 for 100,000 operations) LC1-K, LC2-K, LC7-K, LC8-K LC1-D09 to D95, LC1-F115 to F150
d.c. loads Rated voltage		v	30
Permissible power for cotegory DC-15 Associated with contactor		VA	50 (Ie = 0.5 A, Ue = 30 V, Ith = 5 A, L/R ≤ 25 ms for 100,000 operations) LP1-K, LP2-K, LP1-D09 and D12 LP1-D18 to D32 (with LA4-DC1U or DC2U) LP1-D40 to D80 (with LA4-DC3U)

Signalling output characteristics

Rated insulation voltage (Ui)	Conforming to IEC 947-1	v	~ 380
Type of output	Relay		1 N/O per channel
Associated fuse protection	Conforming to IEC 947-5	A	2 (type gG)
Current limit	At U = 5 V	mA	10
a.c. loads Rated voltage Permissible power for category AC-15 Associated with contactor		w	~ 250 250 (le = 0.2 A, Ue = ~ 250 V, lth = 2 A, 300,000 operatios for resistive load) LC1-K, LC2-K, LC7-K, LC8-K with
d.c. loads Rated voltage Permissible power for cotegory DC-15		v w	30 50 (le = 0.2 A, Ue = 30 V, lth = 2 A, 300,000 operations for resistive
Associated with contactor			load) LP1-K, LP2-K with suppressor block LA4-KC

External current transformer characteristics (transformer not included)

Conforming to standards		IEC 185, IEC 71
Accuracy class		Classe 5P
Accuracy limit factor		15

Dealers from a		
Prope type		
11000 ()p0		

Probe characteristics

Conforming to standards			IEC 34-11 mark A
Resistance	At 25 °C	Ω	3 x 250 in series
Rated operational voltage (Ue)	Per probe	v	2.5 max.
Rated insulation voltage (Ui)		kV	2.5
Insulation			Reinforced
Cable lengths	Between probes	mm	250
	Between probe and motor terminal block	m	1

Guaranteed operating zones : examples with 3 probes type DA1-TT••• (250 Ω at 25 °C) connected in series, conforming to IEC 34-11, mark A.

Cold stat curves (1)

(1) Tripping time accuracy : \pm 8 % to 7.2 x l/Ir.

Hot start curves (1)

(1) Tripping time accuracy : \pm 8 % to 7.2 x l/Ir.

3-pole multifunction protection relays

Operational current A	Reference	Weight kg	
0.21	LT6-P0M005FM	1.030	
15	LT6-P0M005FM	1.030	
525	LT6-P0M025FM	1.030	

LT6-P0M005FM

Configuration software

Description	For use with	Reference	Weigth kg
Kit comprising : - 3" 1/2 diskettes (2) - 2 m connecting cable fitted either end with 9-pin SUB-D connector (femalle-femalle)	All ratings of relay	LA9-P620	0.550

Earth fault toroids

Products marketed under the Merlin Gerin brandname; for ordering reference : please refer to our "Low voltage distribution 95/96" catalogue, pages D72 to D74

Sensitivity	Internal Ø du tore	Туре	Weigth
	mm		kg
0.330 A	30	TA30	0.120
	50	PA50	0.200
	80	IA80	0.420
	120	MA120	0.530
	200	SA200	1.320
	300	GA300	2.230
	POA	POA	1.300
	GOA	GOA	3.200

DA1-TTeee

PTC termistor probes

Description	Nominal operating temperature (NOT)	Sold in lots of	Unit reference	Weight
	°C			kg
Triple probes	90	10	DA1-TT090	0.010
	110	10	DA1-TT110	0.010
	120	10	DA1-TT120	0.010
	130	10	DA1-TT130	0.010
	140	10	DA1-TT140	0.010
	150	10	DA1-TT150	0.010
	160	10	DA1-TT160	0.010
	170	10	DA1-TT170	0.010

Marking accessories (to be ordered separately)

Clip-in markers (maximum of 5 markers per relay)	Strips of 10 identical numbers (0 to 9	25)	AB1-R● (1)	0.002	
	Strips of 10 lidentical capital letters (A to Z)	25	AB1-G● (1)	0.002	

(1) When ordering, complete the reference with the number or letter required.

Protection relays LT6-P LT6-P0MeeeFM

on 35 mm 🖵 mounting rail

on pre-slotted mounting plate AM1-PA

Earth fault toroids TA30, PA50

Туре	b	b1	Øc	c1	c2	Н
TA30	83	53	30	60	31	50
PA50	109	66	50	87	45	60

Earth fault toroids IA80, MA120, SA200

Туре	а	a1	Øb	b1	b2	Øc	c1	G	Н	J	K
IA80	26,5	44	122	80	55	80	150	35	65	126	40
MA120	26,5	44	164	80	55	120	190	35	65	166	40
SA200	29	46	256	120	90	196	274	37	104	254	60

POA, GOA

Туре	а	Øb	Øc	G	
POA	72	148	46	57	
GOA	78	224	110	76	

Motor control : D.O.L. starting (channels A and B set for reversing or independent control)

Control from front face of relay

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : D.O.L. starting (channels A and B set for reversing or independent control)

Control via discrete inputs of relay

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : D.O.L. starting (channels A and B set for reversing or independent control)

Control via serial link communication (UNI-TELWAY, Jbus/Modbus)

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : D.O.L. starting

Control via serial link communication with signalling, earth fault toroid, PTC probes, state of power components.

Channels A and B set for reversing or independent control.

Possible to control the motor via discrete input ("local" position) or by serial link communication.

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : reverser starting

Control via serial link communication

Channels A and B set for reversing control

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : reverser starting

Control via discrete inputs of relay

Channels A and B set for reversing control

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : reverser starting

Control from front face of relay

Channels A and B set for independent control

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : reverser starting with measurement of $\cos \phi$ and voltage

Control via serial link communication Channels A and B set for reversing control

(1) For d.c. control supplies the inputs I1 to I7 must be connected to the positive line.

Motor control : star-delta starting (cannels A and B set for 2-stage control)

Control via discrete inputs of relay

(1)For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : star-delta starting (channels A and B set for 2-stage control)

Control via serial link communication

(1) For d.c. control supplies the inputs I1 to I8 must be connected to the positive line.

Motor control : start-delta starting with adjustable time delay

Control via serial link communication Channels A and B set for 2-stage control

(1) For d.c. control supplies the inputs I1 to I7 must be connected to the positive line.