Lexium 32S

 Servo Drive

 Servo Drive
 User Guide

Original instructions

07/2019

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.
You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.
All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2019 Schneider Electric. All rights reserved.

Table of Contents

Safety Information. 9
About the Book 11
Chapter 1 Introduction 15
Device Overview 16
Components and Interfaces 17
Nameplate 18
Type Code 19
Chapter 2 Technical Data 21
Environmental Conditions 22
Dimensions 24
Power Stage Data - General 26
Power Stage Data - Drive-Specific 28
Peak Output Currents 33
DC Bus Data 34
24 Vdc Control Supply 35
Signals 36
Output PTO (CN4) 38
Input PTI (CN5) 39
Capacitor and Braking Resistor 44
Electromagnetic Emission 48
Nonvolatile Memory and Memory Card 50
Conditions for UL 508C and CSA 51
Certifications 52
Chapter 3 Engineering 53
3.1 Electromagnetic Compatibility (EMC) 54
General 55
Deactivating the Y Capacitors 59
3.2 Cables and Signals 60
Cables - General 61
Overview of the Required Cables 63
Cable Specifications 64
Logic Type 67
Configurable Inputs and Outputs 68
3.3 Mains Supply 69
Residual Current Device 70
Common DC Bus 71
Mains Reactor 72
3.4 Rating the Braking Resistor. 73
Internal Braking Resistor 74
External Braking Resistor 75
Rating Information 76
3.5 Functional Safety 79
Basics 80
Definitions 83
Function 84
Requirements for Using the Safety Function 85
Application Examples STO 87
Chapter 4 Installation 89
4.1 Mechanical Installation 90
Before Mounting 91
Installing and removing modules 93
Mounting the Drive 95
4.2 Electrical Installation 97
Overview of Procedure 98
Connection Overview 99
Connection Grounding Screw 100
Connection Motor Phases and Holding Brake (CN10 and CN11) 101
Connection DC Bus (CN9, DC Bus). 105
Connection Braking Resistor (CN8, Braking Resistor) 106
Connection Power Stage Supply (CN1) 108
Connection Motor Encoder (CN3) 111
Connection PTO (CN4, Pulse Train Out) 112
Connection PTI (CN5, Pulse Train In) 113
Connection 24 Vdc Control Supply and STO (CN2, DC Supply and STO) 116
Connection Digital Inputs and Outputs (CN6) 118
Connection PC with Commissioning Software (CN7) 120
Connection SERCOS III 121
4.3 Verifying Installation 122
Verifying Installation 122
Chapter 5 Commissioning. 123
5.1 Overview 124
General 125
Preparation 128
5.2 Integrated HMI 129
Overview of Integrated HMI 130
Menu Structure. 133
Making Settings 134
5.3 External graphic display terminal 135
Display and Controls 136
Connecting the external graphic display terminal to LXM32 138
Using the external graphic display terminal 139
5.4 Commissioning Procedure 140
Powering on the Device for the First Time 141
Setting Limit Values 143
Digital Inputs and Outputs 145
Verifying the Signals of the Limit Switches 147
Verifying the Safety Function STO 148
Holding Brake (Option) 149
Verifying the Direction of Movement 154
Setting Parameters for Encoder 155
Setting the Braking Resistor Parameters 159
Autotuning 161
Enhanced Settings for Autotuning 163
5.5 Controller Optimization with Step Response 165
Controller Structure 166
Optimization 168
Optimizing the Velocity Controller 169
Verifying and Optimizing the P Gain 173
Optimizing the Position Controller 174
5.6 Parameter Management 176
Memory Card 177
Duplicating Existing Parameter Values 180
Resetting the User Parameters 181
Restoring Factory Settings 182
Chapter 6 Operation 183
6.1 Access Channels 184
Access Channels 184
6.2 Movement Range 186
Size of the Movement Range 186
6.3 Scaling 187
General 188
Configuration of Position Scaling 189
Configuration of Velocity Scaling 190
Configuration of Ramp Scaling 191
6.4 Digital Inputs and Outputs 192
Parameterization of the Signal Input Functions 193
Parameterization of the Signal Output Functions 196
Parameterization of Software Debouncing 200
6.5 PTI and PTO Interface. 202
Setting the PTI Interface 203
Setting the PTO Interface 204
6.6 Switching Between Control Loop Parameter Sets. 207
Overview of the Controller Structure 208
Overview of Position Controller 209
Overview of Velocity Controller 210
Overview of Current Controller 211
Parameterizable Control Loop Parameters 212
Selecting a Control Loop Parameter Set 213
Automatically Switching Between Control Loop Parameter Sets 214
Copying a Control Loop Parameter Set. 217
Deactivating the Integral Term 218
Control Loop Parameter Set 1 219
Control Loop Parameter Set 2 221
Chapter 7 Operating States and Operating Modes 223
7.1 Operating States 224
State Diagram and State Transitions 225
Indication of the Operating State via HMI 228
Indication of the Operating State via Signal Outputs 229
Indication of the Operating State via Fieldbus 230
Changing the Operating State via HMI 231
Changing the Operating State via Fieldbus 232
7.2 Operating Modes 233
Starting and Changing an Operating Mode 233
7.3 Operating Mode Jog 234
Overview 235
Parameterization 237
Additional Settings 239
7.4 Operating Mode Profile Torque 240
Overview 241
Parameterization 242
Additional Settings 244
7.5 Operating Mode Homing 245
Overview 246
Parameterization 248
Reference Movement to a Limit Switch 253
Reference Movement to the Reference Switch in Positive Direction 254
Reference Movement to the Reference Switch in Negative Direction 255
Reference Movement to the Index Pulse 256
Position Setting 257
Additional Settings 258
7.6 Cyclic Synchronous Operating Modes 259
Overview 259
Chapter 8 Functions for Operation 261
8.1 Functions for Target Value Processing 262
Motion Profile for the Velocity 263
Jerk Limitation 265
Stop Movement with Halt 266
Stop Movement with Quick Stop 268
Setting a Signal Output via Parameter 270
Position Capture via Signal Input (Vendor-Specific Profile) 271
Backlash Compensation 276
8.2 Functions for Monitoring Movements 278
Limit Switches 279
Reference Switch 280
Software Limit Switches 281
Load-Dependent Position Deviation (Following Error) 283
Load-Dependent Velocity Deviation 285
Motor Standstill and Direction of Movement 287
Position Deviation Window. 288
Velocity Deviation Window 290
Velocity Threshold Value 292
Current Threshold Value 293
8.3 Functions for Monitoring Internal Device Signals 295
Temperature Monitoring 296
Monitoring Load and Overload ($I^{2} \mathrm{~T}$ Monitoring). 297
Commutation Monitoring 299
Monitoring of Mains Phases 300
Ground Monitoring 302
Chapter 9 Examples 303
Examples 303
Chapter 10 Diagnostics and Troubleshooting 305
10.1 Diagnostics via HMI 306
Diagnostics via the Integrated HMI 307
Fieldbus Status LEDs. 308
Acknowledging a Motor Change 310
Acknowledging a Module Replacement 311
Displaying error messages via the HMI 312
10.2 Diagnostics via Signal Outputs 314
Indicating the Operating State 315
Indicating Error Messages 316
10.3 Diagnostics via the Fieldbus 317
Fieldbus Communication Error Diagnostics 318
Status Information on Detected Errors 319
Most Recent Detected Error - Status Bits 320
Most Recent Detected Error - Error Code 322
Error Memory 323
10.4 Error Messages 325
Description of Error Messages 326
Table of Error Messages 327
Chapter 11 Parameters 357
Representation of the Parameters 358
List of Parameters 360
List of Mappable Parameters. 453
Chapter 12 Accessories and Spare Parts 455
Commissioning Tools 456
Memory Cards 457
Additional Modules 458
Safety Module eSM 459
Application Nameplate. 460
SERCOS III Cables with Connectors 461
Cables for PTO and PTI 462
Motor Cables 463
Encoder Cables 466
Connectors 467
External Braking Resistors 468
DC Bus Accessories 469
Mains Reactors 470
External Mains Filters 471
Spare Parts Connectors, Fans, Cover Plates 472
Chapter 13 Service, Maintenance, and Disposal 473
Service Addresses 474
Maintenance 475
Replacing the Product 476
Replacement of the Motor 477
Shipping, Storage, Disposal 478
Glossary 479
Index 483

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING
WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

A CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

QUALIFICATION OF PERSONNEL

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by modifying the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used.

The qualified person must be able to detect possible hazards that may arise from parameterization, modifying parameter values and generally from mechanical, electrical, or electronic equipment.
The qualified person must be familiar with the standards, provisions, and regulations for the prevention of industrial accidents, which they must observe when designing and implementing the system.

The products described or affected by this document are, along with software, accessories and options, servo-drive systems for three-phase servo motors. The products are intended for industrial use according to the instructions, directions, examples and safety information contained in the present user guide and other supporting documentation.
The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements and the technical data.
Prior to using the products, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety-related measures must be implemented.
Since the products are used as components in an overall machine or process, you must ensure the safety of persons by means of the design of this overall machine or process.
Operate the products only with the specified cables and accessories. Use only genuine accessories and spare parts.
Any use other than the use explicitly permitted as described herein is prohibited and may result in unanticipated hazards.

About the Book

At a Glance

Document Scope
This manual describes technical characteristics, installation, commissioning, operation and maintenance of the servo drive Lexium 32S (LXM32S).

Validity Note

This manual is valid for the standard products listed in the type code, see chapter Type Code (see page 19).
For product compliance and environmental information (RoHS, REACH, PEP, EOLI, etc.), go to www.schneider-electric.com/green-premium.
The technical characteristics of the devices described in the present document also appear online. To access the information online:

Step	Action
1	Go to the Schneider Electric home page www. schneider-electric.com.
2	In the Search box type the reference of a product or the name of a product range. - Do not include blank spaces in the reference or product range. To get information on grouping similar modules, use asterisks ($).$
3	If you entered a reference, go to the Product Datasheets search results and click on the reference that interests you. If you entered the name of a product range, go to the Product Ranges search results and click on the product range that interests you.
4	If more than one reference appears in the Products search results, click on the reference that interests you.
5	Depending on the size of your screen, you may need to scroll down to see the datasheet.
6	To save or print a datasheet as a .pdf file, click Download XXX product datasheet.

The characteristics that are presented in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

Related Documents

Title of documentation	Reference number
LXM32S - AC servo drive - Product manual (this manual)	$\frac{\underline{O 198441114060 \text { (eng) }}}{\frac{0198441114061 \text { (fre) }}{0198441114059(\text { ger) }}}$
	$\frac{\underline{O 198441114063 \text { (spa) }}}{\underline{O 198441114062 \text { (ita) }}}$
LXM32 - Common DC bus - Application note	$\frac{\underline{O 198441114064 \text { (chi) }}}{\underline{O 198441114065 \text { (tur) }}}$

You can download these technical publications and other technical information from our website at www.schneider-electric.com/en/download.

Product Related Information

The use and application of the information contained herein require expertise in the design and programming of automated control systems.
Only you, the user, machine builder or integrator, can be aware of all the conditions and factors present during installation and setup, operation, repair and maintenance of the machine or process.
You must also consider any applicable standards and/or regulations with respect to grounding of all equipment. Verify compliance with any safety information, different electrical requirements, and normative standards that apply to your machine or process in the use of this equipment.
Many components of the equipment, including the printed circuit board, operate with mains voltage, or present transformed high currents, and/or high voltages.
The motor itself generates voltage when the motor shaft is rotated.

4 DANGER

ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the nonenergized position.
- Wait 15 minutes to allow the residual energy of the DC bus capacitors to discharge.
- Measure the voltage on the DC bus with a properly rated voltage sensing device and verify that the voltage is less than 42.4 Vdc .
- Do not assume that the DC bus is voltage-free when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.
This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of a hazardous atmosphere.

4 DANGER

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only. Failure to follow these instructions will result in death or serious injury.

If the power stage is disabled unintentionally, for example as a result of power outage, errors or functions, the motor is no longer decelerated in a controlled way. Overload, errors or incorrect use may cause the holding brake to no longer operate properly and may result in premature wear.

A WARNING UNINTENDED EQUIPMENT OPERATION - Verify that movements without braking effect cannot cause injuries or equipment damage - Verify the function of the holding brake at regular intervals. - Do not use the holding brake as a service brake. - Do not use the holding brake for safety-related purposes Failure to follow these instructions can result in death, serious injury, or equipment damage

Drive systems may perform unanticipated movements because of incorrect wiring, incorrect settings, incorrect data or other errors.

! WARNING
UNINTENDED MOVEMENT OR MACHINE OPERATION
- Carefully install the wiring in accordance with the EMC requirements.
- Do not operate the product with undetermined settings and data.
- Perform comprehensive commissioning tests that include verification of configuration settings and
data that determine position and movement.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines. ${ }^{1}$
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
${ }^{1}$ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.
Machines, controllers, and related equipment are usually integrated into networks. Unauthorized persons and malware may gain access to the machine as well as to other devices on the network/fieldbus of the machine and connected networks via insufficiently secure access to software and networks.

A WARNING

UNAUTHORIZED ACCESS TO THE MACHINE VIA SOFTWARE AND NETWORKS

- In your hazard and risk analysis, take into account all hazards that result from access to and operation on the network/fieldbus and develop an appropriate cyber security conceptual framework.
- Verify that the hardware infrastructure and the software infrastructure into which the machine is integrated, as well as all organizational measures and rules covering access to this infrastructure, take into account the results of the hazard and risk analysis.
- Implement your cyber security framework according to the best practices and standards of IT security and cyber security, such as ISO/IEC 27000 series, Common Criteria for Information Technology Security Evaluation, ISO/IEC 15408, IEC 62351, ISA/IEC 62443, NIST Cybersecurity Framework, Information Security Forum - Standard of Good Practice for Information Security.
- Verify the effectiveness of your IT security and cyber security systems using appropriate, proven methods.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous, etc.
Among others, these standards include:

Standard	Description
IEC 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2015	Safety of machinery: Safety related parts of control systems. General principles for design.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment. Part 1: General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design
IEC 62061:2015	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Software requirements.
IEC 61784-3:2016	Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses - General rules and profile definitions.
2006/42/EC	Machinery Directive
2014/35/EU	Electromagnetic Compatibility Directive

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communication for measurement and control - Fieldbus for use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive (2006/42/EC) and ISO 12100:2010.
NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Chapter 1

Introduction

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Device Overview	16
Components and Interfaces	17
Nameplate	18
Type Code	19

Device Overview

General
The Lexium 32 product family consists of various servo drive models that cover different application areas. Together with Lexium BMH servo motors or Lexium BSH servo motors as well as a comprehensive portfolio of options and accessories, the drives are ideally suited to implement compact, high-performance drive solutions for a wide range of power requirements.

Lexium Servo Drive LXM32S

This product manual describes the LXM32S servo drive.

Overview of some of the features of the servo drive:

- Communication interface for SERCOS III.
- An optional encoder module allows you to add a second encoder interface for digital encoders, analog encoders or resolvers.
- The product is commissioned via the integrated HMI or a PC with commissioning software.
- The safety function "Safe Torque Off" (STO) as per IEC 61800-5-2 is integrated into the drive. The optional safety module eSM offers additional safety functions.
- A memory card slot is provided for backup and copying of parameters and fast device replacement.

Components and Interfaces

CN1 Power stage supply
CN2 24 Vdc control supply and safety function STO
CN3 Motor encoder (Encoder 1)
CN4 PTO (Pulse Train Out) - ESIM (encoder simulation)
CN5 PTI (Pulse Train In) - P/D, A/B or CW/CCW signals
CN6 6 digital inputs and 3 digital outputs
CN7 Modbus (commissioning interface)
CN8 External braking resistor
CN9 DC bus
CN10 Motor phases
CN11 Motor holding brake
Slot 1 Slot for safety module
Slot 2 Slot for encoder module (Encoder 2)
Slot 3 Fieldbus SERCOS III

Nameplate

The nameplate contains the following data:

1 Product type, see type code
2 Power stage supply
3 Cable specifications and tightening torque
4 Certifications
5 Serial number
6 Output power
7 Degree of protection
8 Hardware version
9 Date of manufacture

Type Code

Item	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	9	10	11	12	13	14	15
Type code (example)	L	X	M	3	2	S	D	1	8	M	2	\bullet	\bullet	\bullet	\bullet

Item	Meaning
$1 \ldots 3$	Product family LXM = Lexium
$4 \ldots 5$	Product type 32 = AC servo drive for one axis
6	Fieldbus interface S = Modular Drive with fieldbus SERCOS III
$7 \ldots 9$	$\begin{aligned} & \text { Peak current } \\ & \mathrm{U} 45=4.5 \mathrm{~A}_{\mathrm{rms}} \\ & \mathrm{U} 60=6 \mathrm{~A}_{\mathrm{rms}} \\ & \mathrm{U} 90=9 \mathrm{~A}_{\mathrm{rms}} \\ & \mathrm{D} 12=12 \mathrm{~A}_{\mathrm{rms}} \\ & \mathrm{D} 18=18 \mathrm{~A}_{\mathrm{rms}} \\ & \mathrm{D} 30=30 \mathrm{~A}_{\mathrm{rms}} \\ & \mathrm{D} 72=72 \mathrm{~A}_{\mathrm{rms}} \end{aligned}$
$10 \ldots 11$	Power stage supply M2 = Single-phase, 115/200/240 Vac N4 = Three-phase, 208/400/480 Vac
$12 . .15$	Customized version S = Customized version

If you have questions concerning the type code, contact your Schneider Electric representative.

Designation Customized Version

In the case of a customized version, position 12 of the type code is an " S ". The subsequent number defines the customized version. Example: LXM32•••••S123
Contact your local Schneider Electric service representative if you have questions concerning customized versions.

Chapter 2

Technical Data

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Environmental Conditions	22
Dimensions	24
Power Stage Data - General	26
Power Stage Data - Drive-Specific	28
Peak Output Currents	33
DC Bus Data	34
24 Vdc Control Supply	35
Signals	36
Output PTO (CN4)	38
Input PTI (CN5)	39
Capacitor and Braking Resistor	44
Electromagnetic Emission	48
Nonvolatile Memory and Memory Card	50
Conditions for UL 508C and CSA	51
Certifications	52

Environmental Conditions

Conditions for Operation

The maximum permissible ambient temperature during operation depends on the clearances between the devices and on the power consumption. Observe the pertinent instructions in the chapter Installation (see page 89).

Characteristic	Unit	Value
Ambient temperature (no icing, non-condensing)	${ }^{\circ} \mathrm{C}$	$0 \ldots 50$
	$\left({ }^{\circ} \mathrm{F}\right)$	$(32 \ldots 122)$

The following relative humidity is permissible during operation:

Characteristic	Unit	Value
Relative humidity (non-condensing)	$\%$	$5 \ldots 95$

The installation altitude is defined in terms of altitude above mean sea level.

Characteristic	Unit	Value
Installation altitude above mean sea level without derating.	$\begin{aligned} & m \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & <1000 \\ & (<3281) \end{aligned}$
Altitude above mean sea level when all of the following conditions are met: - Maximum ambient temperature $45^{\circ} \mathrm{C}$ ($113^{\circ} \mathrm{F}$) - Reduction of the continuous power by 1% per $100 \mathrm{~m}(328 \mathrm{ft})$ above $1000 \mathrm{~m}(3281 \mathrm{ft})$	$\begin{aligned} & m \\ & (\mathrm{ft}) \end{aligned}$	$\begin{array}{\|l\|l} \hline 1000 \ldots 2000 \\ (3281 \ldots .6562) \end{array}$
Altitude above mean sea level when all of the following conditions are met: - Maximum ambient temperature $40^{\circ} \mathrm{C}$ ($104{ }^{\circ} \mathrm{F}$) - Reduction of the continuous power by 1% per $100 \mathrm{~m}(328 \mathrm{ft})$ above 1000 m (3281 ft) - Overvoltages of the supply mains limited to overvoltage category II as per IEC 60664-1 - No IT grounding system	$\begin{aligned} & m_{\text {(f) }} \end{aligned}$	$\begin{aligned} & 2200 \ldots 3000 \\ & (6562 \ldots . .9843) \end{aligned}$

Conditions for Transportation and Storage
The environment during transportation and storage must be dry and free from dust.

Characteristic	Unit	Value
Temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots 70$
	$\left({ }^{\circ} \mathrm{F}\right)$	$(-13 \ldots 158)$

The following relative humidity is permissible during transportation and storage:

Characteristic	Unit	Value
Relative humidity (non-condensing)	$\%$	<95

Installation Site and Connection

For operation, the device must be mounted in a closed control cabinet. The device may only be operated with a permanently installed connection.

Pollution Degree and Degree of Protection

Characteristic	Value
Pollution degree	2
Degree of protection	IP20

Vibration and Shock

Characteristic	Value
Vibration, sinusoidal	Tested as per IEC $60068-2-6$
	$3.5 \mathrm{~mm}(2 \ldots 8.4 \mathrm{~Hz})$
	$10 \mathrm{~m} / \mathrm{s}^{2}(8.4 \ldots 200 \mathrm{~Hz})$
Shock, semi-sinusoidal	Tested as per IEC $60068-2-27$
	$150 \mathrm{~m} / \mathrm{s}^{2}($ for 11 ms$)$

Dimensions

Dimensions LXM32•U45, LXM32•U60, LXM32•U90, LXM32•D12, LXM32•D18 and LXM32•D30M2

Characteristic	Unit	Value	
		LXM32•U45, LXM32•U60, LXM32•U90	LXM32•D12, LXM32•D18, LXM32•D30M2
B	mm (in)	$68 \pm 1(2.68 \pm 0.04)$	68 ± 1 (2.68 $\pm 0.04)$
H	mm (in)	270 (10.63)	270 (10.63)
e	mm (in)	24 (0.94)	24 (0.94)
E	mm (in)	-	-
a	mm (in)	20 (0.79)	20 (0.79)
Type of cooling		Convection ${ }^{(1)}$	Fan 40 mm (1.57 in)
(1) Greater than $1 \mathrm{~m} / \mathrm{s}$			

Dimensions LXM32•D30N4 and LXM32•D72

Characteristic	Unit	Value	
		LXM32•D30N4	LXM32•D72
B	mm (in)	$68 \pm 1(2.68 \pm 0.04)$	$108 \pm 1(4.25 \pm 0.04)$
H	mm (in)	$270(10.63)$	$274(10.79)$
e	mm (in)	$13(0.51)$	$13(0.51)$
E	mm (in)	$42(1.65)$	$82(3.23)$
a	mm (in)	$20(0.79)$	$24(0.94)$
Type of cooling		Fan 60 mm	Fan $80 \mathrm{~mm}(3.15 \mathrm{in})$
(1) Greater than $\mathbf{~ m / s ~}$			

Mass

Characteristic	Unit	Value					
		LXM32•U45	LXM32•U60, LXM32•U90	LXM32•D12, LXM32•D18M2	LXM32•D18N4, LXM32•D30M2	LXM32•D30N4	LXM32•D72
Mass	$\mathrm{kg}(\mathrm{lb})$	$1.6(3.53)$	$1.7(3.75)$	$1.8(3.97)$	$2.0(4.41)$	$2.6(5.73)$	$4.7(10.36)$

Power Stage Data - General

Mains Voltage: Range and Tolerance

Characteristic	Unit	Value
$115 / 230$ Vac single-phase	Vac	$100-15 \% \ldots 120+10 \%$ $200-15 \% \ldots 240+10 \%$
208/400/480 Vac three-phase	Vac	$200-15 \% \ldots 240+10 \%$ $380-15 \% \ldots 480+10 \%$
Frequency	Hz	$50-5 \% \ldots 60+5 \%$

Characteristic	Unit	Value
Transient overvoltages		Overvoltage category III ${ }^{(1)}$
Rated voltage to ground	Vac	300

Type of Grounding

Characteristic	Value
TT grounding system, TN grounding system	Approved
IT grounding system	Depends on hardware version RS 02: Approved(1) <RS02: Not approved
Mains with corner grounded system	Not approved
(1) Depending on installation altitude, see chapter Environmental Conditions (see page 22)	

Leakage Current

Characteristic	Unit	Value
Leakage current (as per IEC 60990, figure 3)	mA	$<30^{(1)}$

(1) Measured on mains with grounded neutral point and without external mains filter. Take into account that a 30 mA RCD can already trigger at 15 mA . In addition, there is a high-frequency leakage current which is not considered in the measurement. The response to this depends on the type of residual current device.

Harmonic Currents and Impedance
The harmonic currents depend on the impedance of the supply mains. This is expressed in terms of the short-circuit current of the supply mains. If the supply mains has a higher short-circuit current than indicated in the Technical Data for the device, use upstream mains reactors. See chapter Accessories and Spare Parts (see page 455) for suitable mains reactors.

Monitoring the Continuous Output Current
The continuous output current is monitored by the device. If the continuous output current is permanently exceeded, the device reduces the output current.

PWM Frequency Power Stage
The PWM frequency of the power stage is set to a fixed value.

Characteristic	Unit	Value
PWM frequency power stage	kHz	8

Approved Motors
The following motor families can be connected: BMH, BSH.
When selecting, consider the type and amount of the mains voltage and the motor inductance.
If an encoder module is installed, additional motors can be used. The conditions can be found in the corresponding manual for the module.
For other motor possibilities, contact your local Schneider Electric representative.

Inductance of Motor
The permissible minimum inductance of the motor to be connected depends on the device type and the nominal mains voltage. See chapter Power Stage Data - Drive-Specific (see page 28).
The specified minimum inductance value limits the current ripple of the peak output current. If the inductance value of the connected motor is less than the specified minimum inductance value, this may adversely affect current control and trigger motor phase current monitoring.

Power Stage Data - Drive-Specific

Data for Single-Phase Devices at 115 Vac

Characteristic	Unit	Value			
		LXM32-U45M2	LXM32•U90M2	LXM32•D18M2	LXM32•D30M2
Nominal voltage (single-phase)	Vac	115	115	115	115
Inrush current limitation	A	1.7	3.5	8	16
Maximum fuse to be connected upstream ${ }^{(1)}$	A	25	25	25	25
Continuous output current	$\mathrm{A}_{\text {rms }}$	1.5	3	6	10
Peak output current	$\mathrm{A}_{\text {rms }}$	3	6	10	15
Minimum inductance motor (phase/phase)	mH	5.5	3	1.4	0.8
Values without mains reactor ${ }^{(2)}$					
Nominal power	kW	0.15	0.3	0.5	0.8
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	2.9	5.4	8.5	12.9
THD (total harmonic distortion) ${ }^{(4)}$	\%	173	159	147	135
Power dissipation ${ }^{(5)}$	W	7	15	28	33
Maximum inrush current ${ }^{(6)}$	A	111	161	203	231
Time for maximum inrush current	ms	0.8	1.0	1.2	1.4
Values with mains reactor					
Mains reactor	mH	5	2	2	2
Nominal power	kW	0.2	0.4	0.8	0.8
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	2.6	5.2	9.9	9.9
THD (total harmonic distortion) ${ }^{(4)}$	\%	85	90	74	72
Power dissipation ${ }^{(5)}$	W	8	16	32	33
Maximum inrush current ${ }^{(6)}$	A	22	48	56	61
Time for maximum inrush current	ms	3.3	3.1	3.5	3.7

(1) As per IEC 60269. Circuit breakers with B or C characteristic. See chapter Conditions for UL 508C and CSA (see page 51) for UL and CSA. Lower ratings are permissible. The fuse must be rated in such a way that the fuse does not trip at the specified input current.
(2) At a mains impedance corresponding to a short-circuit current of the supply mains of 1 kA
(3) At nominal power and nominal voltage
(4) With reference to the input current
(5) Condition: internal braking resistor not active. Value at nominal current, nominal voltage and nominal power. Value approximately proportional with output current.
(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time

Data for Single-Phase Devices at 230 Vac

Characteristic	Unit	Value			
		LXM32-U45M2	LXM32•U90M2	LXM32•D18M2	LXM32•D30M2
Nominal voltage (single-phase)	Vac	230	230	230	230
Inrush current limitation	A	3.5	6.9	16	33
Maximum fuse to be connected upstream ${ }^{(1)}$	A	25	25	25	25
Continuous output current	$\mathrm{A}_{\text {rms }}$	1.5	3	6	10
Peak output current	$\mathrm{A}_{\text {rms }}$	4.5	9	18	30
Minimum inductance motor (phase/phase)	mH	5.5	3	1.4	0.8
Values without mains reactor ${ }^{(2)}$					
Nominal power	kW	0.3	0.5	1.0	1.6
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	2.9	4.5	8.4	12.7
THD (total harmonic distortion) ${ }^{(4)}$	\%	181	166	148	135
Power dissipation ${ }^{(5)}$	W	10	18	34	38
Maximum inrush current ${ }^{(6)}$	A	142	197	240	270
Time for maximum inrush current	ms	1.1	1.5	1.8	2.1
Values with mains reactor					
Mains reactor	mH	5	2	2	2
Nominal power	kW	0.5	0.9	1.6	2.2
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	3.4	6.3	10.6	14.1
THD (total harmonic distortion) ${ }^{(4)}$	\%	100	107	93	86
Power dissipation ${ }^{(5)}$	W	11	20	38	42
Maximum inrush current ${ }^{(6)}$	A	42	90	106	116
Time for maximum inrush current	ms	3.5	3.2	3.6	4.0

(1) As per IEC 60269. Circuit breakers with B or C characteristic. See chapter Conditions for UL 508C and CSA (see page 51) for UL and CSA. Lower ratings are permissible. The fuse must be rated in such a way that the fuse does not trip at the specified input current.
(2) At a mains impedance corresponding to a short-circuit current of the supply mains of 1 kA
(3) At nominal power and nominal voltage
(4) With reference to the input current
(5) Condition: internal braking resistor not active. Value at nominal current, nominal voltage and nominal power. Value approximately proportional with output current.
(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time

Data for Three-Phase Devices at 208 Vac

Characteristic	Unit	Value				
		LXM32-U60N4	LXM32-D12N4	LXM32-D18N4	LXM32-D30N4	LXM32-D72N4
Nominal voltage (three-phase)	Vac	208	208	208	208	208
Inrush current limitation	A	2.2	4.9	10	10	29
Maximum fuse to be connected upstream ${ }^{(1)}$	A	32	32	32	32	32
Continuous output current	$\mathrm{A}_{\text {rms }}$	1.5	3	6	10	24
Peak output current	$\mathrm{A}_{\text {rms }}$	6	12	18	30	72
Minimum inductance motor (phase/phase)	mH	8.5	4.5	3	1.7	0.7
Values without mains reactor ${ }^{(2)}$						
Nominal power	kW	0.35	0.7	1.2	2.0	5
Input current ${ }^{(3)}$	$\mathrm{A}_{\mathrm{rms}}$	1.8	3.6	6.2	9.8	21.9
THD (total harmonic distortion) ${ }^{(4)}$	\%	132	136	140	128	106
Power dissipation ${ }^{(5)}$	W	13	26	48	81	204
Maximum inrush current ${ }^{(6)}$	A	60	180	276	341	500
Time for maximum inrush current	ms	0.5	0.7	0.9	1.1	1.5
Values with mains reactor						
Mains reactor	mH	2	2	1	1	1
Nominal power	kW	0.4	0.8	1.5	2.6	6.5
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	1.7	3.1	6.0	9.2	21.1
THD (total harmonic distortion) ${ }^{(4)}$	\%	97	79	78	59	34
Power dissipation ${ }^{(5)}$	w	13	27	51	86	218
Maximum inrush current ${ }^{(6)}$	A	19	55	104	126	155
Time for maximum inrush current	ms	1.9	2.6	2.6	3.0	3.6
(1) As per IEC 60269. Circuit breakers with B or C characteristic. See chapter Conditions for UL 508 C and CSA (see page 51) for UL and CSA. Lower ratings are permissible. The fuse must be rated in such a way that the fuse does not trip at the specified input current. (2) At a mains impedance corresponding to a short-circuit current of the supply mains of 5 kA (3) At nominal power and nominal voltage (4) With reference to the input current (5) Condition: internal braking resistor not active. Value at nominal current, nominal voltage and nominal power. Value approximately proportional with output current. (6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time						

Data for Three-Phase Devices at 400 Vac

Characteristic	Unit	Value				
		LXM32•U60N4	LXM32•D12N4	LXM32•D18N4	LXM32•D30N4	LXM32•D72N4
Nominal voltage (three-phase)	Vac	400	400	400	400	400
Inrush current limitation	A	4.3	9.4	19	19	57
Maximum fuse to be connected upstream ${ }^{(1)}$	A	32	32	32	32	32
Continuous output current	$\mathrm{A}_{\text {rms }}$	1.5	3	6	10	24
Peak output current	$\mathrm{A}_{\text {rms }}$	6	12	18	30	72
Minimum inductance motor (phase/phase)	mH	8.5	4.5	3	1.7	0.7
Values without mains reactor ${ }^{(2)}$						
Nominal power	kW	0.4	0.9	1.8	3.0	7
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	1.4	2.9	5.2	8.3	17.3
THD (total harmonic distortion) ${ }^{(4)}$	\%	191	177	161	148	126
Power dissipation ${ }^{(5)}$	W	17	37	68	115	283
Maximum inrush current ${ }^{(6)}$	A	90	131	201	248	359
Time for maximum inrush current	ms	0.5	0.7	0.9	1.1	1.4
Values with mains reactor						
Mains reactor	mH	2	2	1	1	1
Nominal power	kW	0.8	1.6	3.3	5.6	13
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	1.8	3.4	6.9	11.1	22.5
THD (total harmonic distortion) ${ }^{(4)}$	\%	108	90	90	77	45
Power dissipation ${ }^{(5)}$	W	19	40	74	125	308
Maximum inrush current ${ }^{(6)}$	A	28	36	75	87	112
Time for maximum inrush current	ms	1.9	2.3	2.3	2.6	3.0

(1) As per IEC 60269. Circuit breakers with B or C characteristic. See chapter Conditions for UL 508C and CSA (see page 51) for UL and CSA. Lower ratings are permissible. The fuse must be rated in such a way that the fuse does not trip at the specified input current.
(2) At a mains impedance corresponding to a short-circuit current of the supply mains of 5 kA
(3) At nominal power and nominal voltage
(4) With reference to the input current
(5) Condition: internal braking resistor not active. Value at nominal current, nominal voltage and nominal power. Value approximately proportional with output current.
(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time

Data for Three-Phase Devices at 480 Vac

Characteristic	Unit	Value				
		LXM32-U60N4	LXM32•D12N4	LXM32•D18N4	LXM32•D30N4	LXM32•D72N4
Nominal voltage (three-phase)	Vac	480	480	480	480	480
Inrush current limitation	A	5.1	11.3	23	23	68
Maximum fuse to be connected upstream ${ }^{(1)}$	A	32	32	32	32	32
Continuous output current	$\mathrm{A}_{\text {rms }}$	1.5	3	6	10	24
Peak output current	$\mathrm{A}_{\text {rms }}$	6	12	18	30	72
Minimum inductance motor (phase/phase)	mH	8.5	4.5	3	1.7	0.7
Values without mains reactor ${ }^{(2)}$						
Nominal power	kW	0.4	0.9	1.8	3.0	7
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	1.2	2.4	4.5	7.0	14.6
THD (total harmonic distortion) ${ }^{(4)}$	\%	201	182	165	152	129
Power dissipation ${ }^{(5)}$	W	20	42	76	129	315
Maximum inrush current ${ }^{(6)}$	A	129	188	286	350	504
Time for maximum inrush current	ms	0.6	0.7	1.0	1.2	1.6
Values with mains reactor						
Mains reactor	mH	2	2	1	1	1
Nominal power	kW	0.8	1.6	3.3	5.6	13
Input current ${ }^{(3)}$	$\mathrm{A}_{\text {rms }}$	1.6	2.9	6.0	9.6	19.5
THD (total harmonic distortion) ${ }^{(4)}$	\%	116	98	98	85	55
Power dissipation ${ }^{(5)}$	W	21	44	82	137	341
Maximum inrush current ${ }^{(6)}$	A	43	57	116	137	177
Time for maximum inrush current	ms	1.9	2.4	2.4	2.7	3.2

(1) As per IEC 60269. Circuit breakers with B or C characteristic. See chapter Conditions for UL 508C and CSA (see page 51) for UL and CSA. Lower ratings are permissible. The fuse must be rated in such a way that the fuse does not trip at the specified input current.
(2) At a mains impedance corresponding to a short-circuit current of the supply mains of 5 kA
(3) At nominal power and nominal voltage
(4) With reference to the input current
(5) Condition: internal braking resistor not active. Value at nominal current, nominal voltage and nominal power. Value approximately proportional with output current.
(6) Extreme case, off/on pulse before the inrush current limitation responds, see next line for maximum time

Peak Output Currents

Description

The device can provide the peak output current for a limited period of time. If the peak output current flows when the motor is at a standstill, the higher load on a single semiconductor switch causes the current limitation to become active earlier than when the motor moves.

The period of time for which the peak output current can be provided depends on the hardware version.
Peak output current with hardware version \geq RS03: 5 seconds

Peak output current with hardware version <RS03: 1 second

DC Bus Data

DC Bus Data for Single-Phase Devices

Characteristic	Unit	Value							
		LXM32-U45M2		LXM32•U90M2		LXM32-D18M2		LXM32•D30M2	
Nominal voltage	V	115	230	115	230	115	230	115	230
Nominal voltage DC bus	V	163	325	163	325	163	325	163	325
Undervoltage limit	V	55	130	55	130	55	130	55	130
Voltage limit: activation of Quick Stop	V	60	140	60	140	60	140	60	140
Overvoltage limit	V	$\begin{aligned} & 260^{(1)} / \\ & 450 \end{aligned}$	450	$\begin{aligned} & 260^{(1)} / \\ & 450 \end{aligned}$	450	$\begin{aligned} & 260^{(1)} / \\ & 450 \end{aligned}$	450	$\begin{aligned} & 260^{(1)} / \\ & 450 \end{aligned}$	450
Maximum continuous power via DC bus	kW	0.2	0.5	0.4	0.9	0.8	1.6	0.8	2.2
Maximum continuous current via DC bus	A	1.5	1.5	3.2	3.2	6.0	6.0	10.0	10.0

DC Bus Data for Three-Phase Devices

Characteristic	Unit	Value								
		LXM32	J60N		LXM32	12N		LXM32	18N	
Nominal voltage	V	208	400	480	208	400	480	208	400	480
Nominal voltage DC bus	V	294	566	679	294	566	679	294	566	679
Undervoltage limit	V	150	350	350	150	350	350	150	350	350
Voltage limit: activation of Quick Stop	V	160	360	360	160	360	360	160	360	360
Overvoltage limit	V	$\begin{aligned} & 450^{(1)} / \\ & 820 \end{aligned}$	820	820	$\begin{aligned} & 450^{(1)} / \\ & 820 \end{aligned}$	820	820	$\begin{aligned} & 450^{(1)} / \\ & 820 \end{aligned}$	820	820
Maximum continuous power via DC bus	kW	0.4	0.8	0.8	0.8	1.6	1.6	1.7	3.3	3.3
Maximum continuous current via DC bus	A	1.5	1.5	1.5	3.2	3.2	3.2	6.0	6.0	6.0
(1) Can be set via parameter MON_DCbusVdcThresh.										

Characteristic	Unit	Value					
		LXM32•	ON4		LXM32•	N4	
Nominal voltage	V	208	400	480	208	400	480
Nominal voltage DC bus	V	294	566	679	294	566	679
Undervoltage limit	V	150	350	350	150	350	350
Voltage limit: activation of Quick Stop	V	160	360	360	160	360	360
Overvoltage limit	V	$\begin{aligned} & 450^{(1)} / \\ & 820 \end{aligned}$	820	820	$\begin{aligned} & 450^{(1)} / \\ & 820 \end{aligned}$	820	820
Maximum continuous power via DC bus	kW	2.8	5.6	5.6	6.5	13.0	13.0
Maximum continuous current via DC bus	A	10.0	10.0	10.0	22.0	22.0	22.0
(1) Can be set via parameter MON_DCbusVdcThresh.							

24 Vdc Control Supply

Description

The 24 Vdc control supply must meet the requirements of IEC 61131-2 (PELV standard power supply unit):

Characteristic	Unit	Value
Input voltage	Vdc	$24(-15 /+20 \%)^{(1)}$
Input current (without load)	A	$\leq 1^{(2)}$
Residual ripple	$\%$	<5
Inrush current		Charging current for capacitor C=1.8 mF
(1) For		

(1) For connection of motors without holding brake. See figure below for motors with holding brake
(2) Input current: holding brake not considered.

24 Vdc Control Supply in the Case of Motor with Holding Brake
If a motor with holding brake is connected, the 24 Vdc control supply must be adjusted according to the connected motor type, the motor cable length and the cross section of the wires for the holding brake. The following diagram applies to the motor cables available as accessories, see chapter Accessories and Spare Parts (see page 455). See the diagram for the voltage that must be available at CN2 for releasing the holding brake. The voltage tolerance is $\pm 5 \%$.
24 Vdc control supply in the case of motor with holding brake: the voltage depends on the motor type, the motor cable length and the conductor cross section.

1 Maximum voltage of the 24 Vdc control supply

Signals

Logic Type
The digital inputs and outputs of this product can be wired for positive logic or negative logic.
(1)

(2)

Logic type	Active state
(1) Positive logic	Output supplies current (source output) Current flows to the input (sink input)
(2) Negative logic	Output draws current (sink output) Current flows from the input (source input)

Signal inputs are protected against reverse polarity, outputs are short-circuit protected. The inputs and outputs are functionally isolated.

Digital Input Signals 24 V
When wired as positive logic, the levels of the digital inputs comply with IEC 61131-2, type 1 . The electrical characteristics are also valid when wired as negative logic unless otherwise indicated.

Characteristic	Unit	Value
Input voltage - positive logic		
Level 0	Vdc	$-3 \ldots 5$
Level 1	Vdc	$15 \ldots 30$
Input voltage - negative logic (at 24 Vdc) Level 0 Level 1	Vdc	>19
Input current (at 24 Vdc)	Vdc	<9
Debounce time (software)		
Hardware switching time	mA	5
Rising edge (level 0 -> 1)	ms	1.5 (default value) $^{\text {Falling edge (level 1 -> 0) }}$

(1) Adjustable via parameter (sampling period $250 \mu \mathrm{~s}$)
(2) If the capture inputs are used for capture then the debounce time is not applied.

Digital Output Signals 24 V
When wired as positive logic, the levels of the digital outputs comply with IEC 61131-2. The electrical characteristics are also valid when wired as negative logic unless otherwise indicated.

Characteristic	Unit	Value
Nominal supply voltage	Vdc	24
Voltage range for supply voltage	Vdc	$19.2 \ldots 30$
Nominal output voltage - positive logic	Vdc	24
Nominal output voltage - negative logic	Vdc	0
Voltage drop at 100 mA load	Vdc	≤ 3
Maximum current per output	mA	100

Input Signals Safety Function STO
The inputs for the safety function STO (inputs STO_A and STO_B) can only be wired for positive logic. Observe the information provided in chapter Safety function STO ("Safe Torque Off") (see page 79).

Characteristic	Unit	Value
Input voltage - positive logic Level 0 Level 1	Vdc Vdc	$-3 \ldots 5$ $15 \ldots 30$
Input current (at 24 Vdc)	mA	5
Debounce time STO_A and STO_B	ms	>1
Detection of signal differences between STO_A and STO_B	s	>1
Response time of safety function STO	ms	≤ 10

Holding Brake Output CN11

The 24 Vdc holding brake of the BMH motor or the BSH motor can be connected to the output CN11. Data of output CN11:

Characteristic	Unit	Value
Output voltage $^{(1)}$	V	Voltage at 24 Vdc control supply CN2 minus 0.8 V
Maximum switching current	A	1.7
Energy inductive load $^{(2)}$	Ws	1.5

(1) See chapter 24 Vdc Control Supply (see page 35)
(2) Time between switch off procedures: > 1 s

Encoder Signals

The encoder signals comply with the Stegmann Hiperface specification.

Characteristic	Unit	Value
Output voltage for encoder	V	10
Output current for encoder	mA	100
SIN/COS input signal voltage range		$1 \mathrm{~V}_{\mathrm{pp}}$ with 2.5 V offset, $0.5 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz
Input resistance	Ω	120

The output voltage is short-circuit protected and overload protected. Transmission via RS485, asynchronous, half-duplex

Output PTO (CN4)

5 V signals are available at the PTO (Pulse Train Out, CN4) output. Depending on parameter PTO mode, these signals are ESIM signals (encoder simulation) or directly transmitted PTI input signals (P/D signals, A/B signals, CW/CCW signals). The PTO output signals can be used as PTI input signals for another device. The PTO output signals have 5 V , even if the PTI input signal is a 24 V signal.

The signal level corresponds to RS422. Due to the input current of the optocoupler in the input circuit, a parallel connection of a driver output to several devices is not permitted.
The basic resolution of the encoder simulation at quadruple resolution is 4096 increments per revolution in the case of rotary motors.
Time chart with A, B and index pulse signal, counting forwards and backwards

Output Signal PTO
The PTO output signals comply with the RS422 interface specification.

Characteristic	Unit	Value
Logic level		As per $\mathrm{RS}_{2} 22^{(1)}$
Output frequency per signal	kHz	≤ 500
Motor increments per second	Inc/s	$\leq 1.6^{*} 10^{6}$

(1) Due to the input current of the optocoupler in the input circuit, a parallel connection of a driver output to several devices is not permitted.

The device connected to the PTO output must be able to process the specified motor increments per second. Even at low velocities, (medium PTO frequency in the kHz range), edges may change at up to 1.6 MHz .

Input PTI (CN5)

5 V signals or 24 V signals can be connected to the PTI (Pulse Train In) input.
The following signals can be connected:

- A/B signals (ENC_A/ENC_B)
- P/D signals (PULSE/DIR)
- CW/CCW signals (CW/CCW)

Input Circuit and Selection of Method

The input circuit and the selected method affect the maximum permissible input frequency and the maximum permissible line length:

Input circuit		RS422	Push pull	Open collector
Minimum input frequency with method position synchronization	Hz	0	0	0
Minimum input frequency with method velocity synchronization	Hz	100	100	100
Maximum input frequency	MHz	1	0.2	0.01
Maximum line length	$\mathrm{m}(\mathrm{ft})$	$100(328)$	$10(32.8)$	$1(3.28)$

Signal input circuits: RS422, Push Pull and Open Collector
5 Vdc

PushPull

OpenCollector

24 Vdc

OpenCollector

Input	Pin ${ }^{(1)}$	RS422 ${ }^{(2)}$	5 V	24V
A	Pin 7	Reserved	Reserved	$\begin{aligned} & \text { PULSE (24) } \\ & \text { ENC_A (24) } \\ & \text { CW }(24) \end{aligned}$
	Pin 8	Reserved	Reserved	DIR(24) ENC B (24) CCW (2 4
B	Pin 1	$\begin{aligned} & \text { PULSE (5) } \\ & \text { ENC_A (5) } \\ & \text { CW (5) } \end{aligned}$	$\begin{aligned} & \text { PULSE (5) } \\ & \text { ENC_A (5) } \\ & \text { CW (5) } \end{aligned}$	Reserved
	Pin4	DIR (5) ENC B (5) CCW (5)	DIR (5) ENC B(5) CCW (5)	Reserved
C	Pin 2			
	Pin 5	DIR ENC_B CCW	DIR ENC_B CCW	DIR ENC_B CCW
(1) Observe the different pairing in the case of twisted pair: Pin $1 /$ pin 2 and pin 4 / pin 5 for RS422 and 5 V ; pin 7 / pin 2 and pin 8 / pin 5 for 24 V (2) Due to the input current of the optocoupler in the input circuit, a parallel connection of a driver output to several devices is not permitted.				

Function A/B Signals
External A/B signals can be counted at the PTI input.

Signal	Value	Function
Signal A before signal B	$0->1$	Count in positive direction
Signal B before signal A	$0->1$	Count in negative direction

Time chart with A / B signal, counting forwards and backwards

Times for pulse/direction	Minimum value
(1) Cycle duration A, B	$1 \mu \mathrm{~s}$
(2) Pulse duration	$0.4 \mu \mathrm{~s}$
(3) Lead time (A, B)	200 ns

Function P/D Signals
External P/D signals can be counted at the PTI input.

Signal	Value	Function
PULSE	$0->1$	Count in positive direction
DIR	$0 /$ open	
PULSE	$0->1$	Count in negative direction
DIR	1	

Time chart with pulse/direction signal

Times for pulse/direction	Minimum value
(1) Cycle duration (pulse)	$1 \mu \mathrm{~s}$
(2) Pulse duration (pulse)	$0.4 \mu \mathrm{~s}$
(3) Lead time (Dir-Pulse)	$0 \mu \mathrm{~s}$
(4) Hold time (Pulse-Dir)	$0.4 \mu \mathrm{~s}$

Function CW/CCW Signals
External CW/CCW signals can be counted at the PTI input.

Signal	Value	Function
CW	$0->1$	Count in positive direction
CCW	$0->1$	Count in negative direction

Time chart with "CW/CCW"

Times for pulse/direction	Minimum value
(1) Cycle duration CW, CCW	$1 \mu \mathrm{~s}$
(2) Pulse duration	$0.4 \mu \mathrm{~s}$
(3) Lead time (CW-CCW, CCW-CW)	$0 \mu \mathrm{~s}$

Capacitor and Braking Resistor

Description

The drive has an internal capacitor and an internal braking resistor. If the internal capacitor and the internal braking resistor are insufficient for the dynamics of the application, one or more external braking resistors must be used.

The resistance values for external braking resistors must not be below the specified minimum resistance. If an external braking resistor is activated by means of the appropriate parameter, the internal braking resistor is deactivated.

Data of Internal Capacitor

Characteristic	Unit	Value			
		LXM32•U45M2	LXM32•U90M2	LXM32•D18M2	LXM32•D30M2
Capacitance of internal capacitor	$\mu \mathrm{F}$	390	780	1170	1560
Parameter DCbus_compat $=0$ (default value)					
Energy absorption of internal capacitors $\mathrm{E}_{\text {var }}$ at nominal voltage $115 \mathrm{~V}+10 \%$	Ws	5	9	14	18
Energy absorption of internal capacitors $\mathrm{E}_{\text {var }}$ at nominal voltage $200 \mathrm{~V}+10 \%$	Ws	17	34	52	69
Energy absorption of internal capacitors $\mathrm{E}_{\text {var }}$ at nominal voltage $230 \mathrm{~V}+10 \%$	Ws	11	22	33	44
Parameter DCbus_compat $=1$ (reduce switch-on voltage)		73	97		
Energy absorption of internal capacitors $\mathrm{E}_{\text {var }}$ at nominal voltage $115 \mathrm{~V}+10 \%$	Ws	24	48	73	46
Energy absorption of internal capacitors $\mathrm{E}_{\text {var }}$ at nominal voltage $200 \mathrm{~V}+10 \%$	Ws	12	23	35	22
Energy absorption of internal capacitors $\mathrm{E}_{\text {var }}$ at nominal voltage $230 \mathrm{~V}+10 \%$	Ws	5	11	16	

Characteristic	Unit	Value				
		LXM32-U60N4	LXM32-D12N4	LXM32-D18N4	LXM32•D30N4	LXM32-D72N4
Capacitance of internal capacitor	$\mu \mathrm{F}$	110	195	390	560	1120
Parameter DCbus_compat ${ }^{(1)}$						
Energy absorption of internal capacitors $\mathrm{E}_{\mathrm{var}}$ at nominal voltage $208 \text { V +10\% }$	Ws	4	8	16	22	45
Energy absorption of internal capacitors $\mathrm{E}_{\mathrm{var}}$ at nominal voltage 380 V +10\%	Ws	14	25	50	73	145
Energy absorption of internal capacitors $\mathrm{E}_{\mathrm{var}}$ at nominal voltage $400 \text { V +10\% }$	Ws	12	22	43	62	124
Energy absorption of internal capacitors $\mathrm{E}_{\mathrm{var}}$ at nominal voltage 480 V +10\%	Ws	3	5	10	14	28
(1) Parameter DCbus_compat has no effect in the case of three-phase devices						

Data of Internal Braking Resistor

Characteristic	Unit	Value			
		LXM32.U45M2	LXM32•U90M2	LXM32-D18M2	LXM32-D30M2
Resistance value of internal braking resistor	Ω	94	47	20	10
Continuous power internal braking resistor P_{PR}	W	10	20	40	60
Peak energy E_{CR}	Ws	82	166	330	550
Parameter DCbus_compat $=0$ (default value)					
Switch-on voltage of braking resistor at nominal voltage 115 V	V	236	236	236	236
Switch-on voltage of braking resistor at nominal voltage 200 V and 230 V	V	430	430	430	430
Parameter DCbus_compat $=1$ (reduced switch-on voltage)					
Switch-on voltage of braking resistor	V	395	395	395	395

Characteristic	Unit	Value				
		LXM32-U60N4	LXM32-D12N4	LXM32•D18N4	LXM32•D30N4	LXM32-D72N4
Resistance value of internal braking resistor	Ω	132	60	30	30	10
Continuous power internal braking resistor P_{PR}	W	20	40	60	100	150
Peak energy E_{CR}	Ws	200	400	600	1000	2400
Parameter DCbus_compat ${ }^{(2)}$						
Switch-on voltage of braking resistor at nominal voltage 208 V	V	430	430	430	430	430
Switch-on voltage of braking resistor at nominal voltage 380 V , 400 V and 480 V	v	780	780	780	780	780
(1) The maximum specified braking resistor can derate the peak power of the device. Depending on the application, it is possible to use a higher ohm resistor. (2) Parameter DCbus_compat has no effect in the case of three-phase devices						

Data for External Braking Resistor

Characteristic	Unit	Value			
		LXM32.U45M2	LXM32-U90M2	LXM32-D18M2	LXM32•D30M2
Minimum resistance value of external braking resistor	Ω	68	36	20	10
Maximum resistance value of external braking resistor ${ }^{(1)}$	Ω	110	55	27	16
Maximum continuous power of external braking resistor	W	200	400	600	800
Parameter DCbus_compat $=0$ (default value)					
Switch-on voltage of braking resistor at nominal voltage 115 V	V	236	236	236	236
Switch-on voltage of braking resistor at nominal voltage 200 V and 230 V	V	430	430	430	430
Parameter DCbus_compat $=1$ (reduced switch-on voltage)					
Switch-on voltage of braking resistor	V	395	395	395	395

(1) The maximum specified braking resistor can derate the peak power of the device. Depending on the application, it is possible to use a higher ohm resistor.

Characteristic	Unit	Value				
		LXM32-U60N4	LXM32-D12N4	LXM32-D18N4	LXM32•D30N4	LXM32•D72N4
Minimum resistance value of external braking resistor	Ω	70	47	25	15	8
Maximum resistance value of external braking resistor ${ }^{(1)}$	Ω	145	73	50	30	12
Maximum continuous power of external braking resistor	W	200	500	800	1500	3000
Parameter DCbus_compat ${ }^{(2)}$						
Switch-on voltage of braking resistor at nominal voltage 208 V	V	430	430	430	430	430
Switch-on voltage of braking resistor at nominal voltage 380 V , 400 V and 480 V	V	780	780	780	780	780
(1) The maximum specified braking resistor can derate the peak power of the device. Depending on the application, it is possible to use a higher ohm resistor. (2) Parameter DCbus_compat has no effect in the case of three-phase devices						

Data of External Braking Resistors (Accessories)

Characteristic	Unit	Value							
		VW3A76 01Rxx	VW3A76 02Rxx	VW3A76 03Rxx	VW3A76 04Rxx	VW3A76 05Rxx	VW3A76 06Rxx	VW3A76 07Rxx	VW3A76 08Rxx
Resistance	Ω	10	27	27	27	72	72	72	100
Continuous power	W	400	100	200	400	100	200	400	100
Maximum time in braking at 115 V	s	3	1.8	4.2	10.8	6.36	16.8	42	10.8
Peak power at 115 V	kW	5.6	2.1	2.1	2.1	0.8	0.8	0.8	0.6
Maximum peak energy at 115 V	kWs	16.7	3.7	8.7	22.3	4.9	13	32.5	6
Maximum time in braking at 230 V	s	0.72	0.55	1.08	2.64	1.44	3.72	9.6	2.4
Peak power at 230 V	kW	18.5	6.8	6.8	6.8	2.6	2.6	2.6	1.8
Maximum peak energy at 230 V	kWs	13.3	3.8	7.4	18.1	3.7	9.6	24.7	4.4
Maximum time in braking at 400 V and 480 V	s	0.12	0.084	0.216	0.504	0.3	0.78	1.92	0.48
Peak power at 400 V and 480 V	kW	60.8	22.5	22.5	22.5	8.5	8.5	8.5	6.1
Maximum peak energy at 400 V and 480 V	kWs	7.3	1.9	4.9	11.4	2.5	6.6	16.2	2.9
Degree of protection		IP65							
UL approval (file no.)		-	E233422	E233422	-	E233422	E233422	-	E233422

Characteristic	Unit	Value	
		VW3A7733	VW3A7734
Resistance	Ω	16	10
Continuous power	W	960	960
Maximum time in braking at 115 V	s	20	10
Peak power at 115 V	kW	3.5	5.6
Maximum peak energy at 115 V	kWs	70	59
Maximum time in braking at 230 V	s	3.8	1.98
Peak power at 230 V	kW	11.6	18.5
Maximum peak energy at 230 V	kWs	44	36.5
Maximum time in braking at 400 V and 480 V	s	0.7	0.37
Peak power at 400 V and 480 V	kW	38	60.8
Maximum peak energy at 400 V and 480 V	kWs	26.6	22.5
Degree of protection		IP20	IP20
UL approval (file no.)		E226619	E226619

Electromagnetic Emission

Overview

The products described in the present manual meet the EMC requirements as per IEC 61800-3 if the EMC measures described in the present manual are implemented.

A WARNING
 ELECTROMAGNETIC DISTURBANCES OF SIGNALS AND DEVICES
 Use proper EMC shielding techniques to help prevent unintended device operation in accordance with the standard IEC 61800-3.
 Failure to follow these instructions can result in death, serious injury, or equipment damage.

These types of devices are not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if used in such a network.

WARNING
RADIO INTERFERENCE
Do not operate this equipment in a first environment as defined in IEC 61800-3.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

EMC Categories
The following categories for emission as per IEC 61800-3 are reached if the EMC measures described in the present manual are implemented.

Emission type	Category LXM32•••M2	Category LXM32•••N4
Conducted emission Motor cable length $\leq 10 \mathrm{~m}(\leq 32.81 \mathrm{ft})$ Motor cable length $10 \ldots \leq 20 \mathrm{~m}(32.81 \ldots \leq 65.62 \mathrm{ft})$	Category C2 Category C3	Category C3 Category C3
Radiated emission Motor cable length $\leq 20 \mathrm{~m}(65.62 \mathrm{ft})$	Category C3	Category C3

EMC Categories With External Mains Filter

The following categories for emission as per IEC 61800-3 are reached if the EMC measures described in the present manual are implemented and if the external mains filters offered as accessories are used.

Emission type	Category LXM32•••M2	Category LXM32•••N4
Conducted emission		
Motor cable length $\leq 20 \mathrm{~m}(65.62 \mathrm{ft})$	Category C1	Category C1
Motor cable length $>20 \ldots \leq 50 \mathrm{~m}(>65.62 \ldots \leq 164.00 \mathrm{ft})$	Category C2	Category C2
Motor cable length $>50 \ldots \leq 100 \mathrm{~m}(>164.00 \ldots \leq 328.01 \mathrm{ft}$	Category C3	Category C3
Radiated emission Motor cable length $\leq 100 \mathrm{~m}(328.01 \mathrm{ft})$	Category C3	Category C3

Assignment of External Mains Filters

Single-phase drives	Mains filter reference
LXM32•U45M2 $(230 \mathrm{~V}, 1,5$ A)	VW3A4420 (9 A)
LXM32•U90M2 (230 V, 3 A)	VW3A4420 (9 A)
LXM32•D18M2 $(230 \mathrm{~V}, 6$ A)	VW3A4421 (16 A)
LXM32•D30M2 (230 V, 10 A)	VW3A4421 (16 A)

Three-phase drives	Mains filter reference
LXM32•U60N4 (480 V, 1,5 A)	VW3A4422 (15 A)
LXM32•D12N4 (480 V, 3 A)	VW3A4422 (15 A)
LXM32•D18N4 (480 V, 6 A)	VW3A4422 (15 A)
LXM32•D30N4 (480 V, 10 A)	VW3A4422 (15 A)
LXM32•D72N4 (480 V, 24 A)	VW3A4423 (25 A)

Several devices can be connected to a common external mains filter.

Prerequisites:

- Single-phase devices may only be connected to single-phase mains filters; three-phase devices may only be connected to three-phase devices.
- The total input current of the connected devices must be smaller than or equal to the permissible nominal current of the mains filter.

Nonvolatile Memory and Memory Card

Nonvolatile Memory
The following table shows characteristics for the nonvolatile memory:

Characteristic	Value
Minimum number of writing cycles	100000
Type	EEPROM

Memory Card
The following table shows characteristics for the memory card:

Characteristic	Value
Minimum number of writing cycles	100000
Minimum number of plug-in cycles	1000

Memory Card Holder
The following table shows characteristics for the memory card holder:

Characteristic	Value
Minimum number of plug-in cycles	5000

Conditions for UL 508C and CSA

If the product is used to comply with UL 508C or CSA, the following conditions must also be met:

Ambient Temperature During Operation

Characteristic	Unit	Value
Surrounding air temperature	$^{\circ} \mathrm{C}$	$0 \ldots 50$ $\left({ }^{\circ} \mathrm{F}\right)$
$(32 \ldots 122)$		

Fuses
Use fuses as per UL 248.

Characteristic	Unit	Value	
		LXM32•••M2	LXM32•••N4
Maximum fuse rating of fuse to be connected upstream	A	25	30
Class of fuse		CC or J	CC or J
Short-circuit current rating (SCCR)	KA	12	12

Circuit Breaker

Characteristic	Unit		Value			
		LXM32•U45M2, LXM32•U90M2	LXM32•D18M2, LXM32•D30M2	LXM32•U60N4, LXM32•D12N4, LXM32•D18N4	LXM32•D30N4, LXM32•D72N4	
Catalog number of type E combination motor controller	GV2P14 or GV3P25	GV3P25	GV2P14 or GV3P25	GV2P22	GV2P22	
Short-circuit current rating (SCCR)	kA	12	12	12	10	10

Wiring
Use at least $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ copper conductors.

400/480 V Three-Phase Devices
400/480 V three-phase devices may only be operated via mains up to 480Y/277Vac.

Overvoltage Category

Use only in overvoltage category III or where the maximum available Rated Impulse Withstand Voltage Peak is equal or less than 4000 Volts.

Motor Overload Protection

This equipment provides Solid State Motor Overload Protection at 200 \% of maximum FLA (Full Load Ampacity).

Certifications

Product certifications:

Certified by	Assigned number
TÜV Nord	SAS-192/2008TB-1
UL	E116875
CSA	2320425

Chapter 3

Engineering

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
3.1	Electromagnetic Compatibility (EMC)	54
3.2	Cables and Signals	60
3.3	Mains Supply	69
3.4	Rating the Braking Resistor	73
3.5	Functional Safety	79

Section 3.1

Electromagnetic Compatibility (EMC)

What Is in This Section?
This section contains the following topics:

Topic	Page
General	55
Deactivating the Y Capacitors	59

General

EMC-Compliant Wiring

This product meets the EMC requirements according to the standard IEC 61800-3 if the measures described in this manual are implemented during installation.
Signal interference can cause unexpected responses of the drive system and of other equipment in the vicinity of the drive system.

A WARNING
 SIGNAL AND EQUIPMENT INTERFERENCE
 - Install the wiring in accordance with the EMC requirements described in the present document.
 - Verify compliance with the EMC requirements described in the present document
 - Verify compliance with all EMC regulations and requirements applicable in the country in which the product is to be operated and with all EMC regulations and requirements applicable at the installation site.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING
 ELECTROMAGNETIC DISTURBANCES OF SIGNALS AND DEVICES
 Use proper EMC shielding techniques to help prevent unintended device operation in accordance with the standard IEC 61800-3.
 Failure to follow these instructions can result in death, serious injury, or equipment damage.

See chapter Electromagnetic Emission (see page 48) for the EMC categories.

Overview of wiring with EMC details

EMC Requirements for the Control Cabinet

EMC measures	Objective
Use mounting plates with good electrical conductivity, connect large surface areas of metal parts, remove paint from contact areas.	Good conductivity due to large surface contact.
Ground the control cabinet, the control cabinet door and the mounting plate with ground straps or ground wires. The conductor cross section must be at least $10 \mathrm{~mm}^{2}$ (AWG 6).	Reduces emissions.
Install switching devices such as power contactors, relays or solenoid valves with interference suppression units or arc suppressors (for example, diodes, varistors, RC circuits).	Reduces mutual interference
Do not install power components and control components adjacent to one another.	Reduces mutual interference

Shielded Cables

EMC measures	Objective
Connect large surface areas of cable shields, use cable clamps and ground straps.	Reduces emissions.
Use cable clamps to connect a large surface area of the shields of all shielded cables to the mounting plate at the control cabinet entry.	Reduces emissions.
Ground shields of digital signal wires at both ends by connecting them to a large surface area or via conductive connector housings.	Reduces interference affecting the signal wires, reduces emissions
Ground the shields of analog signal wires directly at the device (signal input); insulate the shield at the other cable end or ground it via a capacitor (for example, 10 nF).	Reduces ground loops due to low-frequency interference.
Use only shielded motor cables with copper braid and a coverage of at at least 85%, ground a large surface area of the shield at both ends.	Diverts interference currents in a controlled way, reduces emissions.

Cable Installation

EMC measures	Objective
Do not route fieldbus cables and signal wires in a single cable duct together with lines with DC and AC voltages of more than 60 V. (Fieldbus cables, signal lines and analog lines may be in the same cable duct) Use separate cable ducts at least 20 cm (7.87 in) apart.	Reduces mutual interference
Keep cables as short as possible. Do not install unnecessary cable loops, use short cables from the central grounding point in the control cabinet to the external ground connection.	Reduces capacitive and inductive interference.
Use equipotential bonding conductors in the following cases: wide-area installations, different voltage supplies and installation across several buildings.	Reduces current in the cable shield, reduces emissions.
Use fine stranded equipotential bonding conductors.	Diverts high-frequency interference currents.
If motor and machine are not conductively connected, for example by an insulated flange or a connection without surface contact, you must ground the motor with a ground strap or a ground wire. The conductor cross section must be at least 10 mm	Reduces emissions, increases immunity.
Use twisted pair for the DC supply.	Reduces interference affecting the signal cables, reduces emissions.

Power Supply

EMC measures	Objective
Operate product on mains with grounded neutral point.	Enables effectiveness of mains filter.
Surge arrester if there is a risk of overvoltage.	Reduces the risk of damage caused by overvoltage.

Motor and Encoder Cables

Motor and encoder cables require particular attention in terms of EMC. Use only pre-assembled cables (see chapter Accessories and Spare Parts (see page 455)) or cables that comply with the specifications (see chapter Cables and Signals (see page 60)) and implement the EMC measures described below.

EMC measures	Objective
Do not install switching elements in motor cables or encoder cables.	Reduces interference.
Route the motor cable at a distance of at least $20 \mathrm{~cm}(7.87 \mathrm{in})$ from the signal cable or use shielding plates between the motor cable and signal cable.	Reduces mutual interference
For long lines, use equipotential bonding conductors.	Reduces current in the cable shield.
Route the motor cable and encoder cable without cutting them. ${ }^{(1)}$	Reduces emission.
(1) If a cable has to be cut for the installation, it has to be connected with shield connections and a metal housing at the point of the cut.	

Additional Measures for EMC Improvement
Depending on the application, the following measures can improve the EMC-dependent values:

EMC measures	Objective
Use mains reactors	Reduces mains harmonics, prolongs product service life.
Use external mains filters	Improves the EMC limit values.
Install in a closed control cabinet with increased shielding.	Improves the EMC limit values.

Deactivating the Y Capacitors

Description

The ground connections of the internal Y capacitors can be disconnected (deactivation). Usually, it is not required to deactivate the ground connection of the Y capacitors.

To deactivate the Y capacitors, remove the screw. Keep this screw so you can re-activate the Y capacitors, if required.
The drive no longer complies with the EMC limit values specified if the Y capacitors are deactivated.

Section 3.2

Cables and Signals

What Is in This Section?
This section contains the following topics:

Topic	Page
Cables - General	61
Overview of the Required Cables	63
Cable Specifications	64
Logic Type	67
Configurable Inputs and Outputs	68

Cables - General

Suitability of the Cables

Cables must not be twisted, stretched, crushed or bent. Use only cables that comply with the cable specification. Consider the following in determining suitability of the cables:

- Suitable for drag chain applications
- Temperature range
- Chemical resistance
- Outdoor installation
- Underground installation

Connecting Shields
Shield connection possibilities:

- Motor cable: The motor cable shield is fastened in the shield clamp at the bottom of the device.
- Other cables: The shields are connected to the shield connection at the bottom of the device.
- Alternative: Connect the shield via shield clamps and rail, for example.

Equipotential Bonding Conductors

Potential differences can result in excessive currents on the cable shields. Use equipotential bonding conductors to reduce currents on the cable shields. The equipotential bonding conductor must be rated for the maximum current.

! WARNING
UNINTENDED EQUIPMENT OPERATION
- Ground cable shields for all fast I/O, analog I/O, and communication signals at a single point. ${ }^{\text {1) }}$
- Route communications and I/O cables separately from power cables.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

[^0]
Conductor Cross Sections According to Method of Installation

The following sections describe the conductor cross sections for two methods of installation:

- Method of installation B2:

Cables in conduits or cable trunking systems

- Method of installation E:

Cables on open cable trays

Cross section in mm^{2} (AWG)	Current-carrying capacity with method of installation $B 2$ in $A^{(1)}$	Current carrying capacity with method of installation E in $A^{(1)}$
0.75 (18)	8.5	10.4
1 (16)	10.1	12.4
1.5 (14)	13.1	16.1
2.5 (12)	17.4	22
4 (10)	23	30
6 (8)	30	37
10 (6)	40	52
16 (4)	54	70
25 (2)	70	88
(1) Values as per IEC 60204-1 for continuous operation, copper conductors and ambient air temperature $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$. See IEC 60204-1 for additional information. The table is an excerpt from this standard and also shows cable cross-sections that are not applicable with regard to the product.		

Note the derating factors for grouping of cables and correction factors for other ambient conditions (IEC 60204-1).
The conductors must have a sufficiently large cross section so that the upstream fuse can trip.
In the case of longer cables, it may be necessary to use a greater conductor cross section to reduce the energy losses.

Overview of the Required Cables

The properties of the required cables are listed in the table below. Use pre-assembled cables to reduce the risk of wiring errors. Pre-assembled cables can be found in chapter Accessories and Spare Parts (see page 455). If the product is used to comply with the requirements as per UL 508C, the conditions specified in chapter Conditions for UL 508C and CSA (see page 51) must be met.

	Maximum length:	Minimum cross section	Shielded, both ends grounded	Twisted pair	PELV
24 Vdc control supply	-	$0.75 \mathrm{~mm}^{2}$ (AWG 18)			Required
Safety function STO ${ }^{(1)}$	-	$0.75 \mathrm{~mm}^{2}$ (AWG 18)	(1)		Required
Power stage supply	-	-(2)			
Motor phases	-(3)	-(4)	Required		
External braking resistor	3 m (9.84 ft)	As power stage supply	Required		
Motor encoder	100 m (328.01 ft)	$\begin{aligned} & 6 * 0.14 \mathrm{~mm}^{2} \text { and } \\ & 2 * 0.34 \mathrm{~mm}^{2} \\ & (6 * \text { AWG } 24 \text { and } \\ & 2 \text { * AWG 20) } \end{aligned}$	Required	Required	Required
A/B signals	100 m (328.08 ft)	$0.25 \mathrm{~mm}^{2}$ (AWG 22)	Required	Required	Required
PULSE / DIR signals	100 m (328.08 ft)	$0.14 \mathrm{~mm}^{2}$ (AWG 24)	Required	Required	Required
CW/CCW signals	100 m (328.08 ft)	$0.14 \mathrm{~mm}^{2}$ (AWG 24)	Required	Required	Required
ESIM	100 m (328.08 ft)	$0.14 \mathrm{~mm}^{2}$ (AWG 24)	Required	Required	Required
Fieldbus SERCOS III	100 m (328.08 ft)	$0.14 \mathrm{~mm}^{2}$ (AWG 24)	Required	Required	Required
Digital inputs / outputs	30 m (98.43 ft)	$0.14 \mathrm{~mm}^{2}$ (AWG 24)			Required
PC, commissioning interface	20 m (65.62 ft)	$0.14 \mathrm{~mm}^{2}$ (AWG 24)	Required	Required	Required

(1) Note the installation requirements (protected cable installation), see chapter Safety function STO ("Safe Torque Off") (see page 79).
(2) See Connection Power Stage Supply (CN1) (see page 108)
(3) Length depends on the required limit values for conducted interference.
(4) See Connection Motor Phases and Holding Brake (CN10 and CN11) (see page 101)

Cable Specifications

Using pre-assembled cables helps to reduce the possibility of wiring errors. See chapter Accessories and Spare Parts (see page 455).
The genuine accessories have the following properties:

Motor Cable With Connector

VW3...		M5100R...	M5101R...	M5102R...	M5103R...	M5105R...	M5104R...
Cable jacket, insulation		PUR orange (RAL 2003), TPM	PUR orange (RAL 2003), polypropylene (PP)				
Capacitance power wires Wire/wire Wire/shield	$\begin{aligned} & \mathrm{pF} / \mathrm{m} \\ & \mathrm{pF} / \mathrm{m} \end{aligned}$	$\begin{array}{\|l} 80 \\ 145 \end{array}$	$\begin{aligned} & 80 \\ & 135 \end{aligned}$	$\begin{aligned} & 80 \\ & 150 \end{aligned}$	$\begin{aligned} & 90 \\ & 150 \end{aligned}$	$\begin{array}{\|l} 85 \\ 150 \end{array}$	$\begin{aligned} & 100 \\ & 160 \end{aligned}$
Number of contacts (shielded)		$\begin{aligned} & \left(4 \times 1 \mathrm{~mm}^{2}+\right. \\ & \left.2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 1.5 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 2.5 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 4 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 6 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 10 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$
Connector motor side		8 -pin circular Y-TEC	8 -pin circular M23		8 -pin circular M40		
Connector drive side		Open					
Cable diameter	mm (in)	$\begin{aligned} & 11 \pm 0.3 \\ & (0.43 \pm 0.01) \end{aligned}$	$\begin{aligned} & 12 \pm 0.2 \\ & (0.47 \pm 0.01) \end{aligned}$	$\begin{aligned} & 14.3 \pm 0.3 \\ & (0.55 \pm 0.01) \end{aligned}$	$\begin{aligned} & 16.3 \pm 0.3 \\ & (0.64 \pm 0.01) \end{aligned}$	$\begin{array}{\|l\|} \hline 18.8 \pm 0.4 \\ (0.74 \pm 0.02) \end{array}$	$\begin{aligned} & 23.5 \pm 0.6 \\ & (0.93 \pm 0.02) \end{aligned}$
Minimum bend radius with fixed installation		10 times the cable diameter	5 times the cable diameter				
Minimum bend radius with moving installation		10 times the cable diameter	7.5 times the cable diameter			10 times the cable diameter	
Nominal voltage Motor phases Holding brake	V	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$				
Maximum orderable length	m (ft)	25 (82)	75 (246)				
Permissible temperature range during operation with fixed installation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$-40 . . .80$ (-40 ... 176)					
Permissible temperature range during operation with moving installation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$-20 . . .60$ (-4 ... 140)	-20 ... 80 (-4 ... 176)				
Certifications / declaration of conformity		CE, DESINA					

Motor Cable Without Connector

VW3...		M5300R•••	M5301R...	M5302R...	M5303R...	M5305R...	M5304R...
Cable jacket, insulation		PUR orange (RAL 2003), TPM	PUR orange (RAL 2003), polypropylene (PP)				
Capacitance power wires Wire/wire Wire/shield	$\begin{aligned} & \mathrm{pF} / \mathrm{m} \\ & \mathrm{pF} / \mathrm{m} \end{aligned}$	$\begin{array}{\|l\|} \hline 80 \\ 145 \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ 135 \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ 150 \end{array}$	$\begin{aligned} & 90 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|} \hline 85 \\ 150 \end{array}$	$\begin{aligned} & 100 \\ & 160 \end{aligned}$
Number of contacts (shielded)		$\begin{aligned} & \left(4 \times 1 \mathrm{~mm}^{2}+\right. \\ & \left.2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 1.5 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 2.5 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 4 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 6 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$	$\begin{aligned} & \left(4 \times 10 \mathrm{~mm}^{2}+\right. \\ & \left.\left(2 \times 1 \mathrm{~mm}^{2}\right)\right) \end{aligned}$
Connector motor side		Open					
Connector drive side		Open					
Cable diameter	mm (in)	$\begin{aligned} & 11 \pm 0.3 \\ & (0.43 \pm 0.01) \end{aligned}$	$\begin{aligned} & 12 \pm 0.2 \\ & (0.47 \pm 0.01) \end{aligned}$	$\begin{aligned} & 14.3 \pm 0.3 \\ & (0.55 \pm 0.01) \end{aligned}$	$\begin{aligned} & 16.3 \pm 0.3 \\ & (0.64 \pm 0.01) \end{aligned}$	$\begin{aligned} & 18.8 \pm 0.4 \\ & (0.74 \pm 0.02) \end{aligned}$	$\begin{aligned} & 23.5 \pm 0.6 \\ & (0.93 \pm 0.02) \\ & \hline \end{aligned}$
Minimum bend radius with fixed installation		10 times the cable diameter	5 times the cable diameter				
Minimum bend radius with moving installation		10 times the cable diameter	7.5 times the cable diameter			10 times the cable diameter	
Nominal voltage Motor phases Holding brake	V	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$				
Maximum orderable length	m (ft)	100 (328)					
Permissible temperature range during operation with fixed installation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-40 ... 80 (-40 ... 176)					
Permissible temperature range during operation with moving installation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$-20 \ldots 60$ (-4 ... 140)	$-20 \ldots 80(-4 \ldots 176)$				
Certifications / declaration of conformity		CE, c-UR-us, DESINA					

Encoder Cable With and Without Connectors

VW3...		M8100R...	M8102R...	M8222R...
Cable jacket, insulation		PUR green (RAL 6018), polypropylene (PP)		
Capacitance	pF/m	Approx. 135 (wire/wire)		
Number of contacts (shielded)		$\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$		
Connector motor side		12-pin circular Y-TEC	12-pin circular M23	Open
Connector drive side		10-pin RJ45	10-pin RJ45	Open
Cable diameter	mm (in)	$\begin{aligned} & 6.8 \pm 0.2 \\ & (0.27 \pm 0.1) \end{aligned}$		
Minimum bend radius	mm (in)	$\begin{aligned} & 68 \\ & (2.68) \end{aligned}$		
Nominal voltage	V	300		
Maximum orderable length	m (ft)	$\begin{aligned} & 25 \\ & (82) \end{aligned}$	$\begin{aligned} & 75 \\ & (246) \end{aligned}$	$\begin{aligned} & 100 \\ & (328) \end{aligned}$
Permissible temperature range during operation with fixed installation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$-40 \ldots 80(-40 \ldots 176)$		
Permissible temperature range during operation with moving installation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$-20 \ldots 80(-4 \ldots 176)$		
Certifications / declaration of conformity		DESINA		c-UR-us, DESINA

Clearance For Connectors

Straight connectors

Angular connectors

Dimensions		Motor connectors straight		Encoder connector straight
		M23	M40	M23
D	mm (in)	28 (1.1)	46 (1.81)	26 (1.02)
LS	mm (in)	76 (2.99)	100 (3.94)	51 (2.01)
LR	mm (in)	117 (4.61)	155 (6.1)	76 (2.99)
LC	mm (in)	100 (3.94)	145 (5.71)	60 (2.36)
LM	mm (in)	40 (1.57)	54 (2.13)	23 (0.91)

Dimensions		Motor connectors angular		Encoder connector angular		
	Y-TEC	M23	M40	Y-TEC	M23	
D	$\mathrm{mm}(\mathrm{in})$	$18.7(0.74)$	$28(1.1)$	$46(1.81)$	$18.7(0.74)$	$26(1.02)$
LS	$\mathrm{mm}(\mathrm{in})$	$42(1.65)$	$76(2.99)$	$100(3.94)$	$42(1.65)$	$51(2.01)$
LR	$\mathrm{mm}(\mathrm{in})$	$100(3.94)$	$132(5.2)$	$191(7.52)$	$100(3.94)$	$105(4.13)$
LC	$\mathrm{mm}(\mathrm{in})$	$89(3.50)$	$114(4.49)$	$170(6.69)$	$89(3.50)$	$89(3.5)$
LM	$\mathrm{mm}(\mathrm{in})$	$58(2.28)$	$55(2.17)$	$91(3.58)$	$58(2.28)$	$52(2.05)$

Logic Type

Overview

The digital inputs and outputs of this product can be wired for positive logic or negative logic.

Logic type	Active state
(1) Positive logic	Output supplies current (source output) Current flows to the input (sink input)
(2) Negative logic	Output draws current (sink output) Current flows from the input (source input)

Signal inputs are protected against reverse polarity, outputs are short-circuit protected. The inputs and outputs are functionally isolated
If negative logic is used, a ground fault of a signal is detected as an On state.

$\mid \quad$ U WARNING
UNINTENDED EQUIPMENT OPERATION
Verify that a short-circuit of a signal cannot cause unintended equipment operation.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Selection of the Logic Type

The logic type is determined by the wiring of $D I _C O M$ and $D Q _C O M$. The logic type affects wiring and control of the sensors; therefore, you must determine the required value in the engineering phase in view of the application.

Special Case: Safety Function STO
The inputs for the safety function STO (inputs STO_A and STO_B) can only be wired for positive logic.

Configurable Inputs and Outputs

This product has digital inputs and outputs that can be configured for specific functional assignments. The inputs and outputs have a defined standard assignment depending on the operating mode. This assignment can be adapted to the requirements of the customer's installation. See chapter Digital Inputs and Outputs (see page 192) for additional information.

Section 3.3

Mains Supply

What Is in This Section?
This section contains the following topics:

Topic	Page
Residual Current Device	70
Common DC Bus	71
Mains Reactor	72

Residual Current Device

Direct current can be introduced in the protective ground conductor of this drive. If a residual current device (RCD / GFCI) or a residual current monitor (RCM) is used for protection against direct or indirect contact, the following specific types must be used:

A WARNING

DIRECT CURRENT CAN BE INTRODUCED INTO THE PROTECTIVE GROUND CONDUCTOR

- Use a Type A Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) for singlephase drives connected to a phase and to the neutral conductor.
- Use a Type B Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) that has approval for use with frequency inverters and is sensitive to all types of current for three-phase devices and for single-phase devices not connected to a phase and the neutral conductor.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Further conditions for use of a residual current device:

- The drive has an increased leakage current at the moment power is applied. Use a residual current device (RCD / GFCI) or a residual current monitor (RCM) with a response delay.
- High-frequency currents must be filtered.

Common DC Bus

Function Principle
The DC buses of several devices can be connected so that energy can be used efficiently. If on device decelerates, a different device connected to the common DC bus can use the generated braking energy. Without a common DC bus, the braking energy would be converted to heat by the braking resistor while the other device would have to be supplied with energy from mains.

Another advantage of having a common DC bus is that several devices can share one external braking resistor. The number of the individual external braking resistors can be reduced to a single braking resistor if the braking resistor is properly rated.
This and other important information can be found in the Common DC bus Application Note for the drive. If you wish to take advantage of DC bus sharing, you must first consult the Common DC bus Application Note for important safety-related information.

Requirements for Use

The requirements and limit values for parallel connection of multiple devices via the DC bus are described in the Common DC bus Application Note for the drive that can be found on http://www.schneiderelectric.com. If there are any issues or questions related to obtaining the Common DC bus Application Note, consult your local Schneider-Electric representative.

Mains Reactor

A mains reactor must be used under the following conditions:

- Operation via supply mains with low impedance (short-circuit current of supply mains greater than specified in chapter Technical Data (see page 21).
- If the nominal power of the drive is insufficient without mains reactor.
- In the case of operation with supply mains with reactive power compensation systems.
- For improvement of the power factor at the mains input and for reduction of mains harmonics.

A single mains reactor can be used for multiple devices. Use a mains reactor with a properly rated current.
Low-impedance supply mains cause high harmonic currents at the mains input. High harmonic currents result in considerable load on the DC bus capacitors. The load on the DC bus capacitors has a decisive impact on the service life of the devices.

Section 3.4

Rating the Braking Resistor

What Is in This Section?
This section contains the following topics:

Topic	Page
Internal Braking Resistor	74
External Braking Resistor	75
Rating Information	76

Internal Braking Resistor

The drive is equipped with a internal braking resistor to absorb braking energy.
Braking resistors are required for dynamic applications. During deceleration, the kinetic energy is transformed into electrical energy in the motor. The electrical energy increases the DC bus voltage. The braking resistor is activated when the defined threshold value is exceeded. The braking resistor transforms electrical energy into heat. If highly dynamic deceleration is required, the braking resistor must be well adapted to the system.

An insufficiently rated braking resistor can cause overvoltage on the DC bus. Overvoltage on the DC bus causes the power stage to be disabled. The motor is no longer actively decelerated.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that the braking resistor has a sufficient rating by performing a test run under maximum load conditions.
- Verify that the parameter settings for the braking resistor are correct.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

External Braking Resistor

An external braking resistor is required for applications in which the motor must be decelerated quickly and the internal braking resistor cannot absorb the excess braking energy.
The temperature of the braking resistor may exceed $250^{\circ} \mathrm{C}\left(482{ }^{\circ} \mathrm{F}\right)$ during operation.

A WARNING

HOT SURFACES

- Ensure that it is not possible to make any contact with a hot braking resistor.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of the braking resistor.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Monitoring

The device monitors the power of the braking resistor. The load on the braking resistor can be read out.
The output for the external braking resistor is short-circuit protected. The drive does not monitor for ground faults of the braking resistor.

Selection of the External Braking Resistor

The rating of an external braking resistor depends on the required peak power and continuous power. The resistance R is derived from the required peak power and the DC bus voltage.

$$
R=\frac{U^{2}}{P_{\max }}
$$

$\mathrm{R}=$ Resistance in Ω

$\mathrm{U}=$ Switching threshold for braking resistor V
$P_{\max }=$ Required peak power in W
If 2 or more braking resistors are connected to one drive, note the following criteria:

- The total resistance of all connected regenerative resistors must comply with the approved resistance.
- The braking resistors can be connected in parallel or in series. Only connect braking resistors with identical resistance in parallel in order to evenly distribute the load to the braking resistors.
- The total continuous power of all connected braking resistors result must be greater than or equal to the required continuous power.
Use only resistors that are specified as braking resistors. For suitable braking resistors, see chapter Accessories and Spare Parts (see page 455).

Mounting and Commissioning of an External Braking Resistor
A parameter is used to switch between the internal braking resistor and an external braking resistor.
The external braking resistors listed in the Accessories chapter are shipped with an information sheet that provides details on installation.

Rating Information

Description

To rate the braking resistor, calculate the proportion contributing to absorbing braking energy.
An external braking resistor is required if the kinetic energy that must be absorbed exceeds the possible total internal energy absorption.

Internal Energy Absorption
Braking energy is absorbed internally by:

- DC bus capacitor $\mathrm{E}_{\mathrm{var}}$
- Internal braking resistor E_{1}
- Electrical losses of the drive E_{el}
- Mechanical losses of the drive $\mathrm{E}_{\text {mech }}$

Values for the energy absorption $\mathrm{E}_{\mathrm{var}}$ can be found in chapter Braking Resistor (see page 44).

Internal Braking Resistor

Two characteristic values determine the energy absorption of the internal braking resistor.

- The continuous power P_{PR} is the amount of energy that can be continuously absorbed without overloading the braking resistor.
- The maximum energy E_{CR} limits the maximum short-term power that can be absorbed.

If the continuous power was exceeded for a specific time, the braking resistor must remain without load for a corresponding period.

The characteristic values P_{PR} and E_{CR} of the internal braking resistor can be found in chapter Braking Resistor (see page 44).

Electrical Losses E_{el}

The electrical losses E_{el} of the drive system can be estimated on the basis of the peak power of the drive. The maximum power dissipation is approximately 10% of the peak power at a typical efficiency of 90%. If the current during deceleration is lower, the power dissipation is reduced accordingly.

Mechanical Losses $E_{\text {mech }}$
The mechanical losses result from friction during operation of the system. Mechanical losses are negligible if the time required by the system to coast to a stop without a driving force is considerably longer than the time required to decelerate the system. The mechanical losses can be calculated from the load torque and the velocity from which the motor is to stop.

Example

Deceleration of a rotary motor with the following data:

- Initial speed of rotation: $\mathrm{n}=4000$ RPM
- Rotor inertia: $\mathrm{J}_{\mathrm{R}}=4 \mathrm{kgcm}^{2}$
- Load inertia: $\mathrm{J}_{\mathrm{L}}=6 \mathrm{kgcm}^{2}$
- Drive: $\mathrm{E}_{\mathrm{var}}=23 \mathrm{Ws}, \mathrm{E}_{\mathrm{CR}}=80 \mathrm{Ws}, \mathrm{P}_{\mathrm{PR}}=10 \mathrm{~W}$

Calculation of the energy to be absorbed:

$$
E_{B}=\frac{1}{2} J \cdot\left[\frac{2 \pi n}{60}\right]^{2}
$$

to $E_{B}=88 \mathrm{Ws}$. Electrical and mechanical losses are ignored.
In this example, the DC bus capacitors absorb $\mathrm{E}_{\mathrm{var}}=23 \mathrm{Ws}$ (the value depends on the device type).
The internal braking resistor must absorb the remaining 65 Ws . It can absorb a pulse of $\mathrm{E}_{\mathrm{CR}}=80 \mathrm{Ws}$. If the load is decelerated once, the internal braking resistor is sufficient.

If the deceleration is repeated cyclically, the continuous power must be taken into account. If the cycle time is longer than the ratio of the energy to be absorbed E_{B} and the continuous power P_{PR}, the internal braking resistor is sufficient. If the system decelerates more frequently, the internal braking resistor is not sufficient. In this example, the ratio of $\mathrm{E}_{\mathrm{B}} / \mathrm{P}_{\mathrm{PR}}$ is 8.8 s . An external braking resistor is required if the cycle time is shorter.

Rating the External Braking Resistor

Characteristic curves for rating the braking resistor

These two characteristics are also used for the rating the motor. The segments of the characteristic curves to be considered are designated by $D_{i}\left(D_{1} \ldots D_{3}\right)$.

The total inertia J_{t} must be known for the calculation of the energy at constant deceleration.
$J_{t}=J_{m}+J_{c}$
J_{m} : Motor inertia (with holding brake)
J_{C} : Load inertia

The energy for each deceleration segment is calculated as follows:

$$
\mathrm{E}_{\mathrm{i}}=\frac{1}{2} J_{t} \cdot \omega_{i}^{2}=\frac{1}{2} J_{t} \cdot\left[\frac{2 \pi n_{i}}{60}\right]^{2}
$$

Calculation for the segments $\left(D_{1}\right) \ldots\left(D_{3}\right)$:

$$
\begin{aligned}
& E_{1}=\frac{1}{2} J_{t} \cdot\left[\frac{2 \pi}{60}\right]^{2} \cdot\left[n_{3}^{2}-n_{1}^{2}\right] \\
& E_{2}=\frac{1}{2} J_{t} \cdot\left[\frac{2 \pi n_{1}}{60}\right]^{2} \\
& E_{3}=\frac{1}{2} J_{t} \cdot\left[\frac{2 \pi n_{4}}{60}\right]^{2}
\end{aligned}
$$

Units: E_{i} in $W s$ (wattseconds), J_{t} in kgm^{2}, ω in rad and n_{i} in RPM.
See the technical data for the energy absorption $\mathrm{E}_{\mathrm{var}}$ of the devices (without consideration of a braking resistor).

In the next calculation steps, only consider those segments D_{i}, whose energy E_{i} exceeds the energy absorption of the device. These excess energies $E_{D i}$ must be diverted by means of the braking resistor.
E_{Di} is calculated using the following formula:
$E_{D i}=E_{i}-E_{\text {var }}$ (in Ws)
The continuous power P_{c} is calculated for each machine cycle:

$$
P_{c}=\frac{\sum E_{D i}}{\text { Cycletime }}
$$

Units: P_{c} in $W, E_{D i}$ in $W s$ and cycle time T in s
The selection is made in two steps:

- If the following conditions are met, the internal braking resistor is sufficient.
- The maximum energy during deceleration must be less than the peak energy that the braking resistor can absorb: ($\left.\mathrm{E}_{\mathrm{Di}}\right)<\left(\mathrm{E}_{\mathrm{Cr}}\right)$.
- The continuous power of the internal braking resistor must not be exceeded: $\left(\mathrm{P}_{\mathrm{C}}\right)<\left(\mathrm{P}_{\mathrm{Pr}}\right)$.
- If the conditions are not met, you must use an external braking resistor that meets the conditions.

For order data for the external braking resistors, see chapter Accessories and Spare Parts (see page 455).

Section 3.5

Functional Safety

What Is in This Section?
This section contains the following topics:

Topic	Page
Basics	80
Definitions	83
Function	84
Requirements for Using the Safety Function	85
Application Examples STO	87

Basics

Automation and safety engineering are closely related. Engineering, installation and operation of complex automation solutions are greatly simplified by integrated safety-related functions and modules.
Usually, the safety engineering requirements depend on the application. The level of the requirements results from, among other things, the risk and the hazard potential arising from the specific application and from the applicable standards and regulations.

The goal of designing machines safely is to protect people. The risk associated with machines with electrically controlled drives comes chiefly from moving machine parts and electricity itself.

Only you, the user, machine builder, or system integrator can be aware of all the conditions and factors realized in the design of your application for the machine. Therefore, only you can determine the automation equipment and the related safeties and interlocks which can be properly used, and validate such usage.

A WARNING

NON-CONFORMANCE TO SAFETY FUNCTION REQUIREMENTS

- Specify the requirements and/or measures to be implemented in the risk analysis you perform.
- Verify that your safety-related application complies to applicable safety regulations and standards.
- Make certain that appropriate procedures and measures (according to applicable sector standards) have been established to help avoid hazardous situations when operating the machine.
- Use appropriate safety interlocks where personnel and/or equipment hazards exist.
- Validate the overall safety-related function and thoroughly test the application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Hazard and Risk Analysis

The standard IEC 61508 "Functional safety of electrical/electronic/programmable electronic safety-related systems" defines the safety-related aspects of systems. Instead of a single functional unit of a safetyrelated system, the standard treats all elements of a function chain as a unit. These elements must meet the requirements of the specific safety integrity level as a whole.
The standard IEC 61800-5-2 "Adjustable speed electrical power drive systems - Safety requirements Functional" is a product standard that defines the safety-related requirements regarding drives. Among other things, this standard defines the safety-related functions for drives.

Based on the system configuration and utilization, a hazard and risk analysis must be carried out for the system (for example, according to EN ISO 12100 or EN ISO 13849-1). The results of this analysis must be considered when designing the machine, and subsequently applying safety-related equipment and safetyrelated functions. The results of your analysis may deviate from any application examples contained in the present or related documentation. For example, additional safety components may be required. In principle, the results from the hazard and risk analysis have priority.

A WARNING
 UNINTENDED EQUIPMENT OPERATION
 - Perform a hazard and risk analysis to determine the appropriate safety integrity level, and any other safety requirements, for your specific application based on all the applicable standards.
 - Ensure that the hazard and risk analysis is conducted and respected according to EN/ISO 12100 during the design of your machine.
 Failure to follow these instructions can result in death, serious injury, or equipment damage.

The EN ISO 13849-1 Safety of machinery - Safety-related parts of control systems - Part 1: General Principles for Design describes an iterative process for the selection and design of safety-related parts of controllers to reduce the risk to the machine to a reasonable degree.

To perform risk assessment and risk minimization according to EN ISO 12100, proceed as follows:

1. Defining the boundary of the machine.
2. Identifying risks associated with the machine.
3. Assessing risks.
4. Evaluating risks.
5. Minimizing risks by:

- Intrinsically safe design
- Protective devices
- User information (see EN ISO 12100)

6. Designing safety-related controller parts (SRP/CS, Safety-Related Parts of the Control System) in an interactive process.

To design the safety-related controller parts in an interactive process, proceed as follows:

Step	Action
1	Identify necessary safety functions that are executed via SRP/CS (Safety-Related Parts of the Control System).
2	Determine required properties for each safety function.
3	Determine the required performance level PL_{r}.
4	Identify safety-related parts executing the safety function.
5	Determine the performance level PL of the afore-mentioned safety-related parts.
6	Verify the performance level PL for the safety function $\left(P L \geq \mathrm{PL}_{r}\right)$.
7	Verify if all requirements have been met (validation).

Additional information is available on www.schneider-electric.com.

Safety Integrity Level (SIL)

The standard IEC 61508 defines 4 safety integrity levels (Safety Integrity Level (SIL)). Safety integrity level SIL1 is the lowest level, safety integrity level SIL4 is the highest level. The safety integrity level required for a given application is determined on the basis of the hazard potential resulting from the hazard and risk analysis. This is used to decide whether the relevant function chain is to be considered as a safety-related function chain and which hazard potential it must cover.

Average Frequency of a Dangerous Failure per Hour (PFH)

To maintain the function of the safety-related system, the IEC 61508 standard requires various levels of measures for avoiding and controlling faults, depending on the required safety integrity level (Safety Integrity Level (SIL)). All components must be subjected to a probability assessment to evaluate the effectiveness of the measures implemented for controlling faults. This assessment determines the probability of a dangerous failure per hour PFH (Average Frequency of a Dangerous Failure per Hour (PFH)) for a safety-related system. This is the frequency per hour with which a safety-related system fails in a hazardous manner so that it can no longer perform its function correctly. Depending on the SIL, the average frequency of a dangerous failure per hour must not exceed certain values for the entire safetyrelated system. The individual PFH values of a function chain are added. The result must not exceed the maximum value specified in the standard.

SIL	PFH at high demand or continuous demand
4	$\geq 10^{-9} \ldots<10^{-8}$
3	$\geq 10^{-8} \ldots<10^{-7}$
2	$\geq 10^{-7} \ldots<10^{-6}$
1	$\geq 10^{-6} \ldots<10^{-5}$

Hardware Fault Tolerance (HFT) and Safe Failure Fraction (SFF)

Depending on the safety integrity level (Safety Integrity Level (SIL)) for the safety-related system, the IEC 61508 standard requires a specific hardware fault tolerance (Hardware Fault Tolerance (HFT)) in connection with a specific safe failure fraction (Safe Failure Fraction (SFF)). The hardware fault tolerance is the ability of a safety-related system to execute the required function even if one or more hardware faults are present. The safe failure fraction of a safety-related system is defined as the ratio of the rate of safe failures to the total failure rate of the safety-related system. As per IEC 61508, the maximum achievable safety integrity level of a safety-related system is partly determined by the hardware fault tolerance and the safe failure fraction of the safety-related system.

IEC 61800-5-2 distinguishes two types of subsystems (type A subsystem, type B subsystem). These types are specified on the basis of criteria which the standard defines for the safety-related components.

SFF	HFT type A subsystem			HFT type B subsystem		
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$<60 \%$	SIL1	SIL2	SIL3	---	SIL1	SIL2
$60 \ldots<90 \%$	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3
$90 \ldots<99 \%$	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4
$\geq 99 \%$	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4

Fault Avoidance Measures

Systematic errors in the specifications, in the hardware and the software, incorrect usage and maintenance of the safety-related system must be avoided to the maximum degree possible. To meet these requirements, IEC 61508 specifies a number of measures for fault avoidance that must be implemented depending on the required safety integrity level (Safety Integrity Level (SIL)). These measures for fault avoidance must cover the entire life cycle of the safety-related system, i.e. from design to decommissioning of the system.

Data for Maintenance Plan and the Calculations for Functional Safety

The safety function must be tested at regular intervals. The interval depends on the hazard and risk analysis of the total system. The minimum interval is 1 year (high demand mode as per IEC 61508).

Use the following data of the safety function STO for your maintenance plan and for the calculations for functional safety:

Lifetime of the safety function STO IEC 61508) $^{(1)}$	Years	20
SFF (IEC 61508) Safe Failure Fraction	$\%$	90
HFT (IEC 61508) Hardware Fault Tolerance Type A subsystem		1
Safety integrity level IEC 61508 IEC 62061	$1 / \mathrm{h}$ (FIT)	$1^{* 1} 0^{-9}$ (1)
PFH (IEC 61508) Probability of Dangerous Hardware Failure per Hour	e (category 3)	
PL (ISO 13849-1) Performance Level	Years	>100
MTTF (ISO 13849-1) Mean Time to Dangerous Failure	$\%$	90
DC (ISO 13849-1) Diagnostic Coverage	\%	
(1) See chapter Lifetime Safety Function STO (see page 475).		

Contact your local Schneider Electric representative for additional data, if required.
The data for the safety module eSM can be found in the product manual for the safety module.

Definitions

Integrated Safety Function "Safe Torque Off" STO
The integrated safety function STO (IEC 61800-5-2) allows for a category 0 stop as per IEC 60204-1 without external power contactors. It is not necessary to interrupt the supply voltage for a category 0 stop. This reduces the system costs and the response times.

Category 0 Stop (IEC 60204-1)
In stop category 0 (Safe Torque Off, STO), the drive coasts to a stop (provided there are no external forces operating to the contrary). The STO safety-related function is intended to help prevent an unintended startup, not stop a motor, and therefore corresponds to an unassisted stop in accordance with IEC 60204-1.
In circumstances where external influences are present, the coast down time depends on physical properties of the components used (such as weight, torque, friction, etc.), and additional measures such as mechanical brakes may be necessary to help prevent any hazard from materializing. That is to say, if this means a hazard to your personnel or equipment, you must take appropriate measures.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Make certain that no hazards can arise for persons or material during the coast down period of the axis/machine
- Do not enter the zone of operation during the coast down period.
- Ensure that no other persons can access the zone of operation during the coast down period.
- Use appropriate safety interlocks where personnel and/or equipment hazards exist.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Category 1 Stop (IEC 60204-1)

For stops of category 1 (Safe Stop 1, SS1), you can initiate a controlled stop via the control system, or through the use of specific functional safety-related devices. A Category 1 Stop is a controlled stop with power available to the machine actuators to achieve the stop.
The controlled stop by the control/safety-related system is not safety-relevant, nor monitored, and does not perform as defined in the case of a power outage or if an error is detected. This has to be implemented by means of an external safety-related switching device with safety-related delay.

Function

The safety function STO integrated into the product can be used to implement an "EMERGENCY STOP" (IEC 60204-1) for category 0 stops. With an additional, approved EMERGENCY STOP safety relay module, it is also possible to implement category 1 stops.

Function Principle

The safety function STO is triggered via two redundant signal inputs. The wiring of the two signal inputs must be separate.

The safety function STO is triggered if the level at one of the two signal inputs is 0 . The power stage is disabled. The motor can no longer generate torque and coasts down without braking. An error of error class 3 is detected.

If, within one second, the level of the other output also becomes 0 , the error class remains 3 . If, within one second, the level of the other output does not become 0 , the error class changes to 4 .

Requirements for Using the Safety Function

General
The safety function STO (Safe Torque Off) does not remove power from the DC bus. The safety function STO only removes power to the motor. The DC bus voltage and the mains voltage to the drive are still present.

A. 1 DANGER

ELECTRIC SHOCK

- Do not use the safety function STO for any other purposes than its intended function.
- Use an appropriate switch, that is not part of the circuit of the safety function STO, to disconnect the drive from the mains power.

Failure to follow these instructions will result in death or serious injury.

After the safety function STO is triggered, the motor can no longer generate torque and coasts down without braking.

| WNARNING |
| :--- | :--- |
| UNINTENDED EQUIPMENT OPERATION |
| Install a dedicated service brake if coasting does not meet the deceleration requirements of your |
| application. |

Logic Type

The inputs for the safety function STO (inputs STO_A and STO_B) can only be wired for positive logic.

Holding Brake and Safety Function STO

When the safety function STO is triggered, the power stage is immediately disabled. Applying the holding brake requires a certain amount of time. In the case of vertical axes or external forces acting on the load, you may have to take additional measures to bring the load to a standstill and to keep it at a standstill when the safety function STO is used, for example, by using a service brake.

| WNARNING |
| :--- | :--- |
| FALLING LOAD |
| Ensure that all loads come to a secure standstill when the safety function STO is used. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

If the suspension of hanging / pulling loads is a safety objective for the machine, then you can only achieve this objective by using an appropriate external brake as a safety-related measure.

| UNARNING |
| :--- | :--- |
| UNINTENDED AXIS MOVEMENT |
| - Do not use the internal holding brake as a safety-related measure. |
| - Only use certified external brakes as safety-related measures. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

NOTE: The drive does not provide its own safety-related output to connect an external brake to use as a safety-related measure.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that your risk assessment covers all potential effects of automatic or unintended enabling of the power stage, for example, after power outage.
- Implement all measures such as control functions, guards, or other safety-related functions, required to reliably protect against all hazards that may result from automatic or unintended enabling of the power stage.
- Verify that a master controller cannot enable the power stage in an unintended way.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Degree of Protection when the Safety Function is Used

You must ensure that conductive substances cannot get into the product (pollution degree 2). Moreover, conductive substances may cause the safety function to become inoperative.

A WARNING

INOPERABLE SAFETY FUNCTION

Ensure that conductive substances (water, contaminated or impregnated oils, metal shavings, etc.) cannot get into the drive.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Protected Cable Installation

If short circuits and other wiring errors such as a cross fault between the signals of the safety function STO can be expected in connection with safety-related signals, and if these short circuits and cross faults are not detected by upstream devices, protected cable installation as per ISO 13849-2 is required.

In the case of an unprotected cable installation, the two signals (both channels) of a safety function may be connected to external voltage if a cable is damaged. If the two channels are connected to external voltage, the safety function is no longer operative.
ISO 13849-2 describes protected cable installation for cables for safety-related signals. The cables for the safety function STO must be protected against external voltage. A shield with ground connection helps to keep external voltage away from the cables for the signals of the safety function STO.

Ground loops can cause problems in machines. A shield connected at one end only is sufficient for grounding and does not create a ground loop.

- Use shielded cables for the signals of the safety function STO.
- Do not use the cable for the signals of the safety function STO for other signals.
- Connect one end of the shield.

Application Examples STO

Example of Category 0 stop

Use without EMERGENCY STOP safety relay module, category 0 stop.
Example of category 0 stop

In this example, when an EMERGENCY STOP is activated, it leads to a category 0 stop.
The safety function STO is triggered via a simultaneous 0-level at both inputs (time offset of less than 1 s). The power stage is disabled and an error of error class 3 is detected. The motor can no longer generate torque.
If the motor is not already at a standstill when the STO is triggered, it decelerates under the salient physical forces (gravity, friction, etc.) active at the time until presumably coasting to a standstill.

UNINTENDED EQUIPMENT OPERATION
Install a dedicated service brake if coasting does not meet the deceleration requirements of your
application.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the coasting of the motor and its potential load is unsatisfactory as determined by your risk and hazard analysis, an external brake may also be required. See Holding Brake and Safety Function STO (see page 85).

Use with EMERGENCY STOP safety relay module, category 1 stop.
Example of category 1 stop with external Preventa XPS-AV EMERGENCY STOP safety relay module

In this example, when an EMERGENCY STOP is activated, it leads to a category 1 stop.
The EMERGENCY STOP safety relay module requests an immediate stop (undelayed) of the drive, for example by means of the function "Halt". After the time delay set in the EMERGENCY STOP safety relay module has elapsed, the EMERGENCY STOP safety relay triggers the safety function STO.
The safety function STO is triggered via a simultaneous 0 -level at both inputs (time offset of less than 1 s). The power stage is disabled and an error of error class 3 is detected. The motor can no longer generate torque.

If the coasting of the motor and its potential load is unsatisfactory as determined by your risk and hazard analysis, an external brake may also be required. See Holding Brake and Safety Function STO (see page 85).

A WARNING

UNINTENDED EQUIPMENT OPERATION
Install a dedicated service brake if coasting does not meet the deceleration requirements of your application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 4

Installation

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
4.1	Mechanical Installation	90
4.2	Electrical Installation	97
4.3	Verifying Installation	122

Section 4.1

Mechanical Installation

What Is in This Section?
This section contains the following topics:

Topic	Page
Before Mounting	91
Installing and removing modules	93
Mounting the Drive	95

An engineering phase is mandatory prior to mechanical and electrical installation. See chapter Engineering (see page 53) for basic information.

4.4 DANGER

ELECTRIC SHOCK CAUSED BY INSUFFICIENT GROUNDING

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- The cross section of the protective ground conductor must comply with the applicable standards.
- Do not consider cable shields to be protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

4 ! DANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.
Failure to follow these instructions will result in death or serious injury.

LOSS OF CONTROL
- The designer of any control scheme must consider the potential failure modes of control paths and,
for certain critical control functions, provide a means to achieve a safe state during and after a path
failure. Examples of critical control functions are emergency stop and overtravel stop, power outage
and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the
implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines. ${ }^{1}$
- Each implementation of this equipment must be individually and thoroughly tested for proper operation
before being placed into service.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

${ }^{1}$ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.
Conductive foreign objects, dust or liquids may cause safety functions to become inoperative.

A WARNING

LOSS OF SAFETY FUNCTION CAUSED BY FOREIGN OBJECTS
Protect the system against contamination by conductive substances.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ during operation.

	A CAUTION
HOT SURFACES	
- Avoid unprotected contact with hot surfaces.	
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.	
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.	
Failure to follow these instructions can result in injury or equipment damage.	

A CAUTION

INOPERABLE EQUIPMENT DUE TO INCORRECT MAINS VOLTAGE CONNECTION

- Verify that you use the correct mains voltage; install a transformer, if necessary.
- Do not connect mains voltage to the output terminals (U, V, W).

Failure to follow these instructions can result in injury or equipment damage.

Inspecting the Product

- Verify the product version by means of the Type Code (see page 19) on the Nameplate (see page 18).
- Prior to mounting, inspect the product for visible damage.

Damaged products may cause electric shock or unintended equipment operation.

A. 1 DANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Do not use damaged products.
- Keep foreign objects (such as chips, screws or wire clippings) from getting into the product.

Failure to follow these instructions will result in death or serious injury.

Contact your local Schneider Electric representative if you detect any damage whatsoever to the products. For information concerning the mounting of the motor, see the individual user guide for your particular motor.

Installing and removing modules

Overview

Many components of the equipment, including the printed circuit board, operate with mains voltage, or present transformed high currents, and/or high voltages.
The motor itself generates voltage when the motor shaft is rotated.

4 DANGER

ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the nonenergized position.
- Wait 15 minutes to allow the residual energy of the DC bus capacitors to discharge.
- Measure the voltage on the DC bus with a properly rated voltage sensing device and verify that the voltage is less than 42.4 Vdc .
- Do not assume that the DC bus is voltage-free when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.
Electrostatic discharge (ESD) may permanently damage the module either immediately or over time.

NOT/CE
EQUIPMENT DAMAGE DUE TO ESD
- Use suitable ESD measures (for example, ESD gloves) when handling the module.
- Do not touch internal components.
Failure to follow these instructions can result in equipment damage.

The drive has 3 module slots. The module slots are designed for the following modules:

Slot	Module
Slot 1	Safety module eSM
Slot 2	Encoder module RSR (resolver interface) Encoder module DIG (digital interface) Encoder module ANA (analog interface)
Slot 3	Fieldbus module Sercos III

Plugging a Module Into a Slot

Disconnect all power (power stage supply and 24 Vdc control supply) before plugging in or removing a module. Verify that no voltage is present.

Procedure for plugging in a module:

Step	Action
1	Fully read and understand the product manual as well as the manual for the module prior to installing the module.
2	Verify that the order number on the nameplate of the module corresponds to the specification in the manual for the module.
3	Note and record the serial number, revision and DOM shown on the nameplate of the module and the nameplate of the device.
4	Remove the cover from the module slot and keep the cover.
5	Inspect the module for visible damage. Do not install damaged modules.
6	Push the module into the appropriate slot until the snap-in lock snaps in.

Information on wiring can be found in the chapter "Installation" of the manual for the module.

- Fasten the connection cable to the cable guide of the device.

Various settings must be made the next time the device is powered on. See the chapter Commissioning of the manual for the module for details on these settings.

Removing a Module From a Slot

Disconnect all power (power stage supply and 24 Vdc control supply) before plugging in or removing a module. Verify that no voltage is present.
Procedure for removing a module from a slot of the device:

- Label the connection cables. Remove the wiring of the module.
- Push the snap-in lock of the module to the left (1) and pull out the module at the snap-in lock (2) while holding it to the left.
- Close the module slot with the cover.

The next time the device is powered on, it will signal a different hardware. See chapter Acknowledging a Module Replacement (see page 311) for additional information.

Mounting the Drive

Attaching a Hazard Label with Safety Instructions

Included in the packaging of the drive are adhesive hazard labels in German, French, Italian, Spanish and Chinese. The English version is affixed to the front of the drive by the factory. If the country to which your final machine or process is to be delivered is other than English speaking:

- Select the label suitable for the target country. Observe the safety regulations in the target country.
- Attach the label to the front of the drive so that it is clearly visible.

Control Cabinet
The control cabinet (enclosure) must have a sufficient size so that all devices and components can be permanently installed and wired in compliance with the EMC requirements.
The ventilation of the control cabinet must be sufficient to comply with the specified ambient conditions for the devices and components operated in the control cabinet.
Install and operate this equipment in a control cabinet rated for its intended environment and secured by a keyed or tooled locking mechanism.

Mounting Distances, Ventilation

When selecting the position of the device in the control cabinet, note the following:

- Mount the device in a vertical position $\left(\pm 10^{\circ}\right)$. This is required for cooling the device.
- Adhere to the minimum installation distances for required cooling. Avoid heat accumulations.
- Do not mount the device close to heat sources.
- Do not mount the device on or near flammable materials.
- The heated airflow from other devices and components must not heat up the air used for cooling the device.
- If the thermal limits are exceeded during operation, the power stage of the drive is disabled (overtemperature).

The connection cables of the devices are routed to the top and to the bottom. The minimum distances must be adhered to for air circulation and cable installation.

Mounting distances and air circulation

Free space a	mm (in)	≥ 100 (≥ 3.94)
Free space b	mm (in)	≥ 100 (≥ 3.94)
Free space c	mm (in)	≥ 60 (≥ 2.36)
Free space d	mm (in)	≥ 0 (≥ 0)

Mounting the Device
See chapter Dimensions (see page 24) for the dimensions of the mounting holes.
Painted surfaces may create electrical resistance or isolation. Before mounting the device to a painted mounting plate, remove all paint across a large area of the mounting points.

Section 4.2

Electrical Installation

What Is in This Section?
This section contains the following topics:

Topic	Page
Overview of Procedure	98
Connection Overview	99
Connection Grounding Screw	100
Connection Motor Phases and Holding Brake (CN10 and CN11)	101
Connection DC Bus (CN9, DC Bus)	105
Connection Braking Resistor (CN8, Braking Resistor)	106
Connection Power Stage Supply (CN1)	108
Connection Motor Encoder (CN3)	111
Connection PTO (CN4, Pulse Train Out)	112
Connection PTI (CN5, Pulse Train In)	113
Connection 24 Vdc Control Supply and STO (CN2, DC Supply and STO)	116
Connection Digital Inputs and Outputs (CN6)	118
Connection PC with Commissioning Software (CN7)	120
Connection SERCOS III	121

4.1 DANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Keep foreign objects from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.
Failure to follow these instructions will result in death or serious injury.

4.4 DANGER

ELECTRIC SHOCK CAUSED BY INSUFFICIENT GROUNDING

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- The cross section of the protective ground conductor must comply with the applicable standards.
- Do not consider cable shields to be protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

Direct current can be introduced in the protective ground conductor of this drive. If a residual current device (RCD / GFCI) or a residual current monitor (RCM) is used for protection against direct or indirect contact, the following specific types must be used:

A WARNING
 DIRECT CURRENT CAN BE INTRODUCED INTO THE PROTECTIVE GROUND CONDUCTOR
 - Use a Type A Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) for singlephase drives connected to a phase and to the neutral conductor.
 - Use a Type B Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) that has approval for use with frequency inverters and is sensitive to all types of current for three-phase devices and for single-phase devices not connected to a phase and the neutral conductor.
 Failure to follow these instructions can result in death, serious injury, or equipment damage.

The entire installation procedure must be performed without voltage present.

Connection Overview

Description

Connection	Assignment
CN1	Power stage supply
CN2	24 Vdc control supply and safety function STO
CN3	Motor encoder (encoder 1)
CN4	PTO (encoder simulation ESIM)
CN5	PTI (A/B signals, P/D signals, CW/CCW signals)
CN6	Digital inputs/outputs
CN7	Modbus (commissioning interface)
CN8	External braking resistor
CN9	Motor phases connection for parallel operation
CN10	Holding brake
CN11	Safety module
Slot 1	Encoder module (encoder 2)
Slot 2	Fieldbus SERCOS III
Slot 3	

Connection Grounding Screw

Description
This product has a leakage current greater than 3.5 mA . If the protective ground connection is interrupted, a hazardous touch current may flow if the housing is touched.

A 1 DANGER

INSUFFICIENT GROUNDING

- Use a protective ground conductor with at least $10 \mathrm{~mm}^{2}$ (AWG 6) or two protective ground conductors with the cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not use cable shields as protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

The central grounding screw of the product is located at the bottom of the front side.

- Connect the ground connection of the device to the central grounding point of the system.

Characteristic	Unit	Value
Tightening torque of grounding screw	Nm $(\mathrm{lb} . \mathrm{in})$	3.5 (31)

Connection Motor Phases and Holding Brake (CN10 and CN11)

General
The motor is designed for operation via a drive. Connecting the motor directly to AC voltage will damage the motor and can cause fires and initiate an explosion.

4 DANGER

POTENTIAL FOR EXPLOSION

Only connect the motor to a matching, approved drive in the way described in the present documentation. Failure to follow these instructions will result in death or serious injury.

High voltages may be present at the motor connection. The motor itself generates voltage when the motor shaft is rotated. AC voltage can couple voltage to unused conductors in the motor cable.

A. 1 DANGER

ELECTRIC SHOCK

- Verify that no voltage is present prior to performing any type of work on the drive system.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Insulate both ends of unused conductors of the motor cable.
- Supplement the motor cable grounding conductor with an additional protective ground conductor to the motor housing if the protective ground conductor of the motor cable is insufficient.
- Only touch the motor shaft or the mounted output components if all power has been disconnected.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
Failure to follow these instructions will result in death or serious injury.

If third-party motors are used, insufficient isolation may allow hazardous voltages to enter the PELV circuit.

4.4 DANGER

ELECTRIC SHOCK CAUSED BY INSUFFICIENT ISOLATION

- Verify protective separation between the temperature sensor and the motor phases.
- Verify that the signals at the encoder connection meet the PELV requirements.
- Verify protective separation between the brake voltage in the motor and the motor cable, and the motor phases.
Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Though the connectors for motor connection and encoder connection may match mechanically, this does not imply that the motor is approved for use.

A WARNING

UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

See chapter Approved Motors (see page 27) for additional information.
Route the cables from the motor and the encoder to the device (starting from the motor). Due to the preassembled connectors, this direction is often faster and easier.

Cable Specifications

Shield:	Required, both ends grounded
Twisted Pair:	-
PELV:	The wires for the holding brake must be PELV-compliant.
Cable composition:	3 wires for motor phases 2 wires for holding brake The conductors must have a sufficiently large cross section so that the fuse at the mains connection can trip if required.
Maximum cable length:	Depends on the required limit values for conducted interference, see chapter Electromagnetic Emission (see page 48).

Note the following information:

- You may only connect the original motor cable (with two wires for the holding brake).
- The wires for the holding brake must also be connected to the device at connection CN11 in the case of motors without holding brakes. At the motor end, connect the wires to the appropriate pins for the holding brake; the cable can then be used for motors with or without holding brake. If you do not connect the wires at the motor end, you must isolate each wire individually (inductive voltages).
- Observe the polarity of the holding brake voltage.
- The voltage for the holding brake depends on the 24 Vdc control supply (PELV). Observe the tolerance for the 24 Vdc control supply and the specified voltage for the holding brake, see chapter 24 Vdc Control Supply (see page 35).
- Use pre-assembled cables to reduce the risk of wiring errors, see chapter Accessories and Spare Parts (see page 455).

The optional holding brake of a motor is connected to connection CN11. The integrated holding brake controller releases the holding brake when the power stage is enabled. When the power stage is disabled, the holding brake is re-applied.

Properties of the Connection Terminals CN10

The terminals are approved for stranded conductors and solid conductors. Use wire cable ends (ferrules), if possible.

Characteristic	Unit	Value	LXM32•U45, LXM32•U60, LXM32•U90, LXM32•D12, LXM32•D18, LXM32•D30
		$0.75 \ldots 5.3$ $(18 \ldots 10)$	LXM32•D72 $(18 \ldots 8)$
Tightening torque for terminal screws	Nm (lb.in)	0.68 (6.0)	1.81 (16.0)
Stripping length	mm (in)	$6 \ldots 7$ $(0.24 \ldots 0.28)$	$8 \ldots 9$ $(0.31 \ldots 0.35)$

Properties of the Connection Terminals CN11

The terminals are approved for stranded conductors and solid conductors. Use wire cable ends (ferrules), if possible.

Characteristic	Unit	Value
Maximum terminal current	A	1.7
Connection cross section	mm^{2}	$0.75 \ldots 2.5$ $(18 \ldots 14)$
(AWG)	18	
Stripping length	mm (in)	$12 \ldots 13$ $(0.47 \ldots 0.51)$

Assembling Cables

Note the dimensions specified when assembling cables.
Steps for assembling the motor cable

1 Strip the cable jacket, length A.
2 Slide the shielding braid back over the cable jacket.
3 Secure the shielding braid with a heat shrink tube. The shield must have at least length D. Verify that a large surface area of the shielding braid is connected to the EMC shield clamp. Shorten the wires for the holding brake to length B and the three wires for the motor phases to length C. The protective ground conductor has length A. Connect the wires for the holding brake to the device even in the case of motors without a holding brake (inductive voltage).

Characteristic	Unit	Value
A	$\mathrm{mm}(\mathrm{in})$	$140(5.51)$
B	$\mathrm{mm}(\mathrm{in})$	$135(5.32)$
C	$\mathrm{mm}(\mathrm{in})$	$130(5.12)$
D	$\mathrm{mm}(\mathrm{in})$	$50(1.97)$

Observe the maximum permissible connection cross section. Take into account the fact that wire cable ends (ferrules) increase the conductor cross section.

Monitoring

The device monitors the motor phases for:

- Short circuit between the motor phases
- Short circuit between the motor phases and ground

Short circuits between the motor phases and the DC bus, the braking resistor or the holding brake wires are not detected.

Wiring Diagram Motor and Holding Brake
Wiring diagram motor with holding brake

CN10 Motor

Connection	Meaning	Color
U	Motor phase	Black L1 (BK)
V	Motor phase	Black L2 (BK)
W	Motor phase	Black L3 (BK)
PE	Protective ground conductor	Green/yellow (GN/YE)
BR+	Holding brake +	White $($ WH) or black $5(B K)$
BR-	Holding brake -	Gray $($ GR $)$ or black $6(B K)$

Connecting the Motor Cable

- Connect the motor phases and protective ground conductor to CN10. Verify that the connections U, V, W and PE (ground) match at the motor and the device.
- Note the tightening torque specified for the terminal screws.
- Connect the white wire or the black wire with the label 5 to connection BR+ of CN11.

Connect the gray wire or the black wire with the label 6 to connection BR- of CN11.

- Verify that the connector locks snap in properly.
- Connect the cable shield to the shield clamp (large surface area contact).

Shield clamp motor cable

Connection DC Bus (CN9, DC Bus)

Incorrect use of the DC bus may permanently damage the drives either immediately or over time.

A WARNING

INOPERABLE SYSTEM COMPONENTS AND LOSS OF CONTROL
Verify that all requirements for using the DC bus are met.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

This and other important information can be found in the "LXM32 - Common DC bus - Application note". If you wish to take advantage of DC bus sharing, you must first read the "LXM32-Common DC bus Application note".

Requirements for Use
The requirements and limit values for parallel connection via the DC bus can be found on http://www.schneider-electric.com in the form of an application note. If there are any issues or questions related to obtaining the Common DC bus Application Note, consult your local Schneider-Electric representative.

Connection Braking Resistor (CN8, Braking Resistor)

General

An insufficiently rated braking resistor can cause overvoltage on the DC bus. Overvoltage on the DC bus causes the power stage to be disabled. The motor is no longer actively decelerated.

\| \quad WARNING
UNINTENDED EQUIPMENT OPERATION
- Verify that the braking resistor has a sufficient rating by performing a test run under maximum load
conditions.
- Verify that the parameter settings for the braking resistor are correct.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Internal Braking Resistor

A braking resistor is integrated in the device to absorb braking energy. The device is shipped with the internal braking resistor active.

External Braking Resistor

An external braking resistor is required for applications in which the motor must be decelerated quickly and the internal braking resistor cannot absorb the excess braking energy.
Selection and rating of the external braking resistor are described in chapter Rating the Braking Resistor (see page 73). For suitable braking resistors, see chapter Accessories and Spare Parts (see page 455).

Cable Specifications

Shield:	Required, both ends grounded
Twisted Pair:	-
PELV:	-
Cable composition:	Minimum conductor cross section: Same cross section as power stage supply, see chapter Connection Power Stage Supply (CN1) (see page 108). The conductors must have a sufficiently large cross section so that the fuse at the mains connection can trip if required.
Maximum cable length:	$3 \mathrm{~m} \mathrm{(9.84ft)}$

Properties of the Connection Terminals CN8

| Characteristic | $\begin{array}{l}\text { Unit } \\ \end{array}$ | $\begin{array}{l}\text { Value } \\ \text { LXM32•U45, LXM32•U60, } \\ \text { LXM32•U90, LXM32•D12, } \\ \text { LXM32•D18, LXM32•D30, } \\ \text { LXM32•D72 }\end{array}$ | LXM32•D85, LXM32•C10 |
| :--- | :--- | :--- | :--- |$]$| $0.75 \ldots 3.3$ |
| :--- |
| $(18 \ldots 12)$ |

The terminals are approved for fine-stranded conductors and solid conductors. Observe the maximum permissible connection cross section. Take into account the fact that wire cable ends (ferrules) increase the conductor cross section.

If you use wire cable ends (ferrules), use only wire cable ends (ferrules) with collars for these terminals.

Wiring Diagram

CN8 Braking resistor

Connecting the External Braking Resistor

- Verify that no voltages are present.
- Remove the cover from the connection.
- Ground the ground connection (PE) of the braking resistor.
- Connect the external braking resistor to the device. Note the tightening torque specified for the terminal screws.
- Connect the cable shield to the shield connection at the bottom of the device (large surface area contact).
The parameter RESint_ext is used to switch between the internal and an external braking resistor. See chapter Setting the Braking Resistor Parameters (see page 159) for the parameter settings for the braking resistor. Verify correct operation of the braking resistor during commissioning.

Wiring Example
The following graphic shows a functional principle:

Connection Power Stage Supply (CN1)

General

This product has a leakage current greater than 3.5 mA . If the protective ground connection is interrupted, a hazardous touch current may flow if the housing is touched.

A. 1 DANGER

INSUFFICIENT GROUNDING

- Use a protective ground conductor with at least $10 \mathrm{~mm}^{2}$ (AWG 6) or two protective ground conductors with the cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- Do not use cable shields as protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

A WARNING

INSUFFICIENT PROTECTION AGAINST OVERCURRENT

- Use the external fuses specified in "Technical data".
- Do not connect the product to a supply mains whose short-circuit current rating (SCCR) exceeds the value specified in the chapter "Technical Data".

Failure to follow these instructions can result in death, serious injury, or equipment damage.

INCORRECT MAINS VOLTAGE
Verify that the product is approved for the mains voltage before applying power and configuring the
product.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

The products are intended for industrial use and may only be operated with a permanently installed connection.

Prior to connecting the device, verify the approved mains types, see chapter Power Stage Data - General (see page 26).

Cable Specifications

Shield:	-
Twisted Pair:	-
PELV:	-
Cable composition:	The conductors must have a sufficiently large cross section so that the fuse at the mains connection can trip if required.
Maximum cable length:	-

Properties of Connection Terminals CN1

Characteristic	Unit	Value	
		LXM32•U45, LXM32•U60, LXM32•U90, LXM32•D12, LXM32•D18, LXM32•D30	LXM32•D72
Connection cross section	mm^{2} (AWG)	$\begin{aligned} & 0.75 \ldots 5.3 \\ & (18 \ldots 10) \end{aligned}$	$\begin{aligned} & 0.75 \ldots .10 \\ & (18 \ldots 8) \end{aligned}$
Tightening torque for terminal screws	Nm (lb.in)	$\begin{array}{\|l\|} \hline 0.68 \\ (6.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.81 \\ (16.0) \\ \hline \end{array}$
Stripping length	mm (in)	$\begin{aligned} & 6 \ldots 7 \\ & (0.24 \ldots 0.28) \end{aligned}$	$\begin{aligned} & 8 \ldots 9 \\ & (0.31 \ldots 0.35) \end{aligned}$

The terminals are approved for stranded conductors and solid conductors. Use wire cable ends (ferrules), if possible.

Prerequisites for Connecting the Power Stage Supply
Note the following information:

- Three-phase devices may only be connected and operated via three phases.
- Use upstream mains fuses.
- If you use an external mains filter, the mains cable must be shielded and grounded at both ends if the length between the external mains filter and the device exceeds 200 mm (7.87 in).
- See page Conditions for UL 508C and CSA (see page 51) for a UL-compliant design.

Power Stage Supply Single-Phase Device

The illustration shows an overview for wiring the power stage supply for a single-phase device. The illustration also shows an external mains filter and a mains reactor which are available as accessories.

Overview power stage supply for single-phase device

Wiring diagram power stage supply for single-phase device.

CN1 Mains 115/230 Vac

L1 O——
$\mathrm{N} / \mathrm{L} 2 \mathrm{O}-$

- Verify the type of mains. See chapter Power Stage Data - General (see page 26) for the approved types of mains.
- Connect the mains cable. Note the tightening torque specified for the terminal screws.
- Verify that the connector locks snap in properly.

Power Stage Supply Three-Phase Device

The illustration shows an overview for wiring the power stage supply for a three-phase device. The illustration also shows an external mains filter and a mains reactor which are available as accessories. Wiring diagram, power stage supply for three-phase device.

Wiring diagram power stage supply for three-phase device.

CN1 Mains 208/400/480 Vac

- Verify the type of mains. See chapter Power Stage Data - General (see page 26) for the approved types of mains.
- Connect the mains cable. Note the tightening torque specified for the terminal screws.
- Verify that the connector locks snap in properly.

Connection Motor Encoder (CN3)

Function and Encoder Type

The motor encoder is a Hiperface encoder integrated in the motor. It provides the device with information on the motor position (analog and digital).

Cable Specifications

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Cable composition:	$6^{*} 0.14 \mathrm{~mm}^{2}+2$ * $0.34 \mathrm{~mm}^{2}$ $\left(6^{*} \mathrm{AWG} \mathrm{24+2*AWG} \mathrm{20)}\right.$
Maximum cable length:	$100 \mathrm{~m} \mathrm{(328.08ft)}$

Use pre-assembled cables to reduce the risk of wiring errors, see chapter Accessories and Spare Parts (see page 455).

Wiring Diagram

Pin	Signal	Motor, pin	Pair	Meaning	I/O
1	COS+	9	2	Cosine signal	I
2	REFCOS	5	2	Reference for cosine signal	I
3	SIN+	8	3	Sine signal	I
6	REFSIN	4	3	Reference for sine signal	I
4	Data	6	1	Receive data, transmit data	I/O
5	Data	7	1	Receive data and transmit data, inverted	I/O
$7 \ldots 8$	-	4	Reserved		
A	ENC+10V_OUT	10	5	Encoder supply	O
B	ENC_OV	11	5	Reference potential for encoder supply	
	SHLD			Shield	

\|nWARNING
UNINTENDED EQUIPMENT OPERATION
Do not connect any wiring to reserved, unused connections, or to connections designated as No
Connection (N.C.).
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Motor Encoder

- Verify that wiring, cables and connected interfaces meet the PELV requirements.
- Connect the connector to CN3 Encoder-1.
- Verify that the connector locks snap in properly.

Route the cables from the motor and the encoder to the device (starting from the motor). Due to the preassembled connectors, this direction is often faster and easier.

Connection PTO (CN4, Pulse Train Out)

5 V signals are available at the PTO (Pulse Train Out, CN4) output. Depending on parameter PTO mode, these signals are ESIM signals (encoder simulation) or logically fed through PTI input signals (P/D signals, A/B signals, CW/CCW signals). The PTO output signals can be used as PTI input signals for another device. The signal level corresponds to RS422, see chapter Output PTO (CN4) (see page 38). The PTO output supplies 5 V signals, even if the PTI input signal is a 24 V signal.

Availability
Available with firmware version \geq V01.04.

Cable Specifications

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Cable composition:	$8^{*} 0.14 \mathrm{~mm}^{2}\left(8{ }^{*}\right.$ AWG 24)
Maximum cable length:	$100 \mathrm{~m} \mathrm{(328ft)}$

Use pre-assembled cables to reduce the risk of wiring errors, see chapter Accessories and Spare Parts (see page 455).

Wiring Diagram
Wiring diagram Pulse Train Out (PTO)

Pin	Signal	Pair	Meaning
1	ESIM_A	2	ESIM channel A
2	ESIM_A	2	ESIM channel A, inverted
4	ESIM_B	1	ESIM channel B
5	ESIM_B	1	ESIM channel B, inverted
3	ESIM_I	3	ESIM index pulse
6	ESIM_I	3	ESIM index pulse, inverted
7		4	Reference potential
8		4	Reference potential

PTO: Logically Fed Through PTI Signals
At the PTO output, the PTI input signals can be made available again to control a subsequent device (daisy chain). Depending on the input signal, the output signal can be of type P/D signal, A/B signal or CW/CCW signal. The PTO output supplies 5 V signals.

Connecting PTO

- Connect the connector to CN4. Verify correct pin assignment.
- Verify that the connector locks snap in properly.

Connection PTI (CN5, Pulse Train In)

P/D (pulse/direction), A/B signals or CW/CCW signals can be connected to the PTI connection (Pulse Train In, CN5)
It is possible to connect 5 V signals or 24 V signals, see chapter Input PTI (CN5) (see page 39). Pin assignments and cables are different.
Incorrect or interfered signals as reference values can cause unintended movements

A WARNING

UNINTENDED MOVEMENT

- Use shielded twisted-pair cables.
- Do not use signals without push-pull in environments subject to interference.
- Use signals with push-pull in the case of cable lengths of more than $3 \mathrm{~m}(9.84 \mathrm{ft})$ and limit the frequency to 50 kHz .
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Availability

Available with firmware version \geq V01.04 .

Cable Specifications PT

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Minimum conductor cross section:	$0.14 \mathrm{~mm}^{2}($ AWG 24$)$
Maximum cable length:	$100 \mathrm{~m}(328 \mathrm{ft)}$ with RS422
	$10 \mathrm{~m}(32.8 \mathrm{ft})$ with push-pull
	$1 \mathrm{~m}(3.28 \mathrm{ft})$ with open collector

Use pre-assembled cables to reduce the risk of wiring errors, see chapter Accessories and Spare Parts (see page 455).

Connection Assignment PTI 5 V

Wiring diagram Pulse Train \ln (PTI) 5 V

P/D signals 5 V

Pin	Signal	Pair	Meaning
1	PULSE (5)	2	Pulse 5V
2	PULSE	2	Pulse, inverted
4	DIR (5)	1	Direction 5V
5	DIR	1	Direction, inverted

A/B signals 5 V

Pin	Signal	Pair	Meaning
1	ENC_A (5)	2	Encoder channel A 5V
2	ENC_A	2	Encoder channel A, inverted
4	ENC_B (5)	1	Encoder channel B 5V
5	ENC_B	1	Encoder channel B, inverted

CW/CCW signals 5 V

Pin	Signal	Pair	Meaning
1	CW (5)	2	Pulse positive 5V
2	CW	2	Pulse positive, inverted
4	CCW (5)	1	Pulse negative 5V
5	CCW	1	Pulse negative, inverted

WNARNING
UNINTENDED EQUIPMENT OPERATION
Do not connect any wiring to reserved, unused connections, or to connections designated as No
Connection (N.C.).
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting Pulse Train IN (PTI) 5 V

- Connect the connector to CN5. Verify correct pin assignment.
- Verify that the connector locks snap in properly.

Note that the wire pairs for 24 V signals require assignments different from those for 5 V signals. Use a cable that complies with the cable specification. Assemble the cable as shown in the illustration below. Wiring diagram Pulse Train In (PTI) 24 V .

CN5 PTI

P/D signals 24 V

Pin	Signal	Pair	Meaning
7	PULSE (24)	A	Pulse 24V
2	PULSE	A	Pulse, inverted
8	DIR (24)	B	Direction 24V
5	DIR	B	Direction, inverted

A/B signals 24 V

Pin	Signal	Pair	Meaning
7	ENC_A (24)	A	Encoder channel A 24V
2	ENC_A	A	Encoder channel A, inverted
8	ENC_B (24)	B	Encoder channel B 24V
5	ENC_B	B	Encoder channel B, inverted

CW/CCW signals 24 V

Pin	Signal	Pair	Meaning
7	CW (24)	A	Pulse positive 24V
2	CW	A	Pulse positive, inverted
8	CCW (24)	B	Pulse negative 24 V
5	CCW	B	Pulse negative, inverted

(WNRNING
UNINTENDED EQUIPMENT OPERATION
Do not connect any wiring to reserved, unused connections, or to connections designated as No
Connection (N.C.).
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting Pulse Train In (PTI) 24 V

- Connect the connector to CN5. Verify correct pin assignment.
- Verify that the connector locks snap in properly.

Connection 24 Vdc Control Supply and STO (CN2, DC Supply and STO)

The +24 VDC supply voltage is connected with many exposed signal connections in the drive system.

4.4 DANGER

ELECTRIC SHOCK CAUSED BY INCORRECT POWER SUPPLY UNIT

- Use a power supply unit that meets the PELV (Protective Extra Low Voltage) requirements.
- Connect the negative output of the power supply unit to PE (ground).

Failure to follow these instructions will result in death or serious injury.

The connection for the 24 Vdc control supply at the product does not have an inrush current limitation. If the voltage is applied by means of switching of contacts, damage to the contacts or contact welding may result.

NOTICE

PERMANENT DAMAGE TO CONTACTS

- Switch the power input of the power supply unit.
- Do not switch the output voltage.

Failure to follow these instructions can result in equipment damage.

Safety Function STO
Information on the signals of the safety function STO can be found in chapter Safety function STO ("Safe Torque Off") (see page 79). If the safety function is not required, the inputs STO_A and STO_B must be connected to +24VDC.

Cable Specifications CN2

Shield:	$-(1)$
Twisted Pair:	-
PELV:	Required
Minimum conductor cross section:	$0.75 \mathrm{~mm}^{2}$ (AWG 18)
Maximum cable length:	$100 \mathrm{~m} \mathrm{(328} \mathrm{ft)}$
(1) See chapter Safety function STO ("Safe Torque Off") (see page 79)	

Properties of Connection Terminals CN2

Characteristic	Unit	Value
Maximum terminal current	A	$16^{(1)}$
Connection cross section	$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { (AWG) } \end{aligned}$	$\begin{array}{lll} 0.5 \ldots . & 2.5 \\ (20 \ldots . & 14) \end{array}$
Stripping length	mm (in)	$\begin{aligned} & 12 \ldots 13 \\ & (0.47 \ldots 0.51) \end{aligned}$

The terminals are approved for stranded conductors and solid conductors. Use wire cable ends (ferrules), if possible.

Permissible Terminal Current of 24 Vdc Control Supply

- Connection CN2, pins 3 and 7 as well as pins 4 and 8 can be used as $24 \mathrm{~V} / 0 \mathrm{~V}$ connections for additional consumers.
In the connector, the following pins are connected: pin 1 to pin 5 , pin 2 to pin 6 , pin 3 to pin 7 and pin 4 to pin 8 .
- The voltage at the holding brake output depends on the 24 Vdc control supply. Note that the current of the holding brake also flows via this terminal.

Wiring Diagram

Pin	Signal	Meaning
1,5	STO_A	Safety function STO: Dual-channel connection, connection A
2,6	STO_B	Safety function STO: Dual-channel connection, connection B
3,7	+24 VDC	24 Vdc control supply
4,8	OVDC	Reference potential for 24 Vdc control supply and reference potential for STO

Connecting the Safety Function STO

- Verify that wiring, cables and connected interfaces meet the PELV requirements.
- Connect the safety function in accordance with the specifications in chapter Safety function STO ("Safe Torque Off") (see page 79).

Connecting the 24 Vdc Control Supply

- Verify that wiring, cables and connected interfaces meet the PELV requirements.
- Route the 24 Vdc control supply from a power supply unit (PELV) to the device.
- Ground the negative output at the power supply unit.
- Note the maximum permissible terminal current when connecting several devices.
- Verify that the connector locks snap in properly at the housing.

Connection Digital Inputs and Outputs (CN6)

The device has configurable inputs and configurable outputs. The standard assignment and the configurable assignment depend on the selected operating mode. For more information, see chapter Digital Inputs and Outputs (see page 192).

Cable Specifications

Shield:	-
Twisted Pair:	-
PELV:	Required
Cable composition:	$0.25 \mathrm{~mm}^{2}$, (AWG 22)
Maximum cable length:	$30 \mathrm{~m}(98.4 \mathrm{ft})$

Properties of Connection Terminals CN6

Characteristic	Unit	Value
Connection cross section	mm^{2}	$0.2 \ldots 1.0$ $($ AWG $)$ $(24 . .16)$
Stripping length	mm (in)	10 (0.39)

Wiring Diagram

Signal	Meaning
DQ_COM	Reference potential to DQ0 ... DQ4
DQ0	Digital output 0
DQ1	Digital output 1
DQ2	Digital output 2
SHLD	Shield connection
DI_COM	Reference potential to DI0 ... DI5
DI0/CAP1	Digital input 0 / Capture input 1
DI1/CAP2	Digital input 1 / Capture input 2
DI2/CAP3(1)	Digital input 2 / Capture input 3 ${ }^{(1)}$
DI3	Digital input 3
DI 4	Digital input 4
DI5	Digital input 5
(1) Available with hardware version \geq RS03	

The connectors are coded. Verify correct assignment when connecting them.
The configuration and the standard assignment of the inputs and outputs are described in chapter Digital Inputs and Outputs (see page 192).

Connecting the Digital Inputs/Outputs

- Wire the digital connections to CN6.
- Ground the shield to SHLD.
- Verify that the connector locks snap in properly.

Connection PC with Commissioning Software (CN7)

A PC with the commissioning software Lexium DTM Library can be connected for commissioning. The PC is connected via a bidirectional USB/RS485 converter, see chapter Accessories and Spare Parts (see page 455).

If the commissioning interface at the product is directly connected to an Ethernet interface at the PC, the PC interface may be damaged and rendered inoperable.

NOT/CE
DAMAGE TO PC
Do not directly connect an Ethernet interface to the commissioning interface of this product.
Failure to follow these instructions can result in equipment damage.

Cable Specifications

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Cable composition:	$8 * 0.25 \mathrm{~mm}^{2}(8 *$ AWG 22)
Maximum cable length:	$100 \mathrm{~m} \mathrm{(328} \mathrm{ft)}$

Wiring Diagram

Pin	Signal	Meaning
$1 \ldots 3$	-	Reserved
4	MOD_D1	RS485, Bidirectional transmit/receive signal
5	MOD_D0	RS485, Bidirectional transmit/receive signal, inverted
6	-	Reserved
7	MOD+10V_OUT	10 V supply, maximum 100 mA
8	MOD_OV	Reference potential to MOD+10V_OUT

UNINTENDED EQUIPMENT OPERATION
UNANING
Do not connect any wiring to reserved, unused connections, or to connections designated as No
Connection (N.C.).
Failure to follow these instructions can result in death, serious injury, or equipment damage.

- Verify that the connector locks snap in properly.

Connection SERCOS III

Cable Specifications

Shield:	Required, both ends grounded
Twisted Pair:	Required
PELV:	Required
Cable composition:	$4^{*} 0.14 \mathrm{~mm}^{2}$ (AWG 24)

Use pre-assembled cables to reduce the risk of wiring errors, see chapter Accessories and Spare Parts (see page 455).

Wiring Diagram

Pin	Signal	Meaning
1	$T x+$	Ethernet transmit signal +
2	Tx^{-}	Ethernet transmit signal -
3	Rx+	Ethernet receive signal +
$4 \ldots 5$	-	Reserved
6	Rx^{-}	Ethernet receive signal -
$7 \ldots 8$	-	Reserved

WNARNING
UNINTENDED EQUIPMENT OPERATION
Do not connect any wiring to reserved, unused connections, or to connections designated as No
Connection (N.C.).
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Fieldbus

- Connect the fieldbus.
- Verify that the connector locks snap in properly.

Section 4.3
 Verifying Installation

Verifying Installation

Verify proper installation:

- Verify the mechanical installation of the entire drive system:
- Does the installation meet the specified distance requirements?
- Did you tighten all fastening screws with the specified tightening torque?
- Verify the electrical connections and the cabling:
- Did you connect all protective ground conductors?
- Do all fuses have the correct rating; are the fuses of the specified type?
- Did you connect all wires of the cables or insulate them?
- Did you properly connect and install all cables and connectors?
- Are the mechanical locks of the connectors correct and effective?
- Did you properly connect the signal wires?
- Are the required shield connections EMC-compliant?
- Did you take all measures for EMC compliance?
- Does the drive installation conform to all local, regional, and national electrical safety codes for the eventual placement of the equipment?
- Verify that all covers and seals have been properly installed to achieve the required degree of protection.

Chapter 5

Commissioning

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
5.1	Overview	124
5.2	Integrated HMI	129
5.3	External graphic display terminal	135
5.4	Commissioning Procedure	140
5.5	Controller Optimization with Step Response	165
5.6	Parameter Management	176

Section 5.1

Overview

What Is in This Section?
This section contains the following topics:

| Topic | Page |
| :--- | :---: | :---: |
| General | 125 |
| Preparation | 128 |

The safety function STO (Safe Torque Off) does not remove power from the DC bus. The safety function STO only removes power to the motor. The DC bus voltage and the mains voltage to the drive are still present.

A. 1 DANGER

ELECTRIC SHOCK

- Do not use the safety function STO for any other purposes than its intended function.
- Use an appropriate switch, that is not part of the circuit of the safety function STO, to disconnect the drive from the mains power.

Failure to follow these instructions will result in death or serious injury.

External driving forces acting on the motor can cause high currents to be regenerated and supplied back to the drive.

4 DANGER

FIRE DUE TO EXTERNAL DRIVING FORCES ACTING ON MOTOR
Verify that no external forces can act on the motor in the case of errors of error classes 3 or 4.
Failure to follow these instructions will result in death or serious injury.

Unsuitable parameter values or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameter values or data do not become active until after a restart.

A WARNING
UNINTENDED EQUIPMENT OPERATION
- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values or data.
- Never modify a parameter value unless you fully understand the parameter and all effects of the
modification.
- Restart the drive and verify the saved operational data and/or parameter values after modifications.
- Carefully run tests for all operating states and potential error situations when commissioning,
upgrading or otherwise modifying the operation of the drive.
- Verify the functions after replacing the product and also after making modifications to the parameter
values and/or other operational data.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the power stage is disabled unintentionally, for example as a result of power outage, errors or functions, the motor is no longer decelerated in a controlled way.

WNARNING
UNINTENDED EQUIPMENT OPERATION
Verify that movements without braking effect cannot cause injuries or equipment damage.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Applying the holding brake while the motor is running will cause excessive wear and degradation of the braking torque.

LOSS OF BRAKING FORCE DUE TO WEAR OR HIGH TEMPERATURE
- Do not use the holding brake as a service brake.
- Do not exceed the maximum number of brake applications and the kinetic energy during braking of
moving loads.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

When the product is operated for the first time, there is a risk of unanticipated movements caused by, for example, incorrect wiring or unsuitable parameter settings. Releasing the holding brake can cause an unintended movement, like for example, a falling load in the case of vertical axes.

A WARNING

UNINTENDED MOVEMENT

- Verify that there are no persons or obstructions in the zone of operation when operating the system.
- Take appropriate measures to avoid hazards caused by falling or lowering loads or other unintended movements.
- Run initial tests without coupled loads.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in running tests.
- Anticipate movements in unintended directions or oscillations of the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ during operation.

\triangle CAUTION

HOT SURFACES

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in injury or equipment damage.

The product can be accessed via different types of access channels. Simultaneous access via multiple access channels or the use of exclusive access may cause unintended equipment operation.

WARNING
UNINTENDED EQUIPMENT OPERATION
- Verify that simultaneous access via multiple access channels cannot cause unintended triggering or
blocking of commands.
- Verify that the use of exclusive access cannot cause unintended triggering or blocking of commands.
- Verify that the required access channels are available.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the drive was not connected to mains for an extended period of time, the capacitors must be restored to their full performance before the motor is started.

NOTICE

REDUCED CAPACITOR PERFORMANCE

- If the drive has not been connected to mains for a period of more than 24 months, apply mains voltage to the drive for at least one hour before enabling the power stage for the first time.
- If the drive is commissioned for the first time, verify the date of manufacture and run the procedure specified above if the date of manufacture is more than 24 months in the past.
Failure to follow these instructions can result in equipment damage.

Preparation

Required Components

The following is required for commissioning:

- Commissioning software "Lexium DTM Library" http://www.schneider-electric.com/en/download/document/Lexium DTM Library/
- Fieldbus converter for the commissioning software for connection via the commissioning interface

Interfaces
The following interfaces can be used for commissioning, parameterization and diagnostics:

1 Integrated HMI
2 External graphic display terminal
3 PC with commissioning software "Lexium DTM Library"
Device settings can be duplicated. Stored device settings can be transferred to a device of the same type. Duplicating the device settings can be used if multiple devices are to have the same settings, for example, when devices are replaced.

Commissioning Software

The commissioning software "Lexium DTM Library" has a graphic user interface and is used for commissioning, diagnostics and testing settings.

- Tuning of the control loop parameters via a graphical user interface
- Comprehensive set of diagnostics tools for optimization and maintenance
- Long-term trace for evaluation of the performance
- Testing the input and output signals
- Tracking signals on the screen
- Archiving of device settings and recordings with export function for further processing in other applications

Connecting a PC

A PC with commissioning software can be connected for commissioning. The PC is connected to a bidirectional USB/RS485 converter, see chapter Accessories and Spare Parts (see page 455).

Section 5.2

Integrated HMI

What Is in This Section?
This section contains the following topics:

Topic	Page
Overview of Integrated HMI	130
Menu Structure	133
Making Settings	134

Overview of Integrated HMI

Overview
The device allows you to edit parameters, start the operating mode Jog or perform autotuning via the integrated Human-Machine Interface (HMI). Diagnostics information (such as parameter values or error codes) can also be displayed. The individual sections on commissioning and operation include information on whether a function can be carried out via the integrated HMI or whether the commissioning software must be used.

1 Status LEDs
2 7-segment display
3 ESC key
4 Navigation button
5 Red LED on: Voltage present at DC bus
Status LEDs and a 4-digit 7-segment display indicate the device status, menu designation, parameter codes, status codes and error codes. By turning the navigation button, you can select menu levels and parameters and increment or decrement values. To confirm a selection, press the navigation button.
The ESC (Escape) button allows you to exit parameters and menus. If values are displayed, the ESC button lets you return to the last saved value.

Character Set on the HMI
The following table shows the assignment of the characters to the symbols displayed by the 4-digit 7 segment display.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R
A	b	c L	d	E	F	\square	H	'	」	K	L	Π	n	\square	P	9	r
S	T	U	V	W	x	Y	Z	1	2	3	4	5	6	7	8	9	0
5	t	4	V	W	X	4	Z	1	2	\exists	4	5	E	7	日	9	\square

Indication of the Device Status

1 Four status LEDs
Three status LEDS for identification of the menu levels
3 Flashing dots indicate an error of error class 0
1: Four status LEDs are located above the 7-segment display:

Fault	Edit	Value	Unit	Meaning
Lights red				Operating state Fault
	Lights yellow	Lights yellow		Parameter value can be edited
		Lights yellow		Value of the parameter
			Lights yellow	Unit of the selected parameter

2: Three status LEDS for identification of the menu levels:

LED	Meaning
Op	Operation
Mon	Status information
Conf	Configuration

3: Flashing dots indicate an error of error class 0 , for example, if a limit value has been exceeded.

Display of Values
The HMI can directly display values up to 999.
Values greater than 999 are displayed in ranges of 1000. Turn the navigation button to select one of the ranges.
Example: Value 1234567890

The navigation button can be turned and pressed. There are two types of pressing: brief pressing ($\leq 1 \mathrm{~s}$) and long pressing ($\geq 3 \mathrm{~s}$).
Turn the navigation button to do the following:

- Go to the next or previous menu
- Go to the next or previous parameter
- Increment or decrement values
- Switch between ranges in the case of values greater than 999

Briefly press the navigation button to do the following:

- Call the selected menu
- Call the selected parameter
- Save the value to the nonvolatile memory

Hold down the navigation button to do the following:

- Display a description of the selected parameter
- Display the unit of the selected parameter

Menu Structure

Overview
The integrated HMI is menu-driven. The following illustration shows the top level of the menu structure.

The level below the top level contains the parameters belonging to the respective menu items. To facilitate access, the parameter tables also specify the menu path, for example $\square P \rightarrow J_{\square} L-$.

Making Settings

Displaying and Setting Parameters

The figure below shows an example of displaying a parameter (second level) and entering or selecting a parameter value (third level).

- Go to the parameter , П R X (iMax).
- Press the navigation button for a longer period of time to display a parameter description.

The parameter description is displayed in the form of horizontally scrolling text.

- Briefly press the navigation button to display the value of the selected parameter.

The LED Value lights up and the parameter value is displayed.

- Press the navigation button for a longer period of time to display the unit of the parameter value. As long as the navigation button is held down, the status LEDs Value and Unit light. The unit of the parameter value is displayed. Once you release the navigation button, the parameter value is displayed again.
- Press the navigation button to modify the value of the parameter.

The status LEDs Edit and Value light and the parameter value is displayed.

- Turn the navigation button to modify the value of the parameter. The increments and the limit value for each parameter are pre-defined.
- Briefly press the navigation button to save the modified parameter value.

If you do not want to save the modified parameter value, press the ESC button to cancel. The display returns to the original value of the parameter.
The displayed modified value of parameter value flashes once and is written to the nonvolatile memory.

- Press ESC to return to the menu

Setting the 7-segment Display

By default, the operating state is displayed by the 4-digit 7-segment display,
You can set the following via the menu item $d r c-/ 5 \iota P \mathrm{~V}$:

- 5 トR t displays the operating state, default
- VRøt displays the actual velocity of the motor, default
- $\boldsymbol{A} \boldsymbol{A}$ 的 displays the actual torque of the motor, default

A change only becomes active when the power stage is disabled.

Section 5.3

External graphic display terminal

What Is in This Section?
This section contains the following topics:

Topic	Page
Display and Controls	136
Connecting the external graphic display terminal to LXM32	138
Using the external graphic display terminal	139

Display and Controls

The external graphic display terminal is only designed for commissioning drives.

1 Display field
2 Navigation button
3 STOP/RESET key
4 RUN key
5 FWD/REV key
6 ESC key
7 Function keys F1 ... F4
Depending on the firmware version of the external graphic display terminal, the information may be represented differently. Use the most up to date firmware version.

Display Field (1)
The display is subdivided into 5 areas.
Display of the graphic display terminal (example shows English language)

1.1 Status information of the drive
1.2 Menu bar
1.3 Data field
1.4 Function bar
1.5 Navigation

Status Information of the Drive (1.1)
This line displays the operating state, the actual velocity and the actual current of the motor. If an error has been detected, the error code is displayed.

Menu Bar (1.2)
The menu bar displays the name of the menu.

Data Field (1.3)

The following information can be displayed and values entered in the data field:

- Submenus
- Operating Mode
- Parameters and parameter values
- State of movement
- Error messages

Function Bar (1.4)
The function bar displays the name of the function that is triggered when you press the corresponding function key. Example: Pressing the F1 function key displays the "Code". If you press F1, the HMI name of the displayed parameter is shown.

Navigation (1.5)
Arrows indicate that additional information is available that can be displayed by scrolling.

Navigation Button (2)

By turning the navigation button, you can select menu levels and parameters and increment or decrement values. To confirm a selection, press the navigation button.

Key STOP/RESET (3)

The key STOP/RESET terminates a movement by means of a Quick Stop.

Key RUN (4)
The key RUN allows you to start a movement.

Key FWD/REV (5)
The key FWD/REV allows you to reverse the direction of movement.

Key ESC (6)
The ESC (Escape) button allows you to exit parameters and menus or cancel a movement. If values are displayed, the ESC key lets you return to the last saved value.

Function Keys F1 ... F4 (7)
The function bar displays the name of the function triggered when the corresponding function key is pressed.

Connecting the external graphic display terminal to LXM32

The external graphic display terminal is an accessory for the drive, see chapter Accessories and Spare Parts (see page 455). The external graphic display terminal is connected to CN7 (commissioning interface). Only use the cable shipped with the external graphic display terminal to connect it. If the external graphic display terminal is connected to LXM32, the integrated HMI is deactivated. The integrated HMI shows d , 5P (Display).

Using the external graphic display terminal

The following example shows how to use the external graphic display terminal.

Example 'Setting the Language'

In this example, you set the desired language for the external graphic display terminal. The installation of the drive must have been completed and the 24 Vdc control supply voltage must be on.

- Go to the main menu.
- Rotate the navigation button until item 5 (LANGUAGE) is highlighted.
- Press the navigation button to confirm the selection.

The menu bar shows the selected function 5 (LANGUAGE). The data field displays the selected value, in this case the selected language.

- Press the navigation button to change the value.

The menu bar displays the selected function "Language". The supported languages are shown in the data field.

- Turn the navigation button to select the desired language.

The currently active language is highlighted by a check.

- Press the navigation button to confirm the selected value.

The menu bar displays the selected function "Language". The selected language is shown in the data field.

- Press ESC to return to the main menu.

The main menu is displayed in the selected language.

Section 5.4

Commissioning Procedure

What Is in This Section?
This section contains the following topics:

Topic	Page
Powering on the Device for the First Time	141
Setting Limit Values	143
Digital Inputs and Outputs	145
Verifying the Signals of the Limit Switches	147
Verifying the Safety Function STO	148
Holding Brake (Option)	149
Verifying the Direction of Movement	154
Setting Parameters for Encoder	155
Setting the Braking Resistor Parameters	159
Autotuning	161
Enhanced Settings for Autotuning	163

Powering on the Device for the First Time

Performing a "First Setup"

A "First Setup" is required when the 24 Vdc control supply of the drive is powered on for the first time or after the factory settings have been restored.

Automatic Reading of the Motor Data Record

When the device is powered on and if an encoder is connected to CN3, the device automatically reads the electronic nameplate from the Hiperface encoder. The data record is verified and written to the nonvolatile memory.

The data record contains technical information on the motor such as nominal torque and peak torque, nominal current, nominal velocity and number of pole pairs. The data record cannot be modified by the user.

Manual Adjustment of the Motor Parameters

If the motor encoder is not connected to CN3, the motor parameters must be adjusted manually. Note the information in the manual for the encoder modules.

Preparation
If the device is not to be commissioned exclusively via the HMI , a PC with the commissioning software must be connected.

Powering On the Device

- Verify that the power stage supply and the 24 Vdc control supply are powered off.
- Disconnect the product from the fieldbus during commissioning in order to help avoid conflicts by simultaneous access.
- Power on the 24 Vdc control supply.

The device goes through an initialization routine. The segments of the 7 -segment display and the status LEDs light up.
If a memory card is in the slot of the device, the message $[$ Ard is displayed by the 7 -segment display for a short period of time. This indicates that a memory card has been detected. If the message $\left[A_{r} d\right.$ is permanently displayed by the 7 -segment display, there are differences between the content of the memory card and the parameter values stored in the device. See chapter Memory Card (see page 177) for additional information.

Fieldbus Interface
After the initialization, the fieldbus interface must be configured. You must assign a unique network address to each device.

- Enter the network address. The network address is stored in the parameter SercosAddress.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
SercosAddress Lם口F \rightarrow [ם Π Addr	Sercos device address. This parameter assigns a Sercos address to the drive. Setting can only be modified if power stage is disabled. Modified settings become effective immediately.	0 255	UINT16 R/W per.	-

If modules are plugged in, you must make additional settings depending on the module. Make these settings as described in the appropriate manuals for the modules.

Restarting the Drive

Depending on the settings of the parameters, a restart of the drive may be required for the modifications to become effective.

- If the HMI shows $r d y$ the drive is ready for operation.
- If the HMI shows nrd \boldsymbol{H} a restart of the drive is required. After the restart, the drive is ready for operation.

Identifying the Drive
The SERCOS function "IdentifyDevice" allows for easy identification of a slave in the control cabinet. The function "IdentifyDevice" causes the LED SIII to flash. See chapter Fieldbus Status LEDs (see page 308) for more information on the LEDs.

The function "IdentifyDevice" presupposes that communication (CP2 ... CP4) has been established.
The example below shows how the function "IdentifyDevice" is used in the software "SoMachine", "Configuration":

- ■ ID		
. TopologyÅdress	UINT	
- Name	STRING(40)	,
- Identify ${ }^{\text {a }}$ (evice	Enumeration of BOOL	Off 10
- ConfiguredSercosAddress	UINT($1 . .512$)	100

IdentifyDevice $=$ Off $/ 0$: Function "IdentifyDevice" is not active IdentifyDevice = On / 1: Function "IdentifyDevice" is active

Further Steps

- Attach a label to the device that contains information for servicing the device such as fieldbus type and device address.
- Make the settings described below for commissioning.

NOTE: For more information on the presentation of parameters and a list of all operational parameters of the drive, see chapter Parameters (see page 357).

Setting Limit Values

Setting Limit Values

Suitable limit values must be determined and calculated on the basis of the system and motor data. As long as the motor is operated without loads, the default settings do not need to be changed.

Current Limitation

The maximum motor current can be set with the parameter CTRL_I_max.
The maximum current for the "Quick Stop" function can be limited with the parameter LIM_I_maxQSTP and for the "Halt" function with the parameter LIM_I_maxHalt.

- Use the parameter CTRL_I_max to set the maximum motor current.
- Use the parameter LIM_I_maxQSTP to set the maximum motor current for the "Quick Stop" function.
- Use the parameter LIM_I_maxHalt to set the maximum motor current for the "Halt" function.

The motor can be decelerated via a deceleration ramp or the maximum current for the functions "Quick Stop" and "Halt".

The device limits the maximum permissible current on the basis of the motor data and the device data. Even if the value entered for the maximum current in the parameter CTRL_I_max is too high, the value is limited.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL_I_max } \\ & \text { CanF } \rightarrow \text { drL- } \\ & \text { } \text { ПAX } \end{aligned}$	Current limitation. During operation, the actual current limit is one of the following values (whichever is lowest): - CTRL_I_max - _M_I_max - _PS_I_max Limitations caused by I2t monitoring are also taken into account. Default: _PS_I_max at 8 kHz PWM frequency and 230/480 V mains voltage Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$. Modified settings become effective immediately.	$\begin{aligned} & A_{\text {rms }} \\ & 0.00 \\ & - \\ & 463.00 \end{aligned}$	UINT16 R/W per.	Modbus 4376 IDN P-0-3017.0.12
$\begin{aligned} & \text { LIM_I_maxQSTP } \\ & \text { ᄃםпF } \rightarrow F L t- \\ & \text { وгur } \end{aligned}$	Current for Quick Stop. This value is only limited by the minimum/maximum value range (no limitation of this value by motor/power stage). In the case of a Quick Stop, the current limit (_lmax_act) is one of the following values (whichever is lowest): - LIM_I_maxQSTP - _M_I_max - _PS_I_max Further current limitations caused by 12 t monitoring are also taken into account during a Quick Stop. Default: _PS_I_max at 8 kHz PWM frequency and 230/480 V mains voltage Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$. Modified settings become effective immediately.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/W per.	Modbus 4378 IDN P-0-3017.0.13

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
LIM_I_maxHalt hcur	Current for Halt. This value is only limited by the minimum/maximum value range (no limitation of this value by motor/power stage). In the case of a Halt, the current limit (_Imax_act) is one of the following values (whichever is lowest): - LIM_I_maxHalt - _M_I_max - _PS_I_max Further current limitations caused by I2t monitoring are also taken into account during a Halt. Default: _PS_I_max at 8 kHz PWM frequency and 230/480 V mains voltage Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$. Modified settings become effective immediately.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/W per.	Modbus 4380 IDN P-0-3017.0.14

Velocity Limitation

The parameter CTRL_v_max can be used to limit the maximum velocity.

- Use the parameter CTRL_v_max to set the maximum velocity of the motor.

NOTE:
Values for positions, velocities, acceleration and deceleration are specified in the following user-defined unit:

- usr_p for positions
- usr_v for velocities
- usr_a for acceleration and deceleration

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL_V_max } \\ & \text { CanF } \rightarrow d r L- \\ & \text { n } \Pi X X \end{aligned}$	Velocity limitation. During operation, the velocity limit is one of the following values (whichever is lowest): - CTRL_v_max - M_n_max Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 13200 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 4384 IDN P-0-3017.0.16

Digital Inputs and Outputs

The device has configurable inputs and configurable outputs. See chapter Digital Inputs and Outputs (see page 192) for additional information.
The signal states of the digital inputs and digital outputs can be displayed on the HMI and via the fieldbus.

Integrated HMI

The signal states can be displayed on the integrated HMI, but they cannot be modified.

Inputs (parameter_IO_DI_act):

- Open the menu item - Пan $\rightarrow d, \Pi$ 口.

The digital inputs are displayed in a bit-coded way.

Bit	Signal
0	DI0
1	DI1
2	DI2
3	DI3
4	DI4
$\mathbf{5}$	DI5
$6 \ldots 7$	-

The parameter _IO_DI_act does not display the states of the inputs of the safety function STO. Use the parameter _IO_STO_act to visualize the states of the inputs of the safety function STO.
Outputs (parameter _IO_DQ_act):

- Open the menu item - Пan $\rightarrow d$ व Π 。

The digital outputs are displayed in a bit-coded way.

Bit	Signal
0	$\mathrm{DQ0}$
1	$\mathrm{DQ1}$
2	$\mathrm{DQ2}$
$3 \ldots 7$	-

Fieldbus
The signal states are contained in the parameter＿IO＿act in a bit－coded way．The values＂ 1 ＂and＂ 0 ＂ correspond to the signal state of the input or output．

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
＿IO＿act	Physical status of the digital inputs and outputs． Low byte： Bit 0：DIO Bit 1：DI1 Bit 2：DI2 Bit 3：DI3 Bit 4：DI4 Bit 5：DI5 High byte： Bit 8：DQ0 Bit 9：DQ1 Bit 10：DQ2 Type：Unsigned decimal－ 2 bytes		UINT16 R／－ $-$	Modbus 2050 IDN P－0－3008．0．1
	Status of digital inputs． Bit assignments： Bit 0：DIO Bit 1：DI1 Bit 2：DI2 Bit 3：DI3 Bit 4：DI4 Bit 5：DI5 Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 2078 IDN P－0－3008．0．15
	Status of digital outputs． Bit assignments： Bit 0：DQ0 Bit 1：DQ1 Bit 2：DQ2 Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 2080 IDN P－0－3008．0．16
$\begin{aligned} & \text { IO_STO_act } \\ & \text { חon } \\ & \text { 5ta } \end{aligned}$	Status of the inputs for the safety－related function STO． Bit 0：STO＿A Bit 1：STO＿B If no safety module eSM is plugged in，this parameter indicates the status of the signal inputs STO＿A and STO＿B． If a safety module eSM is plugged in，the safety function STO can be triggered via the signal inputs or via the safety module eSM．This parameter indicates whether or not the safety function STO was triggered（regardless of whether it was triggered via the signal inputs or via the safety module eSM）． Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 2124 IDN P－0－3008．0．38

Verifying the Signals of the Limit Switches

The use of limit switches can help protect against some hazards (for example, collision with mechanical stop caused by incorrect reference values).

A WARNING
 LOSS OF CONTROL
 - Ensure that limit switches are installed as determined by your risk assessment.
 - Verify correct connection of the limit switches.
 - Verify that the limit switches are sufficiently distant from the mechanical end to allow an adequate stopping distance.
 - Verify correct parameterization and function of the limit switches.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

- Set up the limit switches in such a way as to keep the motor from overtraveling the limit switches.
- Trigger the limit switches manually.

If an error message is indicated, the limit switches were triggered.
Parameters can be used to release the limit switches and to set them up as normally closed contacts or normally open contacts, see chapter Limit Switches (see page 279).

Verifying the Safety Function STO

Operation with Safety Function STO
If you want to use the safety function STO, carry out the following steps:
Power off the power stage supply and the 24 Vdc control supply:

- Verify that the signal wires at the inputs (STO_A) and (STO_B) are isolated from each other. The two signal wires must not be electrically connected.
Power on the power stage supply and the 24 Vdc control supply:
- Enable the power stage without starting a motor movement.
- Trigger the safety function STO.

If the power stage is now disabled and the error message 1300 is indicated, the safety function STO was triggered.
If a different error message is indicated, the safety function STO was not triggered.

- Document all tests of the safety function in your acceptance protocol.

Operation without Safety Function STO
If you do not want to use the safety function STO:

- Verify that the inputs STO_A and STO_B are connected to +24VDC.

Holding Brake (Option)

Holding Brake

The holding brake in the motor has the task of holding the motor position when the power stage is disabled. The holding brake is not a safety function and not a service brake.

A WARNING

UNINTENDED AXIS MOVEMENT

- Do not use the internal holding brake as a safety-related measure.
- Only use certified external brakes as safety-related measures.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Releasing the Holding Brake

When the power stage is enabled, current is applied to the motor. When current is applied to the motor, the holding brake is automatically released.

Releasing the holding brake requires a certain amount of time. This time is contained in the electronic nameplate of the motor. Transition to the operating state 6 Operation Enabled is only possible after this time delay has elapsed.
An additional time delay can be set via parameters, see chapter Additional Time Delay for Releasing the Holding Brake (see page 150).

Applying the Holding Brake

When the power stage is disabled, the holding brake is automatically applied.
However, applying the holding brake requires a certain amount of time. This time is contained in the electronic nameplate of the motor. Current remains to be applied to the motor during this time delay.
See chapter Safety function STO ("Safe Torque Off") (see page 79) for additional information on the behavior of the holding brake when the safety function STO is triggered.
An additional time delay can be set via parameters, see chapter Additional Time Delay for Applying the Holding Brake (see page 151).

Additional Time Delay for Releasing the Holding Brake
An additional time delay can be set via the parameter BRK_AddT_release.
Transition to the operating state 6 Operation Enabled is only possible after the entire time delay has elapsed.

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Parameter name } \\ \text { HMI menu } \\ \text { HMI name }\end{array} & \text { Description } & \begin{array}{l}\text { Unit } \\ \text { Minimum value } \\ \text { Factory setting } \\ \text { Maximum value }\end{array} & \begin{array}{l}\text { Data type } \\ \text { R/W } \\ \text { Persistent } \\ \text { Expert }\end{array} & \begin{array}{l}\text { Parameter address via } \\ \text { fieldbus }\end{array} \\ \hline \text { BRK_AddT_release } & \begin{array}{l}\text { Additional time delay for releasing the holding } \\ \text { brake. } \\ \text { The overall time delay for releasing the holding } \\ \text { brake is the time delay from the electronic } \\ \text { nameplate of the motor and the additional time delay } \\ \text { in this parameter. } \\ \text { Type: Signed decimal - 2 bytes } \\ \text { Write access via Sercos: CP2, CP3, CP4 } \\ \text { Setting can only be modified if power stage is } \\ \text { disabled. } \\ \text { Modified settings become effective the next time the } \\ \text { power stage is enabled. }\end{array} & \begin{array}{ll}\text { ms } & 0 \\ \text { lNT16 }\end{array} & \begin{array}{l}\text { Modbus 1294 } \\ \text { R/W } \\ \text { per. }\end{array} & - \\ \text { IDN P-0-3005.0.7 }\end{array}\right]$

Additional Time Delay for Applying the Holding Brake

An additional time delay can be set via the parameter BRK_AddT_apply.
Current continues to be applied to the motor until the entire time delay has passed.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
BRK_AddT_apply	Additional time delay for applying the holding brake. The overall time delay for applying the holding brake is the time delay from the electronic nameplate of the motor and the additional time delay in this parameter. Type: Signed decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	1000	INT16 R/W per.	Modbus 1296 IDN P-0-3005.0.8

Verifying the Function of the Holding Brake

The device is in the operating state "Ready to switch on".

Step	Action
1	Start the operating mode Jog (HMI: a $P \rightarrow\lrcorner \square \square \rightarrow\rfloor[5 t)$. The power stage is enabled and the holding brake released. The HMI displays $\rfloor \square \square-$
2	If the holding brake has been released, hold down the navigation button. Then press ESC. As long as the navigation button is held down, the motor moves. When you press ESC, the holding brake is applied again and the power stage is disabled.
3	If the holding brake is not released, press ESC. When you press ESC, the power stage is disabled.
4	Verify the wiring if the behavior of the holding brake is not correct.

Releasing the Holding Brake Manually

Mechanical adjustments may require you to manually rotate the motor shaft.
Manual release of the holding brake is only possible in the operating states 3 Switch On Disabled,
4 Ready To Switch On or 9 Fault.
When the product is operated for the first time, there is a risk of unanticipated movements caused by, for example, incorrect wiring or unsuitable parameter settings. Releasing the holding brake can cause an unintended movement, like for example, a falling load in the case of vertical axes.

UNINTENDED MOVEMENT
- Verify that there are no persons or obstructions in the zone of operation when operating the system.
- Take appropriate measures to avoid hazards caused by falling or lowering loads or other unintended
movements.
- Run initial tests without coupled loads.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in running
tests.
- Anticipate movements in unintended directions or oscillations of the motor.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Applying the Holding Brake Manually
For testing the holding brake, you may want to manually apply the holding brake.
You can only apply the holding brake manually when the motor is at a standstill.
If you enable the power stage after the holding brake has been applied manually, the holding brake remains applied.

Manual application of the holding brake has priority over automatic and manual release of the holding brake.

If a movement is started after the holding brake has been applied manually, this can cause wear.

NOT/CE
BRAKE WEAR AND LOSS OF BRAKING TORQUE
- Verify that the generated motor torque is not greater than the holding torque of the holding brake if you
have applied the holding brake manually.
- Only apply the holding brake manually for the purpose of testing the holding brake.
Failure to follow these instructions can result in equipment damage.

As of firmware version \geq V01.04, you can manually apply the holding brake.

Releasing the Holding Brake Manually via a Signal Input
In order to release the holding brake via a signal input, you must first parameterize the signal input function
"Release Holding Brake", see chapter Digital Inputs and Outputs (see page 192).

Releasing or Applying the Holding Brake Manually via the Fieldbus
The parameter BRK_release can be used to release the holding brake via the fieldbus.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
BRK_release	Manual operation of the holding brake. 0 / Automatic: Automatic processing 1 / Manual Release: Manual release of holding brake 2 / Manual Application: Manual applying of holding brake You can apply or release the holding brake manually. The holding brake can only be manually released in the operating states 'Switch On Disabled', 'Ready To Switch On' or 'Fault'. If you have applied the holding brake manually and then want to release it manually, you must first set this parameter to Automatic and then to Manual Release. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2068 IDN P-0-3008.0.10

Verifying the Direction of Movement

Definition of Direction of Movement

In the case of a rotary motors, direction of movement is defined in accordance with IEC 61800-7-204: Positive direction is when the motor shaft rotates clockwise as you look at the end of the protruding motor shaft.

It is important to maintain the IEC 61800-7-204 directional standard within your application because many motion-related function blocks, programming conventions, and, safety-related and conventional devices expect this underlying assumption within their logic and operational methodologies.

A WARNING

UNINTENDED MOVEMENT CAUSED BY INTERCHANGED MOTOR PHASES
Do not interchange the motor phases.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

If your application requires an inversion of the direction of movement, you can parameterize the direction of movement.

The direction of movement can be verified by starting a movement.

Verifying the Direction of Movement

Power supply has been powered on.

- Start the operating mode Jog. (HMI: aP \rightarrow 」a $[\rightarrow$ ل $55 t$)

The HMI displays $J[$ - .
Movement in positive direction:

- Press the navigation button and hold it down.

A movement is made in positive direction.
Movement in negative direction:

- Turn the navigation button until the HMI displays - $ل$.
- Press the navigation button and hold it down.

A movement is made in negative direction.

Changing the Direction of Movement

You can invert the direction of movement.

- Inversion of direction of movement is off:

Movements are made in positive direction with positive target values.

- Inversion of direction of movement is on:

Movements are made in positive direction with negative target values.
The parameter InvertDirOfMove allows you to invert the direction of movement.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
InvertDirOfMove $\begin{aligned} & \text { } \because \square \cap F \rightarrow A[\square- \\ & \rightarrow \cap \square \end{aligned}$	Inversion of direction of movement. 0 / Inversion Off / a F F: Inversion of direction of movement is off 1 / Inversion On / an: Inversion of direction of movement is on The limit switch which is reached with a movement in positive direction must be connected to the positive limit switch input and vice versa. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1560 IDN P-0-3006.0.12

Setting Parameters for Encoder

When starting up, the device reads the absolute position of the motor from the encoder. The absolute position can be read with the parameter _p_absENC.
NOTE:
Values for positions, velocities, acceleration and deceleration are specified in the following user-defined unit:

- usr_p for positions
- usr_v for velocities
- usr_a for acceleration and deceleration

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { _p_absENC } \\ & \text { Пםп } \\ & \text { PA } \end{aligned}$	Absolute position with reference to the encoder range. This value corresponds to the modulo position of the absolute encoder range. The value is no longer valid if the gear ratio of machine encoder and motor encoder is changed. A restart is required in such a case. Type: Unsigned decimal - 4 bytes	usr_p	UINT32 R/-	Modbus 7710 IDN P-0-3030.0.15

Working Range of the Encoder

The working range of the singleturn encoder is 131072 increments per turn.
The working range of the multiturn encoder is 4096 turns with 131072 increments per turn.

Underrun of Absolute Position

If a rotary motor performs a movement from 0 into negative direction, there is an underrun of the absolute position of the encoder. However, the actual position keeps counting forward and delivers a negative position value. After a power cycle, the actual position no longer corresponds to the negative position value, but to the absolute position of the encoder.
The following options are available to adjust the absolute position of the encoder:

- Adjustment of the absolute position
- Shifting the working range

Adjustment of the Absolute Position

When the motor is at a standstill, the new absolute position of the motor can be set to the current mechanical motor position the with the parameter ENC1_adjustment.
Adjusting the absolute position also shifts the position of the index pulse.
The absolute position of an encoder at encoder 2 (module) can be adjusted via the parameter ENC2_adjustment.

- Set the absolute position at the negative mechanical limit to a position value greater than 0 . This way, the movements remain within the continuous range of the encoder.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
ENC1_adjustment	Adjustment of absolute position of encoder 1. The value range depends on the encoder type. Singleturn encoder: 0 ... $\mathrm{x}-1$ Multiturn encoder: $0 \ldots(4096 * x)-1$ Singleturn encoder (shifted with parameter ShiftEncWorkRang): $-(x / 2) \ldots(x / 2)-1$ Multiturn encoder (shifted with parameter ShiftEncWorkRang): $-\left(2048^{*} x\right) \ldots\left(2048^{*} x\right)-1$ Definition of ' x ': Maximum position for one encoder turn in user-defined units. This value is 16384 with the default scaling. If processing is to be performed with inversion of the direction of movement, this must be set before the encoder position is adjusted. After the write access, a wait time of at least 1 second is required before the drive can be powered off. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective after the next power cycle.	usr_p	INT32 R/W	Modbus 1324 IDN P-0-3005.0.22

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
ENC2_adjustment	Adjustment of absolute position of encoder 2. The value range depends on the encoder type at the physical port ENC2. This parameter can only be changed if the parameter ENC_abs_source is set to 'Encoder 2'. Singleturn encoder: $0 \ldots x-1$ Multiturn encoder: $0 \ldots\left(y^{*} x\right)-1$ Singleturn encoder (shifted with parameter ShiftEncWorkRang): $-(x / 2) \ldots(x / 2)-1$ Multiturn encoder (shifted with parameter ShiftEncWorkRang): $-(y / 2)^{*} x \ldots\left((y / 2)^{*} x\right)-1$ Definition of 'x': Maximum position for one encoder turn in user-defined units. This value is 16384 with the default scaling. Definition of ' y ': Revolutions of the multiturn encoder. If processing is to be performed with inversion of the direction of movement, this must be set before the encoder position is adjusted. After the write access, the parameter values have to be saved to the nonvolatile memory and the drive has to be power cycled, before the change becomes effective. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective after the next power cycle.	usr_p	INT32 R/W	Modbus 1352 IDN P-0-3005.0.36

Shifting the Working Range

The parameter ShiftEncWorkRang lets you shift the working range.
The working range without shift comprises:

Singleturn encoder	$0 \ldots 131071$ increments
Multiturn encoder	$0 \ldots 4095$ revolutions

The working range with shift comprises:

Singleturn encoder	$-65536 \ldots 65535$ increments
Multiturn encoder	$-2048 \ldots 2047$ revolutions

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
ShiftEncWorkRang	Shifting of the encoder working range. $0 /$ Off: Shifting off $1 /$ On: Shifting on After activating the shifting function, the position range of a multiturn encoder is shifted by one half of the range. Example for the position range of a multiturn encoder with 4096 revolutions: Value 0: Position values are between 0 $\ldots 4096$ revolutions. Value 1: Position values are between $-2048 \ldots 2048$ revolutions. Type: Unsigned decimal -2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective after the next power cycle.	-	UINT16 R/W per.	Modbus 1346 IDN P-0-3005.0.33

Setting the Braking Resistor Parameters

Description

An insufficiently rated braking resistor can cause overvoltage on the DC bus. Overvoltage on the DC bus causes the power stage to be disabled. The motor is no longer actively decelerated.

A WARNING
 UNINTENDED EQUIPMENT OPERATION
 - Verify that the braking resistor has a sufficient rating by performing a test run under maximum load conditions.
 - Verify that the parameter settings for the braking resistor are correct.
 Failure to follow these instructions can result in death, serious injury, or equipment damage.

The temperature of the braking resistor may exceed $250^{\circ} \mathrm{C}\left(482{ }^{\circ} \mathrm{F}\right)$ during operation.

A WARNING

HOT SURFACES

- Ensure that it is not possible to make any contact with a hot braking resistor.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of the braking resistor.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If you use an external braking resistor, perform the following steps:

- Set the parameter RESint_ext to "External Braking Resistor".
- Set the parameters RESext_P, RESext_R and RESext_ton.

The maximum value of RESext_P and the minimum value of RESext_R depend on the power stage, see chapter External Braking Resistor (see page 46).
See chapter Rating the Braking Resistor (see page 73) for additional information.
If the regenerated power becomes greater than the power that can be absorbed by the braking resistor, an error message is generated and the power stage is disabled.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { RESint_ext } \\ & \text { CanF } \rightarrow \text { AL - } \\ & E \text { br } \end{aligned}$	Selection of type of braking resistor. 0 / Internal Braking Resistor / int:Internal braking resistor 1 / External Braking Resistor / E ht: External braking resistor 2 / Reserved / r 5 V d: Reserved Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1298 IDN P-0-3005.0.9
$\begin{aligned} & \text { RESext_P } \\ & \text { ConF } \rightarrow \text { RLG- } \\ & \text { Pabr } \end{aligned}$	Nominal power of external braking resistor. The maximum value depends on the power stage. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & W \\ & 1 \\ & 10 \\ & - \end{aligned}$	UINT16 R/W per.	Modbus 1316 IDN P-0-3005.0.18

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
```RESext_R LanF->R[G- rbr```	Resistance value of external braking resistor.   The minimum value depends on the power stage.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \Omega$.   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \Omega \\ & - \\ & 100.00 \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 1318 IDN P-0-3005.0.19
$\begin{aligned} & \text { RESext_ton } \\ & \text { CanF } \rightarrow \text { RLG- } \\ & \text { Ebr } \end{aligned}$	Maximum permissible switch-on time of external braking resistor.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \mathrm{ms} \\ & 1 \\ & 1 \\ & 30000 \end{aligned}$	UINT16 R/W per.	Modbus 1314 IDN P-0-3005.0.17

## Autotuning

## Autotuning

Autotuning moves the motor in order to tune the control loops. Incorrect parameters may cause unintended movements or the loss of monitoring functions.

## A WARNING

## UNINTENDED MOVEMENT

- Only start the system if there are no persons or obstructions in the zone of operation.
- Verify that the values for the parameters AT_dir and AT_dis_usr (AT_dis) do not exceed the available movement range.
- Verify that the parameterized movement ranges are available, free and clear for the mechanical movement defined by your application logic.
- Include in your calculations when determining the available movement range, the additional distance for the deceleration ramp in the case of an emergency stop.
- Verify that the parameter settings for a Quick Stop are correct.
- Verify correct operation of the limit switches.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in all phases of machine operation and maintenance involving this equipment.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
Autotuning determines the friction torque as a constantly acting load torque and considers it in the calculation of the moment of inertia of the entire system.

External factors such as a load at the motor are considered. Autotuning optimizes the settings of the control loop parameters; see chapter Controller Optimization with Step Response (see page 165).

Autotuning also supports vertical axes.

## Methods

There are three ways of tuning the drive control loops:

- Easy Tuning: Automatic - autotuning without user intervention. For most applications, autotuning yields good, highly dynamic results.
- Comfort Tuning: Semi-automatic - autotuning with user intervention. Parameters for direction and parameters for damping can be set by the user
- Manual Tuning: The user can set and tune the control loop parameters manually. Manual Tuning is available in the Expert Mode of the commissioning software.

Function
During autotuning, the motor is activated and small movements are made. Noise development and mechanical oscillations of the system are normal.

If you want to perform Easy Tuning, no additional parameters need to be adjusted. To perform Comfort Tuning, the parameters AT dir, AT dis usr and AT mechanics are available to be adjusted to meet the requirements of your application.

The parameter AT_Start is used to start Easy Tuning or Comfort Tuning.

- Start autotuning via the commissioning software.

It is also possible to start autotuning via the HMI.
HMI: $\square P \rightarrow t u n \rightarrow t u 5 t$

- Save the new settings to the nonvolatile memory via the commissioning software.

If you have started autotuning via the HMI, press the navigation button to save the new values to the nonvolatile memory.
The product features 2 control loop parameter sets that can be parameterized separately. The values for the control loop parameters determined during autotuning are stored in control loop parameter set 1.

If autotuning cancels with an error message, the default values are used. Change the mechanical position and restart autotuning. If you want to verify the plausibility of the calculated values, you can have them displayed; see chapter Enhanced Settings for Autotuning (see page 163).

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & A T-d i r \\ & \square P \rightarrow t u n- \\ & 5 t, \Pi \end{aligned}$	Direction of movement for Autotuning.   1 / Positive Negative Home / Pnh: Positive   direction first, then negative direction with return to initial position   2 / Negative Positive Home / $n P h$ : Negative direction first, then positive direction with return to initial position   3 / Positive Home / P-h: Positive direction only with return to initial position   4 / Positive / P - - : Positive direction only without return to initial position   5 / Negative Home / $n-h$ : Negative direction only with return to initial position   6 / Negative / $n--$ : Negative direction only without return to initial position   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & 1 \\ & 1 \\ & 6 \end{aligned}$	UINT16 R/W	Modbus 12040   IDN P-0-3047.0.4
AT_dis_usr	Movement range for Autotuning.   Movement range within which the control parameters are automatically optimized. The movement range is entered with reference to the actual position.   In the case of "Movement in one direction only" (Parameter AT_dir), the specified range is used for each optimization step. The movement typically corresponds to 20 times the value, but it is not limited.   The minimum value, the factory setting and the maximum value depend on the scaling factor.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 1 \\ & 262144 \\ & 2147483647 \end{aligned}$	INT32 R/W	Modbus 12068 IDN P-0-3047.0.18
AT_mechanical	Type of coupling of the system.   1 / Direct Coupling: Direct coupling   2 / Belt Axis: Belt axis   3 / Spindle Axis: Spindle axis   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	UINT16 R/W	Modbus 12060   IDN P-0-3047.0.14
AT_start	Autotuning start.   Value 0: Terminate   Value 1: Activate EasyTuning   Value 2: Activate ComfortTuning   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 12034 IDN P-0-3047.0.1

## Enhanced Settings for Autotuning

Description
The following parameters allow you to monitor and influence autotuning.
The parameters AT_state and AT_progress allow you to monitor the progress and status of autotuning.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
_AT_state	Autotuning status.   Bit assignments:   Bits 0 ... 10: Last processing step   Bit 13: auto_tune_process   Bit 14: auto_tune_end   Bit 15: auto_tune_err   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 12036   IDN P-0-3047.0.2
_AT_progress	Progress of Autotuning.   Type: Unsigned decimal - 2 bytes	$\begin{aligned} & \% \\ & 0 \\ & 0 \\ & 100 \end{aligned}$	UINT16 R/-	Modbus 12054   IDN P-0-3047.0.11

If, in a test run, you want to determine the effects of harder or softer settings of the control loop parameters on your system, you can write the parameter CTRL_GlobGain to modify the settings determined during autotuning. The parameter _AT J allows you to read the moment of inertia of the entire system calculated during autotuning.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL_GlobGain } \\ & \text { aP } \rightarrow \text { tun } \\ & \text { CA } n \end{aligned}$	Global gain factor (affects control loop parameter set 1).   The global gain factor affects the following parameters of control loop parameter set 1:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   The global gain factor is set to $100 \%$   - if the control loop parameters are set to default   - at the end of the Autotuning process   - if control loop parameter set 2 is copied to set 1 via the parameter CTRL_ParSetCopy   If a full configuration is transmitted via the fieldbus, the value for CTRL_GlobGain must be transmitted prior to the values of the control loop parameters CTRL_KPn, CTRL_TNn, CTRL_KPp and CTRL_TAUnref. If CTRL_GlobGain is changed during a configuration transmission, CTRL_KPn, CTRL_TNn, CTRL_KPp and CTRL_TAUnref must also be part of the configuration.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{aligned} & \% \\ & 5.0 \\ & 100.0 \\ & 1000.0 \end{aligned}$	UINT16 R/W per.	Modbus 4394   IDN P-0-3017.0.21
_AT_M_friction	Friction torque of the system. Is determined during Autotuning. Type: Unsigned decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/-	Modbus 12046   IDN P-0-3047.0.7


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent Expert	Parameter address via fieldbus
_AT_M_load	Constant load torque. Is determined during Autotuning. Type: Signed decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	$\begin{array}{\|l} \text { INT16 } \\ \text { R/- } \\ - \end{array}$	Modbus 12048   IDN P-0-3047.0.8
-AT_J	Moment of inertia of the system. Is automatically calculated during Autotuning. Type: Unsigned decimal - 2 bytes In increments of $0.1 \mathrm{~kg} \mathrm{~cm}^{2}$.	$\begin{aligned} & \mathrm{kg} \mathrm{~cm}^{2} \\ & 0.1 \\ & 0.1 \\ & 6553.5 \end{aligned}$	UINT16 R/per.	Modbus 12056 IDN P-0-3047.0.12

The parameter AT_wait lets you set a waiting time between the individual autotuning steps. Setting a waiting time is only useful in the case of a low-rigidity coupling, in particular so if the next autotuning step (changing the hardness) is already performed while the system is still settling.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
AT_wait		ms	UINT16	Modbus 12050
	Waiting time between Autotuning steps.   Type: Unsigned decimal -2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the   motor moves.	10000	R/W	IDN P-0-3047.0.9

## Section 5.5 <br> Controller Optimization with Step Response

What Is in This Section?
This section contains the following topics:

Topic	Page
Controller Structure	166
Optimization	168
Optimizing the Velocity Controller	169
Verifying and Optimizing the P Gain	173
Optimizing the Position Controller	174

## Controller Structure

Overview
The controller structure corresponds to the classical cascaded closed loop with current controller, velocity controller and position controller. In addition, the reference value of the velocity controller can be smoothed via a filter.

The controllers are tuned one after the other from the "inside" to the "outside" in the following sequence: current control, velocity control, position control.


1 Position controller
2 Velocity controller
3 Current controller
4 Encoder evaluation
See chapter Overview of the Controller Structure (see page 208) for a detailed description of the controller structure.

## Current Controller

The current controller determines the torque of the motor. The current controller is automatically optimally tuned with the stored motor data.

## Velocity Controller

The velocity controller controls the motor velocity by varying the motor current depending on the load situation. The velocity controller has a decisive influence on the dynamic response of the drive. The dynamics of the velocity controller depend on:

- Moment of inertia of the drive and the controlled system
- Power of the motor
- Stiffness and elasticity of the elements in the flow of forces
- Backlash of the drive elements
- Friction


## Position Controller

The position controller reduces the difference between the reference position and the actual position of the motor (position deviation) to a minimum. When the motor is at a standstill, the position deviation is close to zero in the case of a well-tuned position controller.
An optimized velocity control loop is a prerequisite for good amplification of the position controller.

## Control Loop Parameters

This device allows you to use two control loop parameter sets. It is possible to switch form one set of control loop parameter sets to the other during operation. The active control loop parameter set is selected with the parameter CTRL_SelParSet.

The corresponding parameters are CTRL1_xx for the first control loop parameter set and CTRL2_xx for the second control loop parameter set. The following descriptions use the notation CTRL1_xx (CTRL2_xx) if there are no functional differences between the two control loop parameter sets.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CTRL_SelParSet	Selection of control loop parameter set (nonpersistent).   Coding see parameter: CTRL_PwrUpParSet   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 4402   IDN P-0-3017.0.25
_CTRL_ActParSet	Active control loop parameter set.   Value 1: Control loop parameter set 1 is active   Value 2: Control loop parameter set 2 is active   A control loop parameter set is active after the time for the parameter switching (CTRL_ParChgTime) has elapsed.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 4398   IDN P-0-3017.0.23
CTRL_ParChgTime	Period of time for control loop parameter set switching.   In the case of control loop parameter set switching, the values of the following parameters are changed gradually:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   - CTRL_TAUiref   - CTRL_KFPp   Such a switching can be caused by   - change of the active control loop parameter set   - change of the global gain   - change of any of the parameters listed above   - deactivating the integral term of the velocity controller   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 2000 \end{aligned}$	UINT16 R/W per.	Modbus 4392   IDN P-0-3017.0.20

## Optimization

The drive optimization function matches the device to the application conditions. The following options are available:

- Selecting control loops. Upstream control loops are automatically deactivated.
- Defining reference value signals: signal type, amplitude, frequency and starting point
- Testing control performance with the signal generator.
- Recording the control performance on screen and evaluating it with the commissioning software.


## Setting Reference Value Signals

Start controller optimization with the commissioning software.
Set the following values for the reference value signal:

- Signal type: Step "positive"
- Amplitude: 100 RPM
- Cycle duration: 100 ms
- Number of repetitions: 1
- Start the trace.

Only the signal types "Step" and "Square" allow you to determine the entire dynamic behavior of a control loop. The manual shows signal paths for the signal type "Step".

## Entering Values for Optimization

The optimization steps described on the following pages require you to enter control loop parameters and test their effect by triggering a step function.
A step function is triggered as soon as you start a trace in the commissioning software.

## Control Loop Parameters

This device allows you to use two control loop parameter sets. It is possible to switch form one set of control loop parameter sets to the other during operation. The active control loop parameter set is selected with the parameter CTRL_SelParSet.

The corresponding parameters are CTRL1_xx for the first control loop parameter set and CTRL2_xx for the second control loop parameter set. The following descriptions use the notation CTRL1_xx (CTRL2_xx) if there are no functional differences between the two control loop parameter sets.

For details see chapter Switching Between Control Loop Parameter Sets (see page 207).

## Optimizing the Velocity Controller

Optimizing complex mechanical control systems require hands－on experience with controller tuning．This includes the ability to calculate control loop parameters and to apply identification procedures．
Less complex mechanical systems can often be optimized by means of experimental adjustment using the aperiodic limit method．The following parameters are used for this：

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL1_KPn } \\ & \begin{array}{l} \square \cap F \rightarrow d r L- \\ P n l \end{array} \end{aligned}$	Velocity controller $P$ gain．   The default value is calculated on the basis of the motor parameters．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.0001 A／RPM．   Modified settings become effective immediately．	$\begin{aligned} & \text { A/RPM } \\ & 0.0001 \\ & - \\ & 2.5400 \end{aligned}$	UINT16 R／W per．	Modbus 4610 IDN P－0－3018．0．1
$\begin{aligned} & \text { CTRL2_KPn } \\ & \operatorname{C口\cap F} \rightarrow d r L- \\ & P \cap 己 \end{aligned}$	Velocity controller $P$ gain．   The default value is calculated on the basis of the motor parameters．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.0001 A／RPM．   Modified settings become effective immediately．	A／RPM   0.0001   2.5400	UINT16 R／W per．	Modbus 4866   IDN P－0－3019．0．1
$\begin{aligned} & \text { CTRL1_TNn } \\ & \text { CanF } \rightarrow d r L- \\ & t \text { in } l \end{aligned}$	Velocity controller integral action time．   The default value is calculated．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.01 ms ．   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R／W per．	Modbus 4612   IDN P－0－3018．0．2
$\begin{aligned} & \text { CTRL2_TNn } \\ & {[\text { ロпF } \rightarrow d r L-} \\ & t: n 己 \end{aligned}$	Velocity controller integral action time．   The default value is calculated．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.01 ms ．   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R／W per．	Modbus 4868   IDN P－0－3019．0．2

Verify and optimize the calculated values in a second step，see chapter Verifying and Optimizing the $P$ Gain（see page 173）．

## Reference Value Filter of the Velocity Controller

The reference value filter of the velocity controller allows you to improve the transient response at optimized velocity control. The reference value filter must be deactivated for the first setup of the velocity controller.

- Deactivate the reference value filter of the velocity controller. Set the parameter CTRL1_TAUnref (CTRL2_TAUnref) to the lower limit value " 0 ".

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL1_TAUnref } \\ & \text { CanF } \rightarrow \text { drL- } \\ & t A_{u} / \end{aligned}$	Filter time constant of the reference velocity value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 9.00 \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4616   IDN P-0-3018.0.4
	Filter time constant of the reference velocity value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 9.00 \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4872   IDN P-0-3019.0.4

Determining the Type of Mechanical System
To assess and optimize the transient response behavior of your system, group its mechanical system into one of the following two categories.

- System with rigid mechanical system
- System with a less rigid mechanical system

Rigid and less rigid mechanical systems

## Rigid

mechanical system
low elasticity

e. g. Direct drive

Rigid coupling

## Less rigid

mechanical system
higher elasticity

e. g. Belt drive

Weak drive shaft
Elastic coupling

## Determining Values for Rigid Mechanical Systems

In the case of a rigid mechanical system, adjusting the control performance on the basis of the table is possible if:

- the moment of inertia of the load and of the motor are known and
- the moment of inertia of the load and of the motor are constant

The P gain CTRL_KPn and the integral action time CTRL_TNn depend on:

- $J_{L}$ : Moment of inertia of the load
- $\mathrm{J}_{\mathrm{M}}$ : Moment of inertia of the motor
- Determine the values on the basis of the following table:

	$\mathrm{J}_{\mathrm{L}}=\mathrm{J}_{\mathrm{M}}$		$\mathrm{J}_{\mathrm{L}}=5^{*} \mathrm{~J}_{\mathrm{M}}$		$\mathrm{J}_{\mathrm{L}}=10{ }^{*} \mathrm{~J}_{\mathrm{M}}$	
$\mathrm{J}_{\mathrm{L}}$	KPn	TNn	KPn	TNn	KPn	TNn
$1 \mathrm{kgcm}^{2}$	0.0125	8	0.008	12	0.007	16
$2 \mathrm{kgcm}^{2}$	0.0250	8	0.015	12	0.014	16
$5 \mathrm{kgcm}^{2}$	0.0625	8	0.038	12	0.034	16
$10 \mathrm{kgcm}^{2}$	0.125	8	0.075	12	0.069	16
$20 \mathrm{kgcm}^{2}$	0.250	8	0.150	12	0.138	16

## Determining Values for Less Rigid Mechanical Systems

For optimization purposes, determine the P gain of the velocity controller at which the controller adjusts velocity _v_act as quickly as possible without overshooting.

- Set the integral action time CTRL1_TNn (CTRL2_TNn) to infinite (= 327.67 ms ).

If a load torque acts on the motor when the motor is at a standstill, the integral action time must not exceed a value that causes unwanted changes of the motor position.
If the motor is subject to loads when it is at a standstill, setting the integral action time to "infinite" may cause position deviations (for example, in the case of vertical axes). Reduce the integral action time if the position deviation is unacceptable in your application. However, reducing the integral action time can adversely affect optimization results.

## A WARNING

## UNINTENDED MOVEMENT

- Only start the system if there are no persons or obstructions in the zone of operation.
- Verify that the values for the velocity and the time do not exceed the available movement range.
- Verify that a functioning emergency stop push-button is within reach of all persons involved in the operation.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
- Trigger a step function.
- After the first test, verify the maximum amplitude for the reference value for the current _Iq_ref.

Set the amplitude of the reference value just high enough so the reference value for the current _Iq_ref remains below the maximum value CTRL_I_max. On the other hand, the value selected should not be too low, otherwise friction effects of the mechanical system will determine the performance of the control loop.

- Trigger another step function if you had to modify _v_ref and verify the amplitude of _Iq_ref.
- Increase or decrease the $P$ gain in small increments until _v_act is obtained as fast as possible. The following diagram shows the required transient response on the left. Overshooting - as shown on the right - is reduced by reducing CTRL1_KPn (CTRL2_KPn).
Differences between _v_ref and _v_act result from setting CTRL1_TNn (CTRL2_TNn) to "Infinite".

Determining "TNn" for the aperiodic limit


In the case of drive systems in which oscillations occur before the aperiodic limit is reached, the P gain "KPn" must be reduced until oscillations can no longer be detected. This occurs frequently in the case of linear axes with a toothed belt drive.

## Graphic Determination of the $63 \%$ Value

Graphically determine the point at which the actual velocity _v_act reaches $63 \%$ of the final value. The integral action time CTRL1_TNn (CTRL2_TNn) then results as a value on the time axis. The commissioning software supports you with the evaluation:

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
	Velocity controller integral action time.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4612   IDN P-0-3018.0.2
	Velocity controller integral action time.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l} \mathrm{ms} \\ 0.00 \\ - \\ 327.67 \end{array}$	UINT16 R/W per.	Modbus 4868   IDN P-0-3019.0.2

## Verifying and Optimizing the P Gain

Step responses with good control performance


The controller is properly set when the step response is approximately identical to the signal shown. Good control performance is characterized by

- Fast transient response
- Overshooting up to a maximum of $40 \%, 20 \%$.

If the control performance does not correspond to the curve shown, change CTRL_KPn in increments of about $10 \%$ and then trigger another step function:

- If the control is too slow: Use a higher CTRL1_KPn (CTRL2_KPn) value.
- If the control tends to oscillate: Use a lower CTRL1_KPn (CTRL2_KPn) value.

Oscillation ringing is characterized by continuous acceleration and deceleration of the motor.
Optimizing insufficient velocity controller settings


## Optimizing the Position Controller

## General

An optimized velocity controller is a prerequisite for optimization of the position controller.
When tuning the position controller, you must optimize the P gain CTRL1_KPp (CTRL2_KPp):

- CTRL1_KPp (CTRL2_KPp) too high: Overshooting, instability
- CTRL1_KPp (CTRL2_KPp) too low: High position deviation

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL1_KPp } \\ & \begin{array}{l} \text { anF } \rightarrow d r L- \\ P P I \end{array} \end{aligned}$	Position controller P gain.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.11 / \mathrm{s}$.   Modified settings become effective immediately.	$\begin{aligned} & 1 / \mathrm{s} \\ & 2.0 \\ & - \\ & 900.0 \end{aligned}$	UINT16 R/W per.	Modbus 4614   IDN P-0-3018.0.3
$\begin{aligned} & \text { CTRL2_KPp } \\ & \begin{array}{l} \operatorname{\square nF} \rightarrow d r L- \\ P P 己 \end{array} \end{aligned}$	Position controller $P$ gain.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.11 / \mathrm{s}$.   Modified settings become effective immediately.	$\begin{array}{\|l} \hline 1 / \mathrm{s} \\ 2.0 \\ - \\ 900.0 \end{array}$	UINT16 R/W per.	Modbus 4870   IDN P-0-3019.0.3

The step function moves the motor at constant velocity until the specified time has expired.

UNINTENDED MOVEMENT	
- Only start the system if there are no persons or obstructions in the zone of operation.	
- Verify that the values for the velocity and the time do not exceed the available movement range.	
operation.	
Failure to follow these instructions can result in death, serious injury, or equipment damage.	

## Setting the Reference Value Signal

- Select Position Controller as the reference value in the commissioning software.
- Set the reference value signal:
- Signal type: "Step"
- Set the amplitude to approx. $1 / 10$ motor revolution.

The amplitude is entered in user-defined units. With the default scaling, the resolution is 16384 userdefined units per motor revolution.

## Selecting the Trace Signals

- Select the values in the box General Trace Parameters:
- Reference position of position controller _p_refusr (_p_ref)
- Actual position of position controller _p_actusr (_p_act)
- Actual velocity _v_act
- Reference value current _Iq_ref

Optimizing the Position Controller Value

- Trigger a step function with the default controller values.
- After the first test, verify the values achieved for _v_act and _Iq_ref for current control and velocity control. The values must not reach the current and velocity limitation range.

Step responses of a position controller with good control performance


The p gain setting CTRL1_KPp (CTRL2_KPp) is optimal if the reference value is reached rapidly and with little or no overshooting.
If the control performance does not correspond to the curve shown, change the P gain CTRL1_KPp (CTRL2_KPp) in increments of approximately $10 \%$ and trigger another step function.

- If the control tends to oscillate: Use a lower KPp value.
- If the actual value is too slow reaching the reference value: Use a higher KPp value.

Optimizing inadequate position controller settings



## Section 5.6

## Parameter Management

What Is in This Section?
This section contains the following topics:

Topic	Page
Memory Card	177
Duplicating Existing Parameter Values	180
Resetting the User Parameters	181
Restoring Factory Settings	182

## Memory Card

## Description

The devices features a card holder for a memory card. The parameters stored on the memory card can be transferred to other devices. If a device is replaced, a new device of the same type can be operated with identical parameters.

The contents of the memory card is compared to the parameters stored in the device when the device is powered on.

When the parameters are written to the nonvolatile memory, they are also saved to the memory card.
The parameters of the safety module require special treatment. See the module manual of the safety module for additional information.


Memory Card

Note the following:

- Use only genuine accessory memory cards.
- Do not touch the gold contacts.
- The insert/remove cycles of the memory card are limited.
- The memory card can remain in the device.
- The memory card can only be removed from the device by pulling (not by pushing).


## NOTICE <br> ELECTROSTATIC DISCHARGE OR INTERMITTENT CONTACT AND LOSS OF DATA <br> Do not touch the contacts of the memory card. <br> Failure to follow these instructions can result in equipment damage.

## Inserting a Memory Card

- 24 Vdc control supply has been powered off.
- Insert the memory card into the device with the gold contacts face down; the slanted corner must be face to the mounting plate.
- Power on the 24 Vdc control supply.
- Observe the 7 -segment display during the initialization of the device.


## [ Ard is Displayed for a Short Period of Time

The device has detected a memory card. User intervention is not required.
The parameter values stored in the device and the contents of the memory card are identical. The data on the memory card originates from the device into which the memory card is plugged in.

## [ Ard is Displayed Permanently

The device has detected a memory card. User intervention is required.

Cause	Options
The memory card is new.	The device data can be transferred   to the memory card.
The data on the memory card does   not match the device (different   device type, different motor type,   different firmware version).	The device data can be transferred   to the memory card.
The data on the memory card   matches the device, but the   parameter values are different.	The device data can be transferred   to the memory card.   The data on the memory card can be   transferred to the device. If the   memory card is to remain in the   device, the device data must be   transferred to the memory card.

[ 月 r d is Not Displayed
The device has not detected a memory card. Power off the 24 Vdc control supply. Verify that the memory card has been properly inserted (contacts, slanted corner).

Data Exchange with the Memory Card
If there are differences between the parameters on the memory card and the parameters stored in the device, the device stops after initialization and displays LArd.

Copying Data or Ignoring the Memory Card ([Ard, Lnr, ctad, dtaг)
If the 7 -segment display shows $[$ R $r d$ :

- Press the navigation button.

The 7-segment display shows the last setting, for example , Lnr.

- Briefly press the navigation button to activate the Edit mode.

The 7 -segment display continues to display the last setting, the Edit LED lights.

- Select with the navigation button:
, Lnr ignores the memory card.
ctod transfers the data from the memory card to the device.
$d t a c$ transfers the data from the device to the memory card.
The device switches to operating state 4 Ready To Switch On.


1 Data on the memory card and in the device are different: The device displays $\subset$ Ard and waits for user intervention.
2 Transition to operating state 4 Ready To Switch On (memory card is ignored).
3 Transfer of data ( $c$ Ead = card to device, $d$ tac = device to card) and transition to operating state 4 Ready To Switch On.

## Memory Card has Been Removed ([ Ar d П , 5 5)

If you removed the memory card, the device displays LArd after initialization. If you confirm this, the display shows $\Pi, 55$. If you confirm again, the product transitions to the operating state . 4 Ready To Switch On.

Write Protection for Memory Card ( $\left[\right.$ 月r $d, E_{n}$ Pr, d, Pr, Prat)
It is possible to write-protect the memory card for LXM 32 ( $\left.P_{r} \circ \boldsymbol{\square}\right)$. For example, you may want to writeprotect memory cards used for regular duplication of device data.
To write-protect the memory card, select $[$ anF-ALL-LArd on the HMI.

Selection	Meaning
$E_{n} P_{r}$	Write protection on $\left(P_{r}\right.$ ロt $)$
$d, P_{r}$	Write protection off

Memory cards can also be write-protected via the commissioning software.

## Duplicating Existing Parameter Values

Application
Multiple devices are to have the same settings, for example, when devices are replaced.

Prerequisites

- Device type, motor type and firmware version must be identical.
- Tools for duplication:
o Memory card
o Commissioning software
- The 24 Vdc control supply must be powered on.


## Duplication Using a Memory Card

Device settings can be stored on a memory card (accessories).
The stored device settings can be copied to a device of the same type. Note that the fieldbus address and the settings for the monitoring functions are copied along with this information.

Duplication Using the Commissioning Software
The commissioning software can save the settings of a device in the form of a configuration file. The stored device settings can be copied to a device of the same type. Note that the fieldbus address and the settings for the monitoring functions are copied along with this information.

See the manual for the commissioning software for additional information.

## Resetting the User Parameters

## Description

The user parameters are reset by means of the parameter PARuserReset.

- Disconnect the drive from the fieldbus.

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
PARuserReset   LanF $\rightarrow$ FL5rESu	Reset user parameters.   O/No/ пם:No   65535/Yes/ YE 5: Yes   Bit 0: Reset persistent user parameters and control loop parameters to default values   Bits 1 ... 15: For future use   The parameters are reset with the exception of:   - Communication parameters   - Inversion of direction of movement   - Type of reference value signal for PTI interface   - Settings of encoder simulation   - Functions of digital inputs and outputs   - Safety module eSM   The new settings are not saved to the nonvolatile memory.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & 0 \\ & - \\ & 65535 \end{aligned}$	UINT16 R/W	Modbus 1040   IDN P-0-3004.0.8

Resetting via the HMI
Use the menu items $[$ anF -> F [5--> rESu of the HMI to reset the user parameters. Confirm the selection with $Y E 5$.

The new settings are not saved to the nonvolatile memory.
If the drive transitions to the operating state " 2 Not Ready To Switch On" after the user parameters are reset, the new settings only become active after the 24 Vdc control supply of the drive is power cycled.

## Resetting via the Commissioning Software

Use the menu items "Device -> User Functions -> Reset User Parameters" in the commissioning software to reset the user parameters.

If the drive transitions to the operating state " 2 Not Ready To Switch On" after the user parameters are reset, the new settings only become active after the 24 Vdc control supply of the drive is power cycled.

## Restoring Factory Settings

## Description

The parameter values, both active and those saved in nonvolatile memory, are lost in this process.

## NOTICE

## LOSS OF DATA

Perform a backup of the drive parameters prior to restoring factory settings (factory established parameter values).

Failure to follow these instructions can result in equipment damage.

The commissioning software allows you to save the parameter values set for a drive as a configuration file. For information on saving the existing parameters in the drive, see chapter Parameter Management (see page 176).
The factory settings can be restored via the HMI or the commissioning software.
Disconnect the drive from the fieldbus before you restore the factory settings.

## Factory Settings via HMI

Use the menu items $[\square \square F \rightarrow F[5-\rightarrow r 5 t F$ of the HMI to restore the factory settings. Confirm the selection with $Y E S$.

The new settings only become active until after the 24 Vdc control supply of the drive is power cycled.

Factory Settings via Commissioning Software
Use the menu items Device $\rightarrow$ User Functions $\rightarrow$ Restore Factory Settings in the commissioning software to restore the factory settings.

The new settings only become active until after the 24 Vdc control supply of the drive is power cycled.

## Chapter 6

## Operation

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
6.1	Access Channels	184
6.2	Movement Range	186
6.3	Scaling	187
6.4	Digital Inputs and Outputs	192
6.5	PTI and PTO Interface	202
6.6	Switching Between Control Loop Parameter Sets	207

## Section 6.1

## Access Channels

## Access Channels

## Description

The product can be accessed via different types of access channels. Simultaneous access via multiple access channels or the use of exclusive access may cause unintended equipment operation.

UNINTENDED EQUIPMENT OPERATION
- Verify that simultaneous access via multiple access channels cannot cause unintended triggering or
blocking of commands.
- Verify that the use of exclusive access cannot cause unintended triggering or blocking of commands.
- Verify that the required access channels are available.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

The product can be addressed via different access channels. Access channels are:

- Integrated HMI
- External graphic display terminal
- Fieldbus
- Commissioning software

Only one access channel can have exclusive access to the product. An exclusive access can be provided via different access channels:

- Via the integrated HMI:

The operating mode Jog or Autotuning can be started via the HMI.

- Via a fieldbus:

Exclusive access is provided to a fieldbus by blocking the other access channels with the parameter AccessLock.

- Via the commissioning software:

The commissioning software receives exclusive access via the switch "Exclusive access" in position "On".

When the drive is powered on, there is no exclusive access via an access channel.
The signal input functions "Positive Limit Switch (LIMP)", "Negative Limit Switch (LIMN)" and "Reference Switch (REF)" as well as the signals of the safety function STO (STO_A and STO_B) are available during exclusive access.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
AccessLock	Locking other access channels.   Value 0: Allow control via other access channels   Value 1: Lock control via other access channels   Example:   The access channel is used by the fieldbus.   In this case, control via the commissioning software, for example, is not possible.   The access channel can only be locked after the currently active operating mode has terminated.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 284 IDN P-0-3001.0.14


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
HMIlocked	Lock HMI.   0 / Not Locked/ nL ac: HMI not locked   1/Locked/Loc: HMI locked   The following functions can no longer be started when the HMI is locked:   - Parameter change   - Jog   - Autotuning   - Fault Reset   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 14850   IDN P-0-3058.0.1

## Section 6.2 <br> Movement Range

## Size of the Movement Range

## Description

The movement range is the maximum possible range within which a movement can be made to any position.
The actual position of the motor is the position in the movement range.
The figure below shows the movement range in user-defined units with the factory scaling.


A -2147483648 user-defined units (usr_p)
B 2147483647 user-defined units (usr_p)

Availability
The movement range is relevant in the following operating modes:

- Jog
- Homing
- Cyclic Synchronous Position

Zero Point of the Movement Range
The zero point of the movement range is the point of reference for absolute movements.

Valid Zero Point
The zero point of the movement range is set by means of a reference movement or by position setting. A reference movement and position setting can be performed in the operating mode Homing.

In the case of a movement beyond the movement range (for example, a relative movement), the zero point becomes invalid.

## Section 6.3

## Scaling

What Is in This Section?
This section contains the following topics:

Topic	Page
General	188
Configuration of Position Scaling	189
Configuration of Velocity Scaling	190
Configuration of Ramp Scaling	191

## General

## Overview

Scaling converts user-defined units into internal units of the device, and vice versa.


## User-Defined Units

Values for positions, velocities, acceleration and deceleration are specified in the following user-defined unit:

- usr_p for positions
- usr_v for velocities
- usr_a for acceleration and deceleration

Modifying the scaling modifies the ratio between user-defined units and internal units. After a modification to the scaling, one and the same value of a parameter specified in a user-defined unit causes a different movement than before the modification. A modification of the scaling affects all parameters whose values are specified in user-defined units.

| UNARNING |
| :--- | :--- |
| UNINTENDED MOVEMENT |
| - Verify all parameters with user-defined units before modifying the scaling factor. |
| - Verify that a modification of the scaling factor cannot cause unintended movements. |
| Failure to follow these instructions can result in death, serious injury, or equipment damage. |

## Scaling Factor

The scaling factor is the relationship between the motor movement and the required user-defined units.

## Configuration of Position Scaling

Description
Position scaling is the relationship between the number of motor revolutions and the required user-defined units (usr_p).

Scaling Factor
Position scaling is specified by means of scaling factor:
In the case of a rotary motor, the scaling factor is calculated as shown below:

Number of revolutions of the motor
Number of user-defined units [usr_p]

The scaling factor is set to 1 / 131072 by the logic/motion controller.

## Configuration of Velocity Scaling

## Description

Velocity scaling is the relationship between the number of motor revolutions per minute and the required user-defined units (usr_v).

## Scaling Factor

Velocity scaling is specified by means of scaling factor:
In the case of a rotary motor, the scaling factor is calculated as shown below:
$\qquad$
Number of user-defined units [usr_v]

Factory Setting
The following factory settings are used:

- 1 motor revolution per minute corresponds to 1 user-defined unit

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
ScaleVELnum	Velocity scaling: Numerator.   Specification of the scaling factor:   Speed of rotation of motor [RPM]   User-defined units [usr_v]   A new scaling is activated when the numerator value is supplied.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & \text { RPM } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1604   IDN P-0-3006.0.34
ScaleVELdenom	Velocity scaling: Denominator.   See numerator (ScaleVELnum) for a description.   A new scaling is activated when the numerator value is supplied.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1602   IDN P-0-3006.0.33

## Configuration of Ramp Scaling

## Description

Ramp scaling is the relationship between the change in velocity and the required user-defined units (usr_a).

Scaling Factor
Ramp scaling is specified by means of scaling factor:
Velocity change per second
Number of user-defined units [usr_a]

## Factory Setting

The following factory settings are used:

- A change of 1 motor revolution per minute per second corresponds to 1 user-defined unit.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ScaleRAMPnum	Ramp scaling: Numerator.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{array}{\|l} \text { RPM/s } \\ 1 \\ 1 \\ 2147483647 \end{array}$	INT32 R/W per.	Modbus 1634   IDN P-0-3006.0.49
ScaleRAMPdenom	Ramp scaling: Denominator.   See numerator (ScaleRAMPnum) for a description.   A new scaling is activated when the numerator value is supplied.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { usr_a } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1632   IDN P-0-3006.0.48

## Section 6.4

## Digital Inputs and Outputs

What Is in This Section?
This section contains the following topics:

Topic	Page
Parameterization of the Signal Input Functions	193
Parameterization of the Signal Output Functions	196
Parameterization of Software Debouncing	200

## Parameterization of the Signal Input Functions

## Signal Input Function

Various signal input functions can be assigned to the digital signal inputs.

WARNING
UNINTENDED EQUIPMENT OPERATION
- Verify that the wiring is appropriate for the factory settings and any subsequent parameterizations.
- Only start the system if there are no persons or obstructions in the zone of operation.
- Carefully run tests for all operating states and potential error situations when commissioning,
upgrading or otherwise modifying the operation of the drive.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

## Factory Settings

The table below shows the factory settings of the digital signal inputs:

Signal	Signal input function
DI0	Freely Available
DI1	Reference Switch (REF)
DI2	Positive Limit Switch (LIMP)
DI3	Negative Limit Switch (LIMN)
DI4	Freely Available
DI5	Freely Available

Parameterization
The table below provides an overview of the possible signal input functions:

Signal input function	Description in chapter
Freely Available	Setting a Signal Output via Parameter (see page 270)
Reference Switch (REF)	Reference Switch (see page 280)
Positive Limit Switch (LIMP)	Limit Switches (see page 279)
Negative Limit Switch (LIMN)	Limit Switches (see page 279)
Switch Controller Parameter Set	Switching Between Control Loop Parameter Sets (see page 207)
Velocity Controller Integral Off	Switching Between Control Loop Parameter Sets (see page 207)
Release Holding Brake	Releasing the Holding Brake Manually (see page 152)

The following parameters can be used to parameterize the digital signal inputs:

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   RW   Persistent   Expert	Parameter address via fieldbus
	Function Input DIO.   1 / Freely Available / $\cap \square \cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L, חп:   Negative limit switch   24 / Switch Controller Parameter Set / [ PAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п $F$ F:   Switches off velocity controller integral term   40 / Release Holding Brake / r E ヶb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1794   IDN P-0-3007.0.1
$\begin{aligned} & \text { IOfunct_DI1 } \\ & \text { [anF } \rightarrow \text { - - } \\ & d, l \end{aligned}$	Function Input DI1.   1 / Freely Available / $n \square \cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L, Пп:   Negative limit switch   24 / Switch Controller Parameter Set / L PAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п F :   Switches off velocity controller integral term   40 / Release Holding Brake / r E hb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1796   IDN P-0-3007.0.2
$\begin{aligned} & \text { IOfunct_DI2 } \\ & \begin{array}{c} \text { a } F \rightarrow \text { - } \end{array} \\ & d, 己 \end{aligned}$	Function Input DI2.   1 / Freely Available / $\cap \square \cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L , Пп:   Negative limit switch   24 / Switch Controller Parameter Set / L PAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / EnaF:   Switches off velocity controller integral term   40 / Release Holding Brake / r E hb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1798   IDN P-0-3007.0.3


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
```IOfunct_DI3 LanF-> 1-a- d,ヨ```	Function Input DI3.   1 / Freely Available / $n$ a $\cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L , חп $:$   Negative limit switch   24 / Switch Controller Parameter Set / L PAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п $F$ F:   Switches off velocity controller integral term   40 / Release Holding Brake / r E hb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\left.\right\|^{-}$	UINT16 R/W per.	Modbus 1800 IDN P-0-3007.0.4
```IOfunct_DI4 LanF-> ,-a- d ,4```	Function Input DI4.   1 / Freely Available / $n$ a $\cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L 1 חп:   Negative limit switch   24 / Switch Controller Parameter Set / L PAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п F :   Switches off velocity controller integral term   40 / Release Holding Brake / r E ヶb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1802   IDN P-0-3007.0.5
$\begin{aligned} & \text { IOfunct_DI5 } \\ & \begin{array}{l} \text { anF } \rightarrow \text { - }-0 \\ d, 5 \end{array} \end{aligned}$	Function Input DI5.   1 / Freely Available / $n$ a $\cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L , חn:   Negative limit switch   24 / Switch Controller Parameter Set / L P R r :   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п $F$ :   Switches off velocity controller integral term   40 / Release Holding Brake / r E Һb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1804 IDN P-0-3007.0.6

## Parameterization of the Signal Output Functions

## Signal Output Function

Various signal output functions can be assigned to the digital signal outputs.
In the case of a detected error the state of the signal outputs remains active according to assigned signal output function.

## WARNING

## UNINTENDED EQUIPMENT OPERATION

- Verify that the wiring is appropriate for the factory settings and any subsequent parameterizations.
- Only start the system if there are no persons or obstructions in the zone of operation.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.
Failure to follow these instructions can result in death, serious injury, or equipment damage.


## Factory Settings

The table below shows the factory settings of the digital signal outputs:

Signal	Signal output function
DQ0	No Fault
DQ1	Active
DQ2	Freely Available

Parameterization
The table below provides an overview of the possible signal output functions:

Signal output function	Description in chapter
Freely Available	Setting a Signal Output via Parameter (see page 270)
No Fault	Indication of the Operating State via Signal Inputs (see page 229)
Active	Indication of the Operating State via Signal Inputs (see page 229)
In Position Deviation Window	Position Deviation Window (see page 288)
In Velocity Deviation Window	Velocity Deviation Window (see page 290)
Velocity Below Threshold	Velocity Threshold Value (see page 292)
Current Below Threshold	Current Threshold Value (see page 293)
Halt Acknowledge	Stop Movement with Halt (see page 266)
Motor Standstill	Motor Standstill and Direction of Movement (see page 287)
Selected Error	Indicating Error Messages (see page 316)
Drive Referenced (ref_ok)	Operating Mode Homing (see page 245)
Selected Warning	Indicating Error Messages (see page 316)
Motor Moves Positive	Motor Standstill and Direction of Movement (see page 287)
Motor Moves Negative	Motor Standstill and Direction of Movement (see page 287)

The following parameters can be used to parameterize the digital signal outputs:

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
```IOfunct_DQ0 LanF-> , - - da口```	Function Output DQ0.   1 / Freely Available / $n$ a $\cap E$ : Available as required   2 / No Fault / $n F L E$ : Signals operating states   Ready To Switch On, Switched On and Operation Enabled   3 / Active / $A \subset E$ ı: Signals operating state   Operation Enabled   5/In Position Deviation Window / in-P: Position deviation is within window   6 / In Velocity Deviation Window / , п - V : Velocity deviation is within window   7 / Velocity Below Threshold / V E hr: Motor   velocity below threshold   8 / Current Below Threshold / , thr: Motor   current below threshold   9 / Halt Acknowledge / h $\boldsymbol{H} L E$ : Halt   acknowledgement   13 / Motor Standstill / П 5 t d: Motor at a standstill   14 / Selected Error / 5 Err: One of the specified   errors of error classes $1 \ldots 4$ is active   15 / Valid Reference (ref_ok) / r EFa:Zero point is valid (ref_ok)   16 / Selected Warning / $5 \mathrm{~W} r n$ : One of the specified errors of error class 0 is active   22 / Motor Moves Positive / $\Pi$ Pa 5 : Motor moves in positive direction   23 / Motor Moves Negative / $\Pi$ п $E L$ : Motor moves in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1810 IDN P-0-3007.0.9


Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
```IOfunct_DQ1 LanF-> ,-a- dal```	Function Output DQ1.   $1 /$ Freely Available / $\cap \square \cap E$ : Available as required   2 / No Fault / $n F L E$ : Signals operating states   Ready To Switch On, Switched On and Operation   Enabled   3 / Active / $R \subset E$ : : Signals operating state   Operation Enabled   5 / In Position Deviation Window / in-P: Position deviation is within window   6 / In Velocity Deviation Window / in - V : Velocity deviation is within window   7 / Velocity Below Threshold / V E h r : Motor velocity below threshold   8 / Current Below Threshold / , thr:Motor current below threshold   9 / Halt Acknowledge / h R L t: Halt   acknowledgement   13 / Motor Standstill / П 5t d: Motor at a standstill   14 / Selected Error / 5 Err: One of the specified errors of error classes $1 \ldots 4$ is active   15/Valid Reference (ref_ok) / rEFa:Zero point is valid (ref_ok)   16 / Selected Warning / $5 \mathrm{~W} r n$ : One of the specified errors of error class 0 is active   22 / Motor Moves Positive / $\Pi$ Pa 5 : Motor moves in positive direction   23 / Motor Moves Negative / $\Pi \cap E L$ : Motor moves in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1812   IDN P-0-3007.0.10


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
$\begin{aligned} & \text { IOfunct_DQ2 } \\ & \operatorname{CanF\rightarrow 1-a-} \\ & \operatorname{da己} \end{aligned}$	Function Output DQ2.   1 / Freely Available / $n$ a $\cap E$ : Available as required   2 / No Fault / $n F L E$ : Signals operating states   Ready To Switch On, Switched On and Operation Enabled   3 / Active / $A _E$ : : Signals operating state   Operation Enabled   5/In Position Deviation Window / ו $\boldsymbol{n}$ - P: Position deviation is within window   6 / In Velocity Deviation Window / , n-V : Velocity deviation is within window   7 / Velocity Below Threshold / V E hr: Motor   velocity below threshold   8 / Current Below Threshold / , thr: Motor   current below threshold   9 / Halt Acknowledge / h R L $E$ : Halt   acknowledgement   13 / Motor Standstill / ח 5 t d: Motor at a standstill   14 / Selected Error / 5 Err: One of the specified   errors of error classes $1 \ldots 4$ is active   15 / Valid Reference (ref_ok) / r E Fa: Zero point is valid (ref_ok)   16 / Selected Warning / $5 \mathrm{~W} r n$ : One of the specified errors of error class 0 is active   22 / Motor Moves Positive / ПPa5: Motor moves in positive direction   23 / Motor Moves Negative / $\Pi п E L$ : Motor moves in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1814   IDN P-0-3007.0.11

## Parameterization of Software Debouncing

Debounce Time
Signal input debouncing comprises hardware debouncing and software debouncing.
Hardware debounce time is permanently set, see chapter Signals, Hardware switching time (see page 36).
When a set signal function is changed and when the product is power cycled, software debouncing is reset to the factory setting.

The software debounce time can be set via the following parameters.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
DI_0_Debounce	Debounce time of DIO.   0 / No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2112   IDN P-0-3008.0.32
DI_1_Debounce	Debounce time of DI1.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 6 \\ 6 \end{array}$	UINT16 R/W per.	Modbus 2114 IDN P-0-3008.0.33
DI_2_Debounce	Debounce time of DI2.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 6 \\ 6 \end{array}$	UINT16 R/W per.	Modbus 2116   IDN P-0-3008.0.34
DI_3_Debounce	Debounce time of DI3.   $0 / \mathrm{No}$   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   5 / 1.25 ms   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2118   IDN P-0-3008.0.35


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
DI_4_Debounce	Debounce time of DI4.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 6 \\ 6 \end{array}$	UINT16 R/W per.	Modbus 2120 IDN P-0-3008.0.36
DI_5_Debounce	Debounce time of DI5.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2122   IDN P-0-3008.0.37

## Section 6.5 <br> PTI and PTO Interface

What Is in This Section?
This section contains the following topics:

Topic	Page
Setting the PTI Interface	203
Setting the PTO Interface	204

## Setting the PTI Interface

Availability
Available with firmware version $\geq$ V01.04 .

Type of Reference Value Signal
$A / B$ signals, P/D signals or CW/CCW signals can be connected to the PTI interface.

- Set the type of reference value signal for the PTI interface with the parameter PTI_signal_type.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
PTI_signal_type LanF $\rightarrow$, -吅,	Type of reference value signal for PTI interface.   0/A/B Signals / Аь: Signals ENC_A and ENC_B (quadruple evaluation)   $1 /$ P/D Signals / $P_{d}$ : Signals PULSE and DIR   $2 /$ CW/CCW Signals / $_W / __$: Signals clockwise   and counterclockwise   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1284   IDN P-0-3005.0.2

## Inverting the Reference Value Signals

The direction of counting of the reference value signals at the PTI interface can be inverted by means of the parameter InvertDirOfCount.

- Activate or deactivate inversion of the direction of counting by means of the parameter InvertDirOfCount.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
InvertDirOfCount		Inversion of direction of counting at PTI interface.   $0 /$ Inversion Off: Inversion of direction of counting is   off   $1 /$ Inversion On: Inversion of direction of counting is   on   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	1	UINT16   R/W   per.

## Setting the Position Value

The position value at the PTI interface can be set manually by means of the parameter p_PTI_act_set.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
P_PTI_act_set		Position value at PTI interface.   Type: Signed decimal -4 bytes   Write access via Sercos: CP2, CP3, CP4   Available with firmware version $\geq$ V01.06.	-2147483648	-
INT32	R/W	Modbus 2130		
		2147483647	-	

## Setting the PTO Interface

Availability
Available with firmware version $\geq$ V01.04.

Type of Usage of PTO Interface
The PTO interface allows you to make reference value signals from the device externally available.
The PTO interface can be used in several ways:

- Encoder simulation based on a position value
- Encoder simulation based on reference current
- PTI signal

The parameter PTO_mode lets you set the way the PTO interface is used.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { PTO_mode } \\ & \Gamma \square \cap F \rightarrow A[L- \\ & P E \square \Pi \end{aligned}$	Type of usage of PTO interface.   O/Off/ aFF: PTO interface disabled   1 / Esim pAct Enc 1 / $P E \cap$ I: Encoder simulation based on actual position of encoder 1   2 / Esim pRef / Pr E F: Encoder simulation based on reference position (_p_ref)   3 / PTI Signal / PE : Directly the signal from PTI interface   4 / Esim pAct Enc 2 / $P E \cap$ 己: Encoder simulation based on actual position of encoder 2 (module)   5 / Esim iqRef / ir E F: Encoder simulation based on reference current   6 / Esim pActRaw Enc2 / E п с 己: Encoder   simulation based on raw position value of encoder 2 (module)   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.   Available with firmware version $\geq$ V01.04.	$\begin{aligned} & 0 \\ & 0 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 1342   IDN P-0-3005.0.31

## Encoder Simulation Based on a Position Value

The following types of encoder simulation based on a position value are possible:

- Encoder simulation based on actual position of encoder 1
- Encoder simulation based on the reference position values (_p_ref)

The resolution for the encoder simulation is set with the parameter ESIM_scale.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { ESIM_scale } \\ & \text { CanF } \rightarrow \text { - - } \\ & \text { ES } 5 \end{aligned}$	Resolution of encoder simulation.   Resolution defines the number of increments per revolution ( $A B$ signal with quadruple evaluation).   The index pulse is created once per revolution at an interval where signal $A$ and signal $B$ are high.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.   Available with firmware version $\geq$ V01.04.	$\begin{aligned} & \text { EncInc } \\ & 8 \\ & 4096 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 1322   IDN P-0-3005.0.21

The parameter ESIM_HighResolution lets you set the resolution with decimal places.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ESIM   HighResolution	Encoder simulation: High resolution.   Specifies the number of increments per revolution with 12 bit decimal places. If the parameter is set to a multiple of 4096 , the index pulse will be generated exactly at the same position within one revolution.   The setting of parameter ESIM_scale is only used if parameter ESIM_HighResolution is set to 0 . Otherwise, the setting of ESIM_HighResolution is used.   Example: 1417.322835 encoder simulation pulses per revolution are required.   Set the parameter to 1417.322835 * $4096=$ 5805354.   In this example, the index pulse will be generated exactly after every 1417 pulses. This means that the index pulse shifts with each revolution.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.   Available with firmware version $\geq$ V01.04.	$\begin{aligned} & \text { EncInc } \\ & 0 \\ & 0 \\ & 268431360 \end{aligned}$	UINT32   R/W   per.   expert	Modbus 1380   IDN P-0-3005.0.50

The phase shift of the encoder simulation is set with the parameter ESIM_PhaseShift.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ESIM_PhaseShift	Encoder simulation: Phase shift for pulse output. The generated encoder simulation pulses can be shifted in units of $1 / 4096$ encoder pulses. The shift results in a position offset at PTO. The index pulse is shifted as well.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.04.	$\begin{aligned} & -32768 \\ & 0 \\ & 32767 \end{aligned}$	INT16 R/W expert	Modbus 1382   IDN P-0-3005.0.51

## Encoder Simulation Based on Reference Current

In the case of encoder simulation based on the reference current, $A / B$ signals are output. The maximum frequency of the $A / B$ signals is $1.6 * 10^{-6}$ increments per second and corresponds to the maximum reference current (value in parameter CTRL_I_max).
With firmware version $\geq \mathrm{V} 01.06$, you can set encoder simulation based on the reference current.

PTI Signal
If the PTI signal is selected by means of parameter PTO_mode, the signal from the PTI interface is directly made available at the PTO interface.

## Section 6.6 <br> Switching Between Control Loop Parameter Sets

What Is in This Section?
This section contains the following topics:

Topic	Page
Overview of the Controller Structure	208
Overview of Position Controller	209
Overview of Velocity Controller	210
Overview of Current Controller	211
Parameterizable Control Loop Parameters	212
Selecting a Control Loop Parameter Set	213
Automatically Switching Between Control Loop Parameter Sets	214
Copying a Control Loop Parameter Set	217
Deactivating the Integral Term	218
Control Loop Parameter Set 1	219
Control Loop Parameter Set 2	221

## Overview of the Controller Structure

The illustration below provides an overview of the controller structure.


1 Position controller
2 Velocity controller
3 Current controller
4 Encoder evaluation

Position Controller
The position controller reduces the difference between the reference position and the actual position of the motor (position deviation) to a minimum. When the motor is at a standstill, the position deviation is close to zero in the case of a well-tuned position controller.

An optimized velocity control loop is a prerequisite for good amplification of the position controller.

Velocity Controller
The velocity controller controls the motor velocity by varying the motor current depending on the load situation. The velocity controller has a decisive influence on the dynamic response of the drive. The dynamics of the velocity controller depend on:

- Moment of inertia of the drive and the controlled system
- Power of the motor
- Stiffness and elasticity of the elements in the flow of forces
- Backlash of the drive elements
- Friction

Current Controller
The current controller determines the torque of the motor. The current controller is automatically optimally tuned with the stored motor data.

## Overview of Position Controller

The illustration below provides an overview of the position controller.


1 Target values for the operating modes Jog and Homing
2 Motion profile for the velocity
3 Velocity feed-forward control
4 Position controller

Sampling Period
The sampling period of the position controller is $250 \mu \mathrm{~s}$.

## Overview of Velocity Controller

The illustration below provides an overview of the velocity controller.


1 Velocity limitation
2 Overshoot suppression filter (parameter accessible in Expert mode)
3 Filter time constant of the reference velocity value filter
4 Acceleration feed forward control (parameter accessible in Expert mode)
5 Friction compensation (parameter accessible in Expert mode)
6 Velocity Loop Controller

## Sampling Period

The sampling period of the velocity controller is $62.5 \mu \mathrm{~s}$.

## Overview of Current Controller

The illustration below provides an overview of the current controller.


1 Current limitation
2 Notch filter (parameter accessible in Expert mode)
3 Filter time constant of the reference current value filter
4 Current controller
5 Power stage

## Sampling Period

The sampling period of the current controller is $62.5 \mu \mathrm{~s}$.

## Parameterizable Control Loop Parameters

Control Loop Parameter Set
The product features 2 control loop parameter sets that can be parameterized separately. The values for the control loop parameters determined during autotuning are stored in control loop parameter set 1.
A control loop parameter set consists of freely accessible parameters and parameters which are only accessible in Expert mode.

Control loop parameter set 1	Control loop parameter set $\mathbf{2}$
Freely accessible parameters:	Freely accessible parameters:
CTRL1_KPn	CTRL2_KPn
CTRL1_TNn	CTRL2_TNn
CTRL1_KPp	CTRL2_KPp
CTRL1_TAUiref	CTRL2_TAUiref
CTRL1_TAUnref	CTRL2_TAUnref
CTRL1_KFPp	CTRL2_KFPp
Parametersonly accessible inexpert	Parametersonly accessible in expert
mode:	mode:
CTRL1_Nf1damp	CTRL2_Nf1damp
CTRL1_Nf1freq	CTRL2_Nf1freq
CTRL1_Nf1bandw	CTRL2_Nf1bandw
CTRL1_Nf2damp	CTRL2_Nf2damp
CTRL1_Nf2freq	CTRL2_Nf2freq
CTRL1_Nf2bandw	CTRL2_Nf2bandw
CTRL1_Osupdamp	CTRL2_Osupdamp
CTRL1_Osupdelay	CTRL2_Osupdelay
CTRL1_Kfric	CTRL2_Kfric

See chapters Control Loop Parameter Set 1 (see page 219) and Control Loop Parameter Set 2 (see page 221).

## Parameterization

- Selecting a control loop parameter set

Select a control loop parameter set after switching on.
See chapter Selecting a Control Loop Parameter Set (see page 213).

- Automatically switching between control loop parameter sets

It is possible to switch between the two control loop parameter sets.
See chapter Automatically Switching Between Control Loop Parameter Sets (see page 214).

- Copying a control loop parameter set

The values of control loop parameter set 1 can be copied to control loop parameter set 2.
See chapter Copying a Control Loop Parameter Set (see page 217).

- Deactivating the integral term

The integral term and, by implication, the integral action time, can be deactivated via a digital signal input.
See chapter Deactivating the Integral Term (see page 218).

## Selecting a Control Loop Parameter Set

## Description

The active control loop parameter set is indicated via the parameter _CTRL_ActParSet.
The parameter CTRL_PwrUpParSet allows you to set the control loop parameter set to be activated after powering on. Alternatively, you can set whether or not the product is to switch automatically between the two control loop parameter sets.

The parameter CTRL_SelParSet allows you to switch between the two control loop parameter sets during operation.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_CTRL_ActParSet	Active control loop parameter set.   Value 1: Control loop parameter set 1 is active   Value 2: Control loop parameter set 2 is active   A control loop parameter set is active after the time for the parameter switching (CTRL_ParChgTime) has elapsed.   Type: Unsigned decimal - 2 bytes	\|-	UINT16 R/-	Modbus 4398   IDN P-0-3017.0.23
CTRL_PwrUpParSet	Selection of control loop parameter set at power up. 0 / Switching Condition: The switching condition is used for control loop parameter set switching 1 / Parameter Set 1: Control loop parameter set 1 is used   2 / Parameter Set 2: Control loop parameter set 2 is used   The selected value is also written to CTRL_SelParSet (non-persistent).   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 4400   IDN P-0-3017.0.24
CTRL_SelParSet	Selection of control loop parameter set (nonpersistent).   Coding see parameter: CTRL_PwrUpParSet   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 4402   IDN P-0-3017.0.25

## Automatically Switching Between Control Loop Parameter Sets

Description
It is possible to automatically switch between the two control loop parameter sets.
The following criteria can be set for switching between the control loop parameter sets:

- Digital signal input
- Position deviation window
- Target velocity below parameterizable value
- Actual velocity below parameterizable value

Settings
The illustration below provides an overview of switching between the parameter sets.


Time Chart
The freely accessible parameters are changed linearly. This linear change of the values of control loop parameter set 1 to the values of control loop parameter set 2 takes place during the parameterizable time CTRL_ParChgTime.
The parameters only accessible in Expert mode are directly changed to the values of the other control loop parameter set after the parameterizable time CTRL_ParChgTime has passed.
The figure below shows the time chart for switching the control loop parameters.
Time chart for switching the control loop parameter sets
\(\left.$$
\begin{array}{l:l|l}\begin{array}{l}\text { CTRL1_KPn } \\
\text { CTRL1_TNn } \\
\text { CTRL1_KPp } \\
\text { CTRL1_TAUnref }\end{array} & & \begin{array}{l}\text { CTRL2_KPn } \\
\text { CTRL1_TAUiref } \\
\text { CTRL1_KFPp }\end{array} \\
& & \begin{array}{l}\text { CTRL2_TNn } \\
\text { CTRL2_KPp }\end{array}
$$ <br>

CTRL2_TAUnref\end{array}\right]\)| CTRL2_TAUiref |
| :--- |
| CTRL2_KFPp |

1 Freely accessible parameters are changed linearly over time
2 Parameters which are only accessible in Expert mode are switched over directly

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CLSET_ParSwiCond	Condition for parameter set switching.   0 / None Or Digital Input: None or digital input function selected   1 / Inside Position Deviation: Inside position deviation (value definition in parameter CLSET_p_DiffWin)   2 / Below Reference Velocity: Below reference velocity (value definition in parameter CLSET_v_Threshol)   3 / Below Actual Velocity: Below actual velocity (value definition in parameter CLSET_v_Threshol)   4 / Reserved: Reserved   In the case of parameter set switching, the values of the following parameters are changed gradually:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   - CTRL_TAUiref   - CTRL_KFPp   The following parameters are changed immediately after the time for parameter set switching   (CTRL_ParChgTime):   - CTRL_Nf1damp   - CTRL_Nf1freq   - CTRL_Nf1bandw   - CTRL_Nf2damp   - CTRL_Nf2freq   - CTRL_Nf2bandw   - CTRL_Osupdamp   - CTRL_Osupdelay   - CTRL_Kfric   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 0 \\ 4 \end{array}$	UINT16 R/W per.	Modbus 4404   IDN P-0-3017.0.26
CLSET_p_DiffWin_usr	Position deviation for control loop parameter set switching.   If the position deviation of the position controller is less than the value of this parameter, control loop parameter set 2 is used. Otherwise, control loop parameter set 1 is used.   The minimum value, the factory setting and the maximum value depend on the scaling factor.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 1311 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 4426   IDN P-0-3017.0.37
CLSET_v_Threshol	Velocity threshold for control loop parameter set switching.   If the reference velocity or the actual velocity are less than the value of this parameter, control loop parameter set 2 is used. Otherwise, control loop parameter set 1 is used.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 50 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 4410   IDN P-0-3017.0.29
CLSET_winTime	Time window for parameter set switching.   Value 0 : Window monitoring deactivated.   Value >0: Window time for the parameters   CLSET_v_Threshol and CLSET_p_DiffWin.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 1000 \end{aligned}$	UINT16 R/W per.	Modbus 4406   IDN P-0-3017.0.27


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
CTRL_ParChgTime	Period of time for control loop parameter set switching.   In the case of control loop parameter set switching, the values of the following parameters are changed gradually:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   - CTRL_TAUiref   - CTRL_KFPp   Such a switching can be caused by   - change of the active control loop parameter set   - change of the global gain   - change of any of the parameters listed above   - deactivating the integral term of the velocity   controller   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 2000 \end{aligned}$	UINT16 R/W per.	Modbus 4392   IDN P-0-3017.0.20

## Copying a Control Loop Parameter Set

## Description

The parameter CTRL_ParSetCopy allows you to copy the values of control loop parameter set 1 to control loop parameter set 2 or the values of control loop parameter set 2 to control loop parameter set 1.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
CTRL_ParSetCopy	Control loop parameter set copying.   Value 1: Copy control loop parameter set 1 to set 2   Value 2: Copy control loop parameter set 2 to set 1   If control loop parameter set 2 is copied to control loop parameter set 1 , the parameter   CTRL_GlobGain is set to $100 \%$.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0.0 \\ & - \\ & 0.2 \end{aligned}$	UINT16 R/W	Modbus 4396   IDN P-0-3017.0.22

Deactivating the Integral Term

The integral term of the velocity controller can be deactivated via the signal input function "Velocity Controller Integral Off". If the integral term is deactivated, the integral action time of the velocity controller (CTRL1_TNn and CTRL2_TNn) is implicitly and gradually reduced to zero. The time it takes to reduce the value to zero depends on the parameter CTRL_ParChgTime. In the case of vertical axes, the integral term is needed to reduce position deviations during standstill.

## Control Loop Parameter Set 1

## Overview

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
	Velocity controller P gain.   The default value is calculated on the basis of the motor parameters.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.0001 A/RPM.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \text { A/RPM } \\ 0.0001 \\ - \\ 2.5400 \end{array}$	UINT16 R/W per.	Modbus 4610   IDN P-0-3018.0.1
$\begin{aligned} & \text { CTRL1_TNn } \\ & {[\text { an } \vec{F} \rightarrow d r L-} \\ & t \text { In } \end{aligned}$	Velocity controller integral action time.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4612   IDN P-0-3018.0.2
$\begin{aligned} & \text { CTRL1_KPp } \\ & \begin{array}{l} \text { ■ } \cap F \rightarrow d r[- \\ P P \text { I } \end{array} \end{aligned}$	Position controller P gain.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \mathrm{1} / \mathrm{s}$.   Modified settings become effective immediately.	$\begin{aligned} & \text { 1/s } \\ & 2.0 \\ & - \\ & 900.0 \end{aligned}$	UINT16 R/W per.	Modbus 4614   IDN P-0-3018.0.3
CTRL1_TAUiref	Filter time constant of the reference current value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 0.50 \\ & 4.00 \end{aligned}$	UINT16 R/W per.	Modbus 4618   IDN P-0-3018.0.5
CTRL1_TAUnref   LanF $\rightarrow$ dr [   t $\mathrm{A}-\mathrm{l}$	Filter time constant of the reference velocity value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 9.00 \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4616   IDN P-0-3018.0.4


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
	Velocity feed-forward control.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l} \% \\ 0.0 \\ 100.0 \\ 200.0 \end{array}$	UINT16 R/W per.	Modbus 4620   IDN P-0-3018.0.6
CTRL1_Nf1damp	Notch filter 1: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4624   IDN P-0-3018.0.8
CTRL1_Nf1freq	Notch filter 1: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{Hz} \\ & 50.0 \\ & 1500.0 \\ & 1500.0 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4626   IDN P-0-3018.0.9
CTRL1_Nf1bandw	Notch filter 1: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{aligned} & \% \\ & 1.0 \\ & 70.0 \\ & 90.0 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4628   IDN P-0-3018.0.10
CTRL1_Nf2damp	Notch filter 2: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4630   IDN P-0-3018.0.11
CTRL1_Nf2freq	Notch filter 2: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{Hz} \\ & 50.0 \\ & 1500.0 \\ & 1500.0 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4632   IDN P-0-3018.0.12
CTRL1_Nf2bandw	Notch filter 2: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{array}{\|l} \% \\ 1.0 \\ 70.0 \\ 90.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4634   IDN P-0-3018.0.13
CTRL1_Osupdamp	Overshoot suppression filter: Damping.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 0.0 \\ 0.0 \\ 50.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4636   IDN P-0-3018.0.14
CTRL1_Osupdelay	Overshoot suppression filter: Time delay.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l\|} \mathrm{ms} \\ 0.00 \\ 0.00 \\ 75.00 \end{array}$	UINT16   R/W   per.   expert	Modbus 4638   IDN P-0-3018.0.15
CTRL1_Kfric	Friction compensation: Gain.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\begin{aligned} & A_{r m s} \\ & 0.00 \\ & 0.00 \\ & 10.00 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4640   IDN P-0-3018.0.16

## Control Loop Parameter Set 2

## Overview

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R／W   Persistent   Expert	Parameter address via fieldbus
	Velocity controller $P$ gain．   The default value is calculated on the basis of the motor parameters．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.0001 A／RPM．   Modified settings become effective immediately．	A／RPM   0.0001   2.5400	UINT16 R／W per．	Modbus 4866   IDN P－0－3019．0．1
$\begin{aligned} & \text { CTRL2_TNn } \\ & \text { LanF } \rightarrow d r L- \\ & t: \cap 己 \end{aligned}$	Velocity controller integral action time． The default value is calculated．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.01 ms ．   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R／W per．	Modbus 4868   IDN P－0－3019．0．2
$\begin{aligned} & \text { CTRL2_KPp } \\ & \begin{array}{l} \text { ロпF } \end{array} \text { drL- } \\ & P P 己 \end{aligned}$	Position controller $P$ gain．   The default value is calculated．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter   CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of $0.11 / \mathrm{s}$ ．   Modified settings become effective immediately．	$\begin{aligned} & 1 / \mathrm{s} \\ & 2.0 \\ & - \\ & 900.0 \end{aligned}$	UINT16 R／W per．	Modbus 4870   IDN P－0－3019．0．3
CTRL2＿TAUiref	Filter time constant of the reference current value filter．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.01 ms ．   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 0.50 \\ & 4.00 \end{aligned}$	UINT16 R／W per．	Modbus 4874   IDN P－0－3019．0．5
$\begin{aligned} & \text { CTRL2_TAUnref } \\ & \text { LanF } \rightarrow d r[\text { - } \\ & t A_{\square} \text { ? } \end{aligned}$	Filter time constant of the reference velocity value filter．   In the case of switching between the two control loop parameter sets，the values are changed linearly over the time defined in the parameter CTRL＿ParChgTime．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of 0.01 ms ．   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 9.00 \\ & 327.67 \end{aligned}$	UINT16 R／W per．	Modbus 4872   IDN P－0－3019．0．4


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL2_KFPp } \\ & \text { CanF } \rightarrow d r L- \\ & F P P 己 \end{aligned}$	Velocity feed-forward control.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l} \% \\ 0.0 \\ 100.0 \\ 200.0 \end{array}$	UINT16 R/W per.	Modbus 4876   IDN P-0-3019.0.6
CTRL2_Nf1damp	Notch filter 1: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4880   IDN P-0-3019.0.8
CTRL2_Nf1freq	Notch filter 1: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{Hz} \\ & 50.0 \\ & 1500.0 \\ & 1500.0 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4882   IDN P-0-3019.0.9
CTRL2_Nf1bandw	Notch filter 1: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{aligned} & \% \\ & 1.0 \\ & 70.0 \\ & 90.0 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4884 IDN P-0-3019.0.10
CTRL2_Nf2damp	Notch filter 2: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4886   IDN P-0-3019.0.11
CTRL2_Nf2freq	Notch filter 2: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{Hz} \\ & 50.0 \\ & 1500.0 \\ & 1500.0 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4888   IDN P-0-3019.0.12
CTRL2_Nf2bandw	Notch filter 2: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{array}{\|l} \% \\ 1.0 \\ 70.0 \\ 90.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4890   IDN P-0-3019.0.13
CTRL2_Osupdamp	Overshoot suppression filter: Damping.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 0.0 \\ 0.0 \\ 50.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4892   IDN P-0-3019.0.14
CTRL2_Osupdelay	Overshoot suppression filter: Time delay.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l\|} \mathrm{ms} \\ 0.00 \\ 0.00 \\ 75.00 \end{array}$	UINT16   R/W   per.   expert	Modbus 4894   IDN P-0-3019.0.15
CTRL2_Kfric	Friction compensation: Gain.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\begin{aligned} & A_{r m s} \\ & 0.00 \\ & 0.00 \\ & 10.00 \end{aligned}$	UINT16   R/W   per.   expert	Modbus 4896   IDN P-0-3019.0.16

## Chapter 7

## Operating States and Operating Modes

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
7.1	Operating States	224
7.2	Operating Modes	233
7.3	Operating Mode Jog	234
7.4	Operating Mode Profile Torque	240
7.5	Operating Mode Homing	Cyclic Synchronous Operating Modes

## Section 7.1

## Operating States

What Is in This Section?
This section contains the following topics:

Topic	Page
State Diagram and State Transitions	225
Indication of the Operating State via HMI	228
Indication of the Operating State via Signal Outputs	229
Indication of the Operating State via Fieldbus	230
Changing the Operating State via HMI	231
Changing the Operating State via Fieldbus	232

## State Diagram and State Transitions

## State Diagram

When the product is powered on and when an operating mode is started, the product goes through a number of operating states.
The state diagram (state machine) shows the relationships between the operating states and the state transitions.

The operating states are internally monitored and influenced by monitoring functions.


## Operating States

Operating state	Description
1 Start	Electronics are initialized
2 Not Ready To Switch On	The power stage is not ready to switch on
3 Switch On Disabled	Impossible to enable the power stage
4 Ready To Switch On	The power stage is ready to switch on.
5 Switched On	Power stage is switched on
6 Operation Enabled	Power stage is enabled   Selected operating mode is active
7 Quick Stop Active	"Quick Stop" is being executed
8 Fault Reaction Active	Error response is active
9 Fault	Error response terminated   Power stage is disabled

## Error Class

The errors are classified according to the following error classes:

Error class	State transition	Error response	Resetting an error message
0	-	No interruption of the movement	Function "Fault Reset"
1	T11	Stop movement with "Quick Stop"	Function "Fault Reset"
2	T13, T14	Stop movement with "Quick Stop" and disable   the power stage when the motor has come to a   standstill	Function "Fault Reset"
3	T13, T14	Disable the power stage immediately without   stopping the movement first	Function "Fault Reset"
4	T13, T14	Disable the power stage immediately without   stopping the movement first	Power cycle

## Error Response

The state transition T13 (error class 2, 3 or 4) initiates an error response as soon as an internal occurrence signals an error to which the device must react.

Error class	Response
2	Movement is stopped with "Quick Stop"   Holding brake is applied   Power stage is disabled
3,4 or Safety function   STO	Power stage is immediately disabled

An error can be triggered by a temperature sensor, for example. The drive cancels the movement and triggers an error response. Subsequently, the operating state changes to 9 Fault.

## Resetting an Error Message

A "Fault Reset" resets an error message.
In the event of a "Quick Stop" triggered by a detected error of class 1 (operating state 7 Quick Stop Active), a "Fault Reset" causes a direct transition to operating state 6 Operation Enabled.

State Transitions
State transitions are triggered by an input signal, a fieldbus command or as a response to a monitoring function.

State transition	Operating state	Condition / event ${ }^{(1)}$	Response
то	1-> 2	- Device electronics successfully initialized	
T1	2-> 3	- Parameter successfully initialized	
T2	3 -> 4	- No undervoltage and Encoder successfully checked and Actual velocity: <1000 RPM and STO signals $=+24 \mathrm{~V}$	
T3	4 -> 5	- Request for enabling the power stage	
T4	5 -> 6	- Request for 'Drive ON'	Power stage is enabled. User parameters are checked. Holding brake is released (if available).
T7	4 -> 3	- Undervoltage   - STO signals $=0 \mathrm{~V}$   - Actual velocity: >1000 RPM (for example by external driving force)	-
T9	6 -> 3	- Request for disabling the power stage	
T10	5 -> 3	- Request for disabling the power stage	
T11	6 -> 7	- Error of error class 1	Movement is canceled with "Quick Stop".
T12	7 -> 3	- Request for disabling the power stage	Power stage is disabled immediately, even if "Quick Stop" is still active.
T13	x-> 8	- Error of error classes 2, 3 or 4	Error response is carried out, see "Error Response".
T14	8 -> 9	- Error response terminated (error class 2)   - Error of error classes 3 or 4	
T15	9 -> 3	- Function: "Fault Reset"	Error is reset (cause of error must have been corrected).
T16	7 -> 6	- Function: "Fault Reset"	In the event of a "Quick Stop" triggered by a detected error of class 1, a "Fault Reset" causes a direct transition to the operating state 6 Operation Enabled.

## Indication of the Operating State via HMI

The operating state is displayed by the HMI. The table below provides an overview:

Operating state	HMI
1 Start	in t
2 Not Ready To Switch On	nrdy
3 Switch On Disabled	d, 5
4 Ready To Switch On	rdy
5 Switched On	5an
6 Operation Enabled	run
7 Quick Stop Active	5tar
8 Fault Reaction Active	FLt
9 Fault	FLt

## Indication of the Operating State via Signal Outputs

Information on the operating state is available via the signal outputs. The table below provides an overview:

Operating state	Signal output function "No fault"(1)	Signal output function "Active"(2)
1 Start	0	0
2 Not Ready To Switch On	0	0
3 Switch On Disabled	0	0
4 Ready To Switch On	1	0
5 Switched On	1	0
6 Operation Enabled	1	1
7 Quick Stop Active	0	0
8 Fault Reaction Active	0	0
9 Fault	0	0
(1) The signal output function is factory setting for DQO   (2) The signal output function is the factory setting for DQ1		

## Indication of the Operating State via Fieldbus

## Description

With the parameter S-0-0135 you can read the status information of the drive.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
S-0-0135	Drive Status.   This parameter contains the status word of the AT.   It can be used for diagnostics purposes.   Type: Hexadecimal -2 bytes   Write access via Sercos: Read only	-	R/-	IDN S-0-0135


Bits	Meaning
$0 \ldots 2$	Reserved
3	Value 0: Drive ignores the command values.   Value 1: Drive follows the command values.
4	Value 0: Drive Halt is not active.   Value 1: Drive Halt is active.
$5 \ldots 7$	Reserved   $8 \ldots 10$   Value 0: Primary operating mode is set.   Value 1: Secondary operating mode 1 is set.   Value 2: Secondary operating mode 2 is set.   Value >2: Reserved.   11Reserved   12Value 0: No detected error with the error class 0.   Value 1: Detected error with the error class 0.
13	Value 0: No detected error with the error class 1, 2, 3, or 4.   Value 1: Detected error with the error class 1, 2, 3, or 4.
$14 \ldots 15$	Value 0: Drive not ready.   Value 1: Drive ready for main power on.   Value 2: Drive ready and main power applied.   Value 3: Drive enabled.

## Changing the Operating State via HMI

An error message can be reset via the HMI


In the case of a detected error of error class 1, resetting the error message causes a transition from operating state 7 Quick Stop Active back to operating state 6 Operation Enabled.

In the case of a detected error of error classes 2 or 3, resetting the error message causes a transition from operating state 9 Fault back to operating state 3 Switch On Disable.

## Changing the Operating State via Fieldbus

## Description

With the parameter S-0-0134 you can change the operating state of the drive and select the operating mode.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
S-0-0134	Drive Control.   This parameter contains the control word.   Type: Hexadecimal -2 bytes   Write access via Sercos: CP2, CP3, CP4	-	R/W	IDN S-0-0134


Bits	Meaning
$0 \ldots 7$	Reserved
$8 \ldots 10$	Value 0: Primary operating mode.   Value 1: Secondary operating mode 1.   Value 2: Secondary operating mode 2.   Value >2: Reserved.
$11 \ldots 12$	Reserved
13	Value 0: Drive halt   Value 1: Drive restart (after Halt)
14	Value 0: Drive disable   Value 1: Drive enable
15	Value 0: Drive OFF   Value 1: Drive ON

With the parameter S-0-0099 you can reset detected errors (state transition T15).

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
S-0-0099	Reset class 1 diagnostic.   If this procedure command is received by the drive   via the service channel, the detected errors, the   error bits and the shut-down mechanism are   cleared.   Type: Binary - 2 bytes   Write access via Sercos: CP2,CP3, CP4   Class name: GDP_Basic	-	7	R/W

## Section 7.2 <br> Operating Modes

## Starting and Changing an Operating Mode

## Starting the Operating Mode

The desired operating mode is set via the Sercos controller. Refer to the user guide of your Sercos controller for more details.

## Changing the Operating Mode

The operating mode can be changed after the active operating mode has been terminated.
In addition, it is also possible to change the operating mode during a running movement; however, this is only possible in certain operating modes.

Changing the Operating Mode During a Movement
You can switch between the following operating modes during a running movement.

- Jog
- Profile Torque
- Cyclic Synchronous Torque
- Cyclic Synchronous Velocity
- Cyclic Synchronous Position

The operating mode can be changed while the motor is at a standstill or while the motor is not at a standstill, depending on the new operating mode.

Operating mode to be changed to	Motor standstill
Jog	With motor standstill
Profile Torque	Without motor standstill
Cyclic Synchronous Torque	If you change from Jog or Profile Torque:   With motor standstill   If you change from Cyclic Synchronous Velocity or   Cyclic Synchronous Position:   Without motor standstill
Cyclic Synchronous Velocity	If you change from Jog or Profile Torque:   With motor standstill   If you change from Cyclic Synchronous Torque or   Cyclic Synchronous Position:   Without motor standstill
Cyclic Synchronous Position	If you change from Jog or Profile Torque:   With motor standstill   If you change from Cyclic Synchronous Torque or   Cyclic Synchronous Velocity:   Without motor standstill

The motor is decelerated to a standstill via the ramp set in the parameter LIM_HaltReaction, see chapter Stop Movement with Halt (see page 266).
NOTE: The change of the operating mode during a movement depends also on the functionality of the Sercos controller. Refer to the user guide of your Sercos controller for more details.

## Section 7.3

## Operating Mode Jog

What Is in This Section?
This section contains the following topics:

| Topic | Page |
| :--- | :---: | :---: |
| Overview | 235 |
| Parameterization | 237 |
| Additional Settings | 239 |

## Overview

Description
In the operating mode Jog, a movement is made from the actual motor position in the specified direction.
A movement can be made using one of two methods:

- Continuous movement
- Step movement

In addition, the product features two parameterizable velocities.
Further, the movement can be made either in a positive or negative direction for both methods:

- $\quad \mathrm{J}$, - : slow movement in positive direction
- $J \square=$ : fast movement in positive direction
- -$\lrcorner[$ : slow movement in negative direction
- $=J \square:$ fast movement in negative direction


## Continuous Movement

As long as the signal for the direction is available, a continuous movement is made in the desired direction.
The illustration below provides an example of continuous movement:


1 Slow movement in positive direction
2 Slow movement in negative direction
3 Fast movement in positive direction

Step Movement
If the signal for the direction is available for a short period of time, a movement with a parameterizable number of user-defined units is made in the desired direction.
If the signal for the direction is available continuously, a movement with a parameterizable number of userdefined units is made in the desired direction. After this movement, the motor stops for a defined period of time. Then a continuous movement is made in the desired direction.
The illustration provides an example of step movement:


1 Slow movement in positive direction with a parameterizable number of user-defined units JoGstep
2 Waiting time JOGtime
3 Slow continuous movement in positive direction

## Integrated HMI

It is also possible to start the operating mode via the HMI. Calling $\rightarrow \square P \rightarrow\rfloor \square \square \rightarrow\rfloor[5 t$ enables the power stage and starts the operating mode.
The method Continuous Movement is controlled via the HMI.
Turn the navigation button to select one of 4 types of movement:

- $\quad J[-$ : slow movement in positive direction
- $\quad J[=:$ fast movement in positive direction
- -$\rfloor[$ : slow movement in negative direction
- $=\lrcorner \square:$ fast movement in negative direction

Press the navigation button to start the movement.

## Status Messages

Information on the operating state and the ongoing movement is available via signal outputs.
The table below provides an overview of the signal outputs:

Signal output	Signal output function
DQ0	"No Fault"   Signals the operating states 4 Ready To Switch On,   5 Switched On and 6 Operation Enabled
DQ1	"Active"   Signals the operating state 6 Operation Enabled
DQ2	"Freely Available"   See chapter Setting a Signal Output via Parameter   (see page 270)

It is possible to change the factory settings of the signal outputs, see chapter Digital Inputs and Outputs (see page 192).

## Parameterization

## Overview

The illustration below provides an overview of the adjustable parameters．


Velocities
Two parameterizable velocities are available．
－Set the desired values with the parameters JOGv＿slow and JOGv＿fast．

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { JOGv_slow } \\ & \square P \rightarrow \text { 」a - } \\ & \text { JLLa } \end{aligned}$	Velocity for slow movement．   The adjustable value is internally limited to the parameter setting in RAMP＿v＿max．   Type：Unsigned decimal－ 4 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 60 \\ & 2147483647 \end{aligned}$	UINT32 R／W per．	Modbus 10504   IDN P－0－3041．0．4
$\begin{aligned} & \text { JOGv_fast } \\ & \text { ロP } \rightarrow \text { 」a[ - } \\ & \text { JLh , } \end{aligned}$	Velocity for fast movement．   The adjustable value is internally limited to the parameter setting in RAMP＿v＿max．   Type：Unsigned decimal－ 4 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 180 \\ & 2147483647 \end{aligned}$	UINT32 R／W per．	Modbus 10506   IDN P－0－3041．0．5

Selection of the Method
The parameter JOGmethod lets you set the method．
－Set the desired method with the parameter JoGmethod．

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
JoGmethod	Selection of jog method．   0 ／Continuous Movement／ᄃ 0 ：Jog with continuous movement 1 ／Step Movement／5ヒ 5 a：Jog with step movement   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R／W	Modbus 10502   IDN P－0－3041．0．3

Setting the Step Movement
The parameters JOGstep and JOGtime are used to set the parameterizable number of user-defined units and the time for which the motor is stopped.

- Set the desired values with the parameters JoGstep and JOGtime.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
JoGstep	Distance for step movement.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	```usr_p 1 20 2147483647```	INT32 R/W per. -	Modbus 10510 IDN P-0-3041.0.7
JoGtime	Wait time for step movement.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{array}{\|l} \hline \mathrm{ms} \\ 1 \\ 500 \\ 32767 \end{array}$	UINT16 R/W per.	Modbus 10512   IDN P-0-3041.0.8

Changing the Motion Profile for the Velocity
It is possible to change the parameterization of the Motion Profile for the Velocity (see page 263).

## Additional Settings

The following functions can be used for target value processing:

- Chapter Jerk Limitation (see page 265)
- Chapter Stop Movement with Halt (see page 266)
- Chapter Stop Movement with Quick Stop (see page 268)
- Chapter Setting a Signal Output via Parameter (see page 270)
- Chapter Position Capture via Signal Input (Vendor-Specific Profile) (see page 271)

The following functions can be used for monitoring the movement:

- Chapter Limit Switches (see page 279)
- Chapter Software Limit Switches (see page 281)
- Chapter Load-Dependent Position Deviation (Following Error) (see page 283)
- Chapter Motor Standstill and Direction of Movement (see page 287)
- Chapter Position Deviation Window (see page 288)
- Chapter Velocity Deviation Window (see page 290)
- Chapter Velocity Threshold Value (see page 292)
- Chapter Current Threshold Value (see page 293)


## Section 7.4

## Operating Mode Profile Torque

What Is in This Section?
This section contains the following topics:

| Topic | Page |
| :--- | :---: | :---: |
| Overview | 241 |
| Parameterization | 242 |
| Additional Settings | 244 |

## Overview

Description
In the operating mode Profile Torque, a movement is made with a specified target torque.
The target torque can be set via a reference current via the PTI interface.
Without a proper limit value, the motor can reach an unintentionally high velocity in this operating mode.

## A WARNING

## UNINTENTIONALLY HIGH VELOCITY

Verify that the parameterized velocity limitation is appropriate for the motor.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

## Starting the Operating Mode

The operating mode is started via the Sercos controller. Refer to the user guide of your Sercos controller for more details.

## Status Messages

Information on the operating state and the ongoing movement is available via the fieldbus and the signal outputs.

The table below provides an overview of the signal outputs:

Signal output	Signal output function
DQ0	"No Fault"   Signals the operating states 4 Ready To Switch On, 5 Switched On and   6 Operation Enabled
DQ1	"Active"   Signals the operating state 6 Operation Enabled
DQ2	"Freely Available"   See chapter Setting a Signal Output via Parameter (see page 270)

It is possible to change the factory settings of the signal outputs, see chapter Digital Inputs and Outputs (see page 192).

## Terminating the Operating Mode

The operating mode is terminated when the motor is at a standstill and one of the following conditions is met:

- Stop caused by "Halt" or "Quick Stop"
- Stop caused by a detected error


## Parameterization

## Overview

The illustration below provides an overview of the adjustable parameters.


Setting the Source of the Reference Value
The parameter PTtq_reference is used to set the source of the reference value.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
PTtq_reference		Reference value source for operating mode Profile   Torque.   $0 /$ None: None   $1 /$ Parameter 'PTtq_target': Reference value via   parameter PTtq_target   $3 /$ PTI Interface: Reference value via PTI interface	3	UINT16   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.08.

Type of Reference Value Signal and Inversion of the Reference Value Signals (for PTI Interface Only)
The PTI interface can be set:

- Type of reference value signal (must be set to $A / B$ signals)
- Inverting the reference value signals

See chapter Setting the PTI Interface (see page 203) for information on setting the PTI interface.

Setting the Reference Current (for PTI Interface Only)
The parameter Iref_PTIFreqMax is used to set the reference current.

- Set the desired reference current with the parameter Iref_PTIFreqMax.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
Iref_PTIFreqMax		Reference current for operating mode Profile   Torque via PTI interface.   Reference current corresponding to 1.6 million   increments per second at the PTI interface for   operating mode Profile Torque.   Type: Unsigned decimal -2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 A   Modified settings become effective immediately.	$\mathrm{A}_{\text {rms }}$ -   Available with firmware version $\geq$ V01.06.	UINT16   R/W   per.

## Additional Settings

The following functions can be used for target value processing:

- Chapter Stop Movement with Halt (see page 266)
- Chapter Stop Movement with Quick Stop (see page 268)
- Chapter Position Capture via Signal Input (Vendor-Specific Profile) (see page 271)

The following functions can be used for monitoring the movement:

- Chapter Limit Switches (see page 279)
- Chapter Software Limit Switches (see page 281)
- Chapter Motor Standstill and Direction of Movement (see page 287)
- Chapter Velocity Threshold Value (see page 292)
- Chapter Current Threshold Value (see page 293)


## Section 7.5

## Operating Mode Homing

What Is in This Section?
This section contains the following topics:

Topic	Page
Overview	246
Parameterization	248
Reference Movement to a Limit Switch	253
Reference Movement to the Reference Switch in Positive Direction	254
Reference Movement to the Reference Switch in Negative Direction	255
Reference Movement to the Index Pulse	256
Position Setting	257
Additional Settings	258

## Overview

## Description

In the operating mode Homing, a reference is generated between a mechanical position and the actual position of the motor.
A reference between a mechanical position and the actual position of the motor is generated by means of a reference movement or by means of position setting.
A successful reference movement or position setting homes the motor and the zero point becomes valid. The zero point of the movement range is the point of reference for absolute movements.

## Methods

A movement can be made using different methods:

- Reference movement to a limit switch

In the case of a reference movement to a limit switch, a movement to the negative limit switch or the positive limit switch is performed.
When the limit switch is reached, the motor is stopped and a movement is made back to the switching point of the limit switch.
From the switching point of the limit switch, a movement is made to the next index pulse of the motor or to a parameterizable distance from the switching point.
The position of the index pulse or the position of the parameterizable distance from the switching point is the reference point.

- Reference movement to the reference switch

In the case of a reference movement to the reference switch, a movement to the reference switch is performed.
When the reference switch is reached, the motor is stopped and a movement is made back to the switching point of the reference switch
From the switching point of the reference switch, a movement is made to the next index pulse of the motor or to a parameterizable distance from the switching point.
The position of the index pulse or the position of the parameterizable distance from the switching point is the reference point.

- Reference movement to the index pulse

In the case of a reference movement to the index pulse, a movement is made from the actual position to the next index pulse. The position of the index pulse is the reference point.

- Position setting

In the case of position setting, the actual position of the motor is set to a desired position value.
A reference movement must be terminated without interruption for the new zero point to be valid. If the reference movement is interrupted, it must be started again.
Motors with multiturn encoder deliver a valid zero point after they are powered on.

## Starting the Operating Mode

The parameter $\mathrm{S}-0-0148$ is used to start the operating mode Homing.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
S-0-0148	Drive controlled homing procedure command.   This parameter starts homing with the homing   method settings made in the drive objects. See the   product manual for details on homing.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4	-	R/W	IDN S-0-0148

Information on the operating state and the ongoing movement is available via the fieldbus and the signal outputs.
The table below provides an overview of the signal outputs:

Signal output	Signal output function
DQ0	"No Fault"   Signals the operating states 4 Ready To Switch On, 5 Switched On and   6 Operation Enabled
DQ1	"Active"   Signals the operating state 6 Operation Enabled
DQ2	"Freely Available"
See chapter Setting a Signal Output via Parameter (see page 270)	

It is possible to change the factory settings of the signal outputs, see chapter Digital Inputs and Outputs (see page 192).

## Terminating the Operating Mode

The operating mode is terminated when the motor is at a standstill and one of the following conditions is met:

- Homing successful
- Stop caused by "Halt" or "Quick Stop"
- Stop caused by a detected error


## Parameterization

## Overview

The illustration below provides an overview of the adjustable parameters.
Overview of adjustable parameters


Setting Limit Switches and Reference Switches
The limit switches and reference switches must be set to meet the requirements, see chapter Limit Switches (see page 279) and chapter Reference Switch (see page 280).

## Selection of the Method

The operating mode Homing establishes an absolute position reference between the motor position and a defined axis position. There are various Homing methods which can be selected via the parameter HMmethod.

The HMprefmethod parameter is used to save the preferred method to the nonvolatile memory (persistent). When the preferred method has been set in this parameter, the method is performed during homing even after the device is powered off and on. The value to be entered corresponds to the value in the HMmethod parameter.

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
HMmethod	Homing method.   1: LIMN with index pulse   2: LIMP with index pulse   7: REF+ with index pulse, inv., outside   8: REF+ with index pulse, inv., inside   9: REF+ with index pulse, not inv., inside   10: REF+ with index pulse, not inv., outside   11: REF- with index pulse, inv., outside   12: REF- with index pulse, inv., inside   13: REF- with index pulse, not inv., inside   14: REF- with index pulse, not inv., outside   17: LIMN   18: LIMP   23: REF+, inv., outside   24: REF+, inv., inside   25: REF+, not inv., inside   26: REF+, not inv., outside   27: REF-, inv., outside   28: REF-, inv., inside   29: REF-, not inv., inside   30: REF-, not inv., outside   33: Index pulse neg. direction   34: Index pulse pos. direction   35: Position setting   Abbreviations:   REF+: Search movement in pos. direction   REF-: Search movement in neg. direction inv.: Invert direction in switch not inv.: Direction not inverted in switch outside: Index pulse / distance outside switch inside: Index pulse / distance inside switch   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 1 \\ & 18 \\ & 35 \end{aligned}$	INT16 R/W	Modbus 6936   IDN P-0-3027.0.12
HMprefmethod   - $P \rightarrow$ ҺロП-   ПEヒ	Preferred homing method.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 1 \\ & 18 \\ & 35 \end{aligned}$	INT16 R/W per.	Modbus 10260   IDN P-0-3040.0.10

Setting the Distance From the Switching Point
A distance to the switching point of the limit switch or the reference switch must be parameterized for a reference movement with index pulse. The parameter hMdis lets you set the distance to the switching limit switch or the reference switch.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
HMdis	Distance from switching point.   The distance from the switching point is defined as the reference point.   The parameter is only effective during a reference movement without index pulse.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 1 \\ & 200 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 10254 IDN P-0-3040.0.7

Defining the Zero Point
The parameter HMp_home is used to specify a desired position value, which is set at the reference point after a successful reference movement. The desired position value at the reference point defines the zero point.
If the value 0 is used, the zero point corresponds to the reference point.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
HMp_home		usr_p   After a successful reference movement, this   position is automatically set at the reference point.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the   motor moves.	-2147483648	2147483647

## Setting Monitoring

The parameters HMoutdis and HMsrchdis allow you to activate monitoring of the limit switches and the reference switch.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
HMoutdis	Maximum distance for search for switching point.   0 : Monitoring of distance inactive   $>0$ : Maximum distance   After detection of the switch, the drive starts to search for the defined switching point. If the defined switching point is not found within the distance defined here, the reference movement is canceled and an error is detected.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{array}{\|l} \text { usr_p } \\ 0 \\ 0 \\ 2147483647 \end{array}$	INT32 R/W per.	Modbus 10252 IDN P-0-3040.0.6
HMsrchdis	Maximum search distance after overtravel of switch.   0 : Search distance monitoring disabled   $>0$ : Search distance   The switch must be activated again within this search distance, otherwise the reference movement is canceled.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{array}{\|l\|} \hline \text { usr_p } \\ 0 \\ 0 \\ 2147483647 \end{array}$	INT32 R/W per. -	Modbus 10266   IDN P-0-3040.0.13

## Reading out the Position Distance

The position distance between the switching point and index pulse can be read out with the following parameter.
The distance between the switching point and the index pulse must be $>0.05$ revolutions for reproducible reference movements with index pulse.
If the index pulse is too close to the switching point, the limit switch or reference switch can be moved mechanically
Otherwise the position of the index pulse can be moved with the parameter Enc_pabsusr, see Chapter Setting Parameters for Encoder (see page 155).

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address   via fieldbus
- HMdisREFtoIDX_usr		Distance from switching point to index pulse.   Allows you to verify the distance between the index   pulse and the switching point and serves as a   criterion for determining whether the reference   movement with index pulse can be reproduced.   Type: Signed decimal - 4 bytes	-2147483648	-
usr_p				

Setting Velocities
The parameters HMv and HMv_out are used to set the velocities for searching the switch and for moving away from the switch.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
	Target velocity for searching the switch.   The adjustable value is internally limited to the parameter setting in RAMP_v_max.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_v } \\ & - \\ & 60 \end{aligned}$	UINT32 R/W per.	Modbus 10248 IDN P-0-3040.0.4
HMv_out	Target velocity for moving away from switch. The adjustable value is internally limited to the parameter setting in RAMP_v_max.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 6 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 10250 IDN P-0-3040.0.5

Changing the Motion Profile for the Velocity
It is possible to change the parameterization of the Motion Profile for the Velocity (see page 263).

## Reference Movement to a Limit Switch

The illustration below shows a reference movement to a limit switch
Reference movement to a limit switch
"Negative Limit Switch"


1 Movement to limit switch at velocity HMv
2 Movement to the switching point of the limit switch at velocity HMv_out
3 Movement to index pulse or movement to a distance from the switching point at velocity HMv_out

Type A
Method 1: Movement to the index pulse.
Method 17: Movement to distance from switching point.

Type B
Method 2: Movement to the index pulse.
Method 18: Movement to distance from switching point.

## Reference Movement to the Reference Switch in Positive Direction

The illustration below shows a reference movement to the reference switch in positive direction Reference movement to the reference switch in positive direction


1 Movement to reference switch at velocity HMv
2 Movement to the switching point of the reference switch at velocity HMv_out
3 Movement to index pulse or movement to a distance from the switching point at velocity HMv_out

Type A
Method 7: Movement to the index pulse.
Method 23: Movement to distance from switching point.
Type B
Method 8: Movement to the index pulse.
Method 24: Movement to distance from switching point.

Type C
Method 9: Movement to the index pulse.
Method 25: Movement to distance from switching point.
Type D
Method 10: Movement to the index pulse.
Method 26: Movement to distance from switching point.

## Reference Movement to the Reference Switch in Negative Direction

The illustration below shows a reference movement to the reference switch in negative direction Reference movement to the reference switch in negative direction


1 Movement to reference switch at velocity HMv
2 Movement to the switching point of the reference switch at velocity HMv_out
3 Movement to index pulse or movement to a distance from the switching point at velocity HMv_out

Type A
Method 11: Movement to the index pulse.
Method 27: Movement to distance from switching point.

Type B
Method 12: Movement to the index pulse.
Method 28: Movement to distance from switching point.

Type C
Method 13: Movement to the index pulse.
Method 29: Movement to distance from switching point.

Type D
Method 14: Movement to the index pulse.
Method 30: Movement to distance from switching point.

## Reference Movement to the Index Pulse

The illustration below shows a reference movement to the index pulse
Reference movement to the index pulse


1 Movement to index pulse at velocity HMv _out

## Position Setting

## Description

By means of position setting, the actual position of the motor is set to the position value in parameter HMp_home. This also defines the zero point.
Position setting is only possible when the motor is at a standstill. Any active position deviation remains active and can still be compensated for by the position controller after position setting.

Setting the Position for Position Setting

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
HMp_home	Position at reference point.   After a successful reference movement, this   position is automatically set at the reference point.   Type: Signed decimal -4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the   motor moves.	usr_p   -2147483648	INT32   R/W   per.	Modbus 10262   IDN P-0-3040.0.11

## Example

Movement by 4000 user-defined units with position setting


1 The motor is positioned by 2000 user-defined units.
2 By means of position setting to 0 , the actual position of the motor is set to position value 0 which, at the same time, defines a new zero point.
3 When a new movement by 2000 user-defined units is triggered, the new target position is 2000 user-defined units.

## Additional Settings

The following functions can be used for target value processing:

- Chapter Jerk Limitation (see page 265)
- Chapter Stop Movement with Halt (see page 266)
- Chapter Limitation of the Current via Signal Inputs
- Chapter Setting a Signal Output via Parameter (see page 270)
- Chapter Position Capture via Signal Input (Vendor-Specific Profile) (see page 271)

The following functions can be used for monitoring the movement:

- Chapter Limit Switches (see page 279)
- Chapter Reference Switch (see page 280)
- Chapter Software Limit Switches (see page 281)
- Chapter Load-Dependent Position Deviation (Following Error) (see page 283)
- Chapter Motor Standstill and Direction of Movement (see page 287)
- Chapter Position Deviation Window (see page 288)
- Chapter Velocity Deviation Window (see page 290)
- Chapter Velocity Threshold Value (see page 292)
- Chapter Current Threshold Value (see page 293)


## Section 7.6

## Cyclic Synchronous Operating Modes

## Overview

Description
The following Cyclic Synchronous operating modes are supported:

- Cyclic Synchronous Position
- Cyclic Synchronous Velocity
- Cyclic Synchronous Torque

The motor synchronously follows the target values transmitted on a cyclic basis. The transmitted values are linearly interpolated (internally).
The possible applications for these operating mode are described in the manual of the master controller.
The operating modes are fixed set in the corresponding SERCOS parameters:

- Parameter S-0-0032 Primary Operation Mode for Cyclic Synchronous Position
- Parameter S-0-0033 Secondary Operation Mode 1 for Cyclic Synchronous Velocity
- Parameter S-0-0034 Secondary Operation Mode 2 for Cyclic Synchronous Torque


## Chapter 8

## Functions for Operation

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
8.1	Functions for Target Value Processing	262
8.2	Functions for Monitoring Movements	278
8.3	Functions for Monitoring Internal Device Signals	295

## Section 8.1

## Functions for Target Value Processing

What Is in This Section?
This section contains the following topics:

Topic	Page
Motion Profile for the Velocity	263
Jerk Limitation	265
Stop Movement with Halt	266
Stop Movement with Quick Stop	268
Setting a Signal Output via Parameter	270
Position Capture via Signal Input (Vendor-Specific Profile)	271
Backlash Compensation	276

## Motion Profile for the Velocity

## Description

Target position and target velocity are input values specified by the user. A motion profile for the velocity is calculated on the basis of these input values.
The motion profile for the velocity consists of an acceleration, a deceleration and a maximum velocity.
A linear ramp for both directions of movement is available.

## Availability

The availability of the motion profile for the velocity depends on the operating mode.
In the following operating modes, the motion profile for the velocity is permanently active:

- Jog
- Homing

Ramp Slope
The ramp slope determines the velocity changes of the motor per time unit. The ramp slope can be set for acceleration and deceleration.


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
RAMP_v_enable	Activation of the motion profile for velocity.   0 / Profile Off: Profile off   1 / Profile On: Profile on   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 1 \\ 1 \end{array}$	UINT16 R/W per.	Modbus 1622   IDN P-0-3006.0.43
RAMP_v_max LanF $\rightarrow$ AL[nr ПP	Maximum velocity of the motion profile for velocity. If a greater reference velocity is set in one of these operating modes, it is automatically limited to RAMP_v_max.   This way, commissioning at limited velocity is easier to perform.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the motor moves.	$\begin{array}{\|l} \mid \text { usr_v } \\ 1 \\ 13200 \\ 2147483647 \end{array}$	UINT32 R/W per.	Modbus 1554   IDN P-0-3006.0.9
RAMP_v_acc	Acceleration of the motion profile for velocity.   Writing the value 0 has no effect on the parameter.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_a } \\ & 1 \\ & 600 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1556   IDN P-0-3006.0.10


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
RAMP_v_dec	Deceleration of the motion profile for velocity.   The minimum value depends on the operating   mode:	usr_a   1	UINT32   R/W   per.	Modbus 1558   IDN P-0-3006.0.11
	Operating modes with minimum value 120:   Jog   Homing	2147483647		
	Writing the value 0 has no effect on the parameter.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the   motor moves.			

## Jerk Limitation

## Description

Jerk limitation smoothes sudden acceleration changes to allow for smooth transitions with almost no jerking．


Availability
Jerk limitation is available in the following operating modes．
－Jog
－Homing

Settings
Jerk limitation is activated and set via the parameter RAMP＿v＿jerk．

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { RAMP_v_jerk } \\ & \text { LanF } \rightarrow d r L- \\ & \quad \operatorname{A} r \end{aligned}$	Jerk limitation of the motion profile for velocity．   O／Off／aFF：Off   1／1／I：1ms   2／2／ᄅ：2ms   4／4／4：4ms   8／8／日： 8 ms   16／16／IБ： 16 ms   32／32／ヨ こ： 32 ms   64 ／ 64 ／Б $4: 64 \mathrm{~ms}$   128／128／Iट日： 128 ms   Adjustments can only be made if the operating   mode is inactive（x＿end＝1）．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective the next time the motor moves．	$\begin{array}{\|l} \mathrm{ms} \\ 0 \\ 0 \\ 128 \end{array}$	UINT16 R／W per．	Modbus 1562   IDN P－0－3006．0．13

## Stop Movement with Halt

With a Halt, the ongoing movement is interrupted; it can be resumed.
A Halt can be triggered via a digital signal input or a fieldbus command.
In order to interrupt a movement via a signal input, you must first parameterize the signal input function "Halt", see chapter Digital Inputs and Outputs (see page 192).

The movement can be interrupted with 2 different deceleration types.

- Deceleration via deceleration ramp
- Deceleration via torque ramp

Setting the Type of Deceleration
The parameter LIM_HaltReaction lets you set the type of deceleration.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
LIM_HaltReaction	Halt option code.   1 / Deceleration Ramp / dE cE   3 / Torque Ramp / tar 9   Set the deceleration ramp with parameter RAMP_v_dec.   Set the torque ramp with parameter LIM_I_maxHalt.   If a deceleration ramp is already active, the parameter cannot be written.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	INT16 R/W per.	Modbus 1582 IDN P-0-3006.0.23

## Setting the Deceleration Ramp

The deceleration ramp is set with the parameter Ramp_v_dec via the Motion Profile for the Velocity (see page 263).

Setting the Torque Ramp
The parameter LIM_I_maxHalt lets you set the torque ramp.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
$\begin{aligned} & \text { LIM_I_maxHalt } \\ & C \text { an } \rightarrow \text { ACL- } \\ & \text { heur } \end{aligned}$	Current for Halt.   This value is only limited by the minimum/maximum value range (no limitation of this value by motor/power stage).   In the case of a Halt, the current limit (_Imax_act) is one of the following values (whichever is lowest):   - LIM_I_maxHalt   - _M_I_max   - _PS_I_max   Further current limitations caused by I 2 t monitoring are also taken into account during a Halt.   Default: _PS_I_max at 8 kHz PWM frequency and 230/480 V mains voltage   Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/W per.	Modbus 4380   IDN P-0-3017.0.14

Stop Movement with Quick Stop

With a Quick Stop, the ongoing movement is stopped.
A Quick Stop can be triggered by a detected error of error classes 1 or 2 or via a fieldbus command.
The movement can be stopped with 2 different deceleration types.

- Deceleration via deceleration ramp
- Deceleration via torque ramp

In addition, you can set the operating state to switch to after the deceleration.

- Transition to operating state 9 Fault
- Transition to operating state 7 Quick Stop Active


## Setting the Type of Deceleration

The parameter LIM_QStopReact lets you set the type of deceleration.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
LIM_QStopReact	Quick Stop option code.   -2 / Torque ramp (Fault): Use torque ramp and transit to operating state 9 Fault   -1 / Deceleration Ramp (Fault): Use deceleration ramp and transit to operating state 9 Fault   6 / Deceleration ramp (Quick Stop): Use deceleration ramp and remain in operating state 7 Quick Stop   7 / Torque ramp (Quick Stop): Use torque ramp and remain in operating state 7 Quick Stop Type of deceleration for Quick Stop.   Setting of deceleration ramp with parameter RAMPquickstop.   Setting of torque ramp with parameter LIM_I_maxQSTP.   If a deceleration ramp is already active, the parameter cannot be written.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & -2 \\ & 6 \\ & 7 \end{aligned}$	INT16 R/W per.	Modbus 1584   IDN P-0-3006.0.24

## Setting the Deceleration Ramp

The parameter RAMPquickstop lets you set the deceleration ramp.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
RAMPquickstop	Deceleration ramp for Quick Stop.   Deceleration ramp for a software stop or an error   with error class 1 or 2.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the   motor moves.	usr_a 6000	UINT32   R/W   per.	Modbus 1572   IDN P-0-3006.0.18
		2147483647	-	

Setting the Torque Ramp
The parameter LIM_I_maxQSTP lets you set the torque ramp.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
$\begin{aligned} & \text { LIM_I_maxQSTP } \\ & \text { LanF } \rightarrow F L E- \\ & \text { q̌ur } \end{aligned}$	Current for Quick Stop.   This value is only limited by the minimum/maximum value range (no limitation of this value by motor/power stage).   In the case of a Quick Stop, the current limit (_Imax_act) is one of the following values (whichever is lowest):   - LIM_I_maxQSTP   -_M_I_max   - _PS_I_max   Further current limitations caused by $12 t$ monitoring are also taken into account during a Quick Stop.   Default: _PS_I_max at 8 kHz PWM frequency and 230/480 V mains voltage   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/W per.	Modbus 4378   IDN P-0-3017.0.13

## Setting a Signal Output via Parameter

## Description

The digital signal outputs can be set as required via the fieldbus.
In order to set the digital signal outputs via the parameter, you must first parameterize the signal output function "Freely Available", see chapter Parameterization of the Signal Output Functions (see page 196).
If one or more of the outputs are not set to "Freely Available", the write to that or those outputs is ignored. The parameter IO_DQ_set lets you set the digital signal outputs.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
IO_DQ_set	Setting the digital outputs directly.   Digital outputs can only be set directly if the signal   output function has been set to 'Freely Available'.	-	-	UINT16   R/W
	Bit assignments:   Bit 0: DQ0   Bit 1: DQ1   Bit 2: DQ2   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4	-	-	IDN P-0-3008.0.17

## Position Capture via Signal Input (Vendor-Specific Profile)

## Description

The motor position can be captured when a signal is detected at a Capture input.

## Number of Capture Inputs

3 Capture inputs are available

- Capture input: DI0/CAP1
- Capture input: DI1/CAP2
- Capture input: DI2/CAP3

Selection of the Method
The motor position can be captured in 2 different ways:

- One-time position capture

One-time capture means that the position is captured at the first edge.

- Continuous motor position capture

Continuous capture means that the motor position is captured anew at every edge. The previously captured value is lost.

The motor position can be captured when the edge at the Capture input rises or falls.

## Accuracy

A jitter of $2 \mu \mathrm{~s}$ results in an inaccuracy of the captured position of approximately 13.2 user-defined units at a velocity of 3000 RPM.
$\left(3000\right.$ RPM $=(3000 * 131072) /\left(60^{*} 10^{6}\right)=6.6$ usr_p/ $\mu \mathrm{s}$ )
If the factory settings for scaling are used, 13.2 user-defined units correspond to $0.036{ }^{\circ}$.
The captured motor position is less accurate during the acceleration phase and the deceleration phase.

## Overview of the Parameters

The following table shows an overview of the parameters for one-time capture:

Step	Input CAP1	Input CAP2	Input CAP3
Capture input encoder source	Cap1Source	Cap2Source	Cap3Source
Capture input configuration	Cap1Config	Cap2Config	Cap2Config
Capture input capture input start/stop	SPDSercos3Control ${ }^{(1)}$	Cap3Activate	
Capture input captured position	Cap1Pos ${ }^{(1)}$	Cap2Pos $^{(1)}$	Cap3Pos $^{(1)}$
Capture input status	SPDSercos3Status ${ }^{(1)}$	CapStatus ${ }^{(1)}$	
(1) Parameter is mappable			

The following table shows an overview of the parameters for continuous capture:

Step	Input CAP1	Input CAP2	Input CAP3
Capture input encoder source	Cap1Source	Cap2Source	Cap3Source
Capture input configuration	Cap1Config	Cap2Config	Cap2Config
Capture input start/stop	Cap1Activate	Cap2Activate	Cap3Activate
Capture input event counter ${ }^{(1)}$	Cap1CountCons ${ }^{(2)}$	Cap2CountCons ${ }^{(2)}$	Cap3CountCons ${ }^{(2)}$
Capture input captured position	Cap1PosCons ${ }^{(2)}$	Cap2PosCons ${ }^{(2)}$	Cap3PosCons ${ }^{(2)}$
Capture input status	CapStatus ${ }^{(2)}$		
(1) By reading this parameter, the corresponding parameter for the position is updated and locked so it cannot be   changed. Both parameter values remain consistent.   (2) Parameter is mappable			

Setting the Source
The following parameters let you set the source for position capture.

- Set the source for position capture with the parameters Cap1Source, Cap2Source and Cap3Source.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
Cap1Source	Capture input 1 encoder source.   0 / Pact Encoder 1: Source for capture input 1 is   Pact of encoder 1   1 / Pact Encoder 2: Source for capture input 1 is   Pact of encoder 2 (module)   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2580 IDN P-0-3010.0.10
Cap2Source	Capture input 2 encoder source.   0 / Pact Encoder 1: Source for capture input 2 is   Pact of encoder 1   1 / Pact Encoder 2: Source for capture input 2 is   Pact of encoder 2 (module)   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2582   IDN P-0-3010.0.11
Cap3Source	Capture input 3 encoder source.   0 / Pact Encoder 1: Source for capture input 3 is   Pact of encoder 1   1 / Pact Encoder 2: Source for capture input 3 is   Pact of encoder 2 (module)   Available with hardware version $\geq$ RS03.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2602 IDN P-0-3010.0.21

## Setting the Edge

The following parameters let you set the edge for position capture.

- Set the desired edge with the parameters Cap1Config, Cap2Config and Cap3Config.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
Cap1Config	Capture input 1 configuration.   0 / Falling Edge: Position capture at falling edge   1 / Rising Edge: Position capture at rising edge   2 / Both Edges: Position capture at both edges   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2564 IDN P-0-3010.0.2
Cap2Config	Capture input 2 configuration.   0 / Falling Edge: Position capture at falling edge   1 / Rising Edge: Position capture at rising edge   2 / Both Edges: Position capture at both edges   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2566 IDN P-0-3010.0.3
Cap3Config	Capture input 3 configuration.   0 / Falling Edge: Position capture at falling edge   1 / Rising Edge: Position capture at rising edge Available with hardware version $\geq$ RS03.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2594 IDN P-0-3010.0.17

## Starting Position Capture

The following parameters let you start position capture.
Real-time channel:

- Set the desired method with the parameter SPDSercos3Control.

Acyclical channel:

- Set the desired method with the parameters Cap1Activate and Cap2Activate and Cap3Activate.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
SPDSercos3Control	SPD Sercos control (CAP1 and CAP2).   Bit $0=0$ : Cancel capture function   Bit $0=1$ : Start one-time capture via input CAP1   Bit $1=0$ : Cancel capture function   Bit 1 = 1: Start one-time capture via input CAP2   Bits 2 ... 15: Reserved   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.		UINT16 R/W	Modbus 6560   IDN P-0-3025.0.80
Cap1Activate	Capture input 1 start/stop.   0 / Capture Stop: Cancel capture function   1 / Capture Once: Start one-time capture   2 / Capture Continuous: Start continuous capture   3 / Reserved: Reserved   4 / Reserved: Reserved   In the case of one-time capture, the function is terminated when the first value is captured.   In the case of continuous capture, the function continues to run.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 4 \end{aligned}$	UINT16 R/W	Modbus 2568   IDN P-0-3010.0.4
Cap2Activate	Capture input 2 start/stop.   0 / Capture Stop: Cancel capture function   1 / Capture Once: Start one-time capture   2 / Capture Continuous: Start continuous capture   3 / Reserved: Reserved   4 / Reserved: Reserved   In the case of one-time capture, the function is terminated when the first value is captured.   In the case of continuous capture, the function continues to run.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 4 \end{aligned}$	UINT16 R/W	Modbus 2570   IDN P-0-3010.0.5
Cap3Activate	Capture input 3 start/stop.   0 / Capture Stop: Cancel capture function   1 / Capture Once: Start one-time capture   2 / Capture Continuous: Start continuous capture   In the case of one-time capture, the function is terminated when the first value is captured.   In the case of continuous capture, the function continues to run.   Available with hardware version $\geq R S 03$.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2596   IDN P-0-3010.0.18

## Status Messages

Real-time channel:

- The parameter SPDSercos3Status indicates the capture status.

Acyclical channel:

- The parameter _CapStatus indicates the capture status.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_SPDSercos3Status	SPD Sercos status (CAP1 and CAP2).   Bit $0=0$ : No position captured via input CAP1   Bit $0=1$ : Position captured via input CAP1   Bit $1=0$ : No position captured via input CAP2   Bit $1=1$ : Position captured via input CAP2   Bit $2=0$ : Positive limit switch not active   Bit $2=1$ : Positive limit switch active   Bit $3=0$ : Negative limit switch not active   Bit 3 = 1: Negative limit switch active   Bit $4=0$ : Quick Stop: Standstill not yet reached   Bit $4=1$ : Quick Stop: Standstill reached   Type: Unsigned decimal - 2 bytes   Modified settings become effective immediately.		UINT16 R/-	Modbus 6562 IDN P-0-3025.0.81
_CapStatus	Status of the capture inputs.   Read access:   Bit 0: Position captured via input CAP1   Bit 1: Position captured via input CAP2   Bit 2: Position captured via input CAP3   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2562   IDN P-0-3010.0.1

## Captured Position

The captured positions for one-time capture can be read via the following parameters:

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
_Cap1Pos	Capture input 1 captured position (one-time).   Captured position at the time of the "capture signal".   The captured position is re-calculated after "Position   Setting" or "Reference Movement".   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2572   IDN P-0-3010.0.6
_Cap2Pos	Capture input 2 captured position (one-time).   Captured position at the time of the "capture signal".   The captured position is re-calculated after "Position   Setting" or "Reference Movement".   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2574 IDN P-0-3010.0.7
_Cap3Pos	Capture input 3 captured position (one-time). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   Available with hardware version $\geq R S 03$.   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2598   IDN P-0-3010.0.19

The captured positions for continuous capture can be read via the following parameters:

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
_Cap1CountCons	Capture input 1 event counter (continuous).   Counts the capture events.   The event counter is reset when capture input 1 is activated.   By reading this parameter, the parameter   "_Cap1PosCons" is updated and locked so it cannot be changed. Both parameter values remain consistent.   Type: Unsigned decimal - 2 bytes	\|-	UINT16 R/-	Modbus 2606 IDN P-0-3010.0.23
_Cap1PosCons	Capture input 1 captured position (continuous). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   By reading the parameter "_Cap1CountCons", this parameter is updated and locked so it cannot be changed. Both parameter values remain consistent. Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2608   IDN P-0-3010.0.24
_Cap2CountCons	Capture input 2 event counter (continuous).   Counts the capture events.   The event counter is reset when capture input 2 is activated.   By reading this parameter, the parameter   "_Cap2PosCons" is updated and locked so it cannot be changed. Both parameter values remain consistent.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2610   IDN P-0-3010.0.25
_Cap2PosCons	Capture input 2 captured position (continuous). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   By reading the parameter "_Cap2CountCons", this parameter is updated and locked so it cannot be changed. Both parameter values remain consistent. Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2612   IDN P-0-3010.0.26
_Cap3CountCons	Capture input 3 event counter (continuous).   Counts the capture events.   The event counter is reset when capture input 3 is activated.   By reading this parameter, the parameter "_Cap3PosCons" is updated and locked so it cannot be changed. Both parameter values remain consistent.   Available with hardware version $\geq R S 03$.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2614 IDN P-0-3010.0.27
_Cap3PosCons	Capture input 3 captured position (continuous). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   By reading the parameter "_Cap3CountCons", this parameter is updated and locked so it cannot be changed. Both parameter values remain consistent.   Available with hardware version $\geq R S 03$.   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2616 IDN P-0-3010.0.28

## Backlash Compensation

## Description

By setting backlash compensation, you can compensate for mechanical backlash.
Example of mechanical backlash


1 Example of low mechanical backlash
2 Example of high mechanical backlash
When backlash compensation is activated, the drive automatically compensates for the mechanical backlash during each movement.

Availability
Backlash compensation is possible in the following operating modes:

- Jog
- Homing
- Cyclic Synchronous Position

Parameterization
To use backlash compensation, you must set the amount of backlash.
The parameter BLSH_Position lets you set the amount of backlash in user-defined units.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
BLSH_Position	Position value for backlash compensation.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1668   IDN P-0-3006.0.66

In addition, you can set a processing time. The processing time specifies the period of time during which the mechanical backlash is to be compensated for.

The parameter BLSH_Time lets you set the processing time in ms.
$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Parameter name } \\ \text { HMI menu } \\ \text { HMI name }\end{array} & \text { Description } & \begin{array}{l}\text { Unit } \\ \text { Minimum value } \\ \text { Factory setting } \\ \text { Maximum value }\end{array} & \begin{array}{l}\text { Data type } \\ \text { R/W } \\ \text { Persistent } \\ \text { Expert }\end{array} & \begin{array}{l}\text { Parameter address via } \\ \text { fieldbus }\end{array} \\ \hline \text { BLSH_Time } & \begin{array}{l}\text { Processing time for backlash compensation. } \\ \text { Value 0: Immediate backlash compensation } \\ \text { Value >0: Processing time for backlash } \\ \text { compensation } \\ \text { Type: Unsigned decimal - 2 bytes } \\ \text { Write access via Sercos: CP2, CP3, CP4 } \\ \text { Setting can only be modified if power stage is } \\ \text { disabled. } \\ \text { Modified settings become effective the next time the } \\ \text { power stage is enabled. }\end{array} & \begin{array}{ll}\text { ms } & 0 \\ 0 & 16383\end{array} & \begin{array}{l}\text { UINT16 } \\ \text { R/W } \\ \text { per. }\end{array} & \text { Modbus 1672 } \\ \text { IDN P-0-3006.0.68 }\end{array}\right]$

## Activating Backlash Compensation

Before you can activate backlash compensation, there must be a movement in positive or negative direction. Backlash compensation is activated with the parameter BLSH_Mode.

- Start a movement in positive direction or in negative direction. This movement must last as long as it takes to move the mechanical system connected to the motor.
- If the movement was in positive direction (positive target values), activate backlash compensation with the value "OnAfterPositiveMovement".
- If the movement was in negative direction (negative target values), activate backlash compensation with the value "OnAfterNegativeMovement".

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
BLSH_Mode	Processing mode of backlash compensation.   0 / Off: Backlash compensation is off   $1 /$ OnAfterPositiveMovement: Backlash   compensation is on, last movement was in positive   direction   $2 /$ OnAfterNegativeMovement: Backlash   compensation is on, last movement was in negative   direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	-	UINT16   R/W   per.	Modbus 1666   IDN P-0-3006.0.65

## Section 8.2

## Functions for Monitoring Movements

What Is in This Section?
This section contains the following topics:

Topic	Page
Limit Switches	279
Reference Switch	280
Software Limit Switches	281
Load-Dependent Position Deviation (Following Error)	283
Load-Dependent Velocity Deviation	285
Motor Standstill and Direction of Movement	287
Position Deviation Window	288
Velocity Deviation Window	290
Velocity Threshold Value	292
Current Threshold Value	293

## Description

The use of limit switches can help protect against some hazards (for example, collision with mechanical stop caused by incorrect reference values).

## A WARNING

## LOSS OF CONTROL

- Ensure that limit switches are installed as determined by your risk assessment.
- Verify correct connection of the limit switches.
- Verify that the limit switches are sufficiently distant from the mechanical end to allow an adequate stopping distance.
- Verify correct parameterization and function of the limit switches.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Movements can be monitored using limit switches. A positive limit switch and a negative limit switch can be used for monitoring.
If the positive or negative limit switch are tripped, the movement stops. An error message is generated and the operating state switches to 7 Quick Stop Active.
The error message can be reset by means of a "Fault Reset". The operating state switches back to 6 Operation Enabled.
The movement can continue, however, only in the opposite direction. For example, if the positive limit switch was triggered, further movement is only possible in negative direction. In the case of further movement in positive direction, a new error message is generated and the operating state switches back to 7 Quick Stop Active.

The parameters IOsigLIMP and IOsigLIMN are used to set the type of limit switch.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
IOsigLIMP	Signal evaluation for positive limit switch.   0 / Inactive: Inactive   1 / Normally Closed: Normally closed NC   2 / Normally Open: Normally open NO   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1568 IDN P-0-3006.0.16
IOsigLIMN	Signal evaluation for negative limit switch.   0 / Inactive: Inactive   1 / Normally Closed: Normally closed NC   2 / Normally Open: Normally open NO   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1566   IDN P-0-3006.0.15

The signal input functions "Positive Limit Switch (LIMP)" and "Negative Limit Switch (LIMN)" must have been parameterized, see chapter Digital Inputs and Outputs (see page 192).

## Reference Switch

## Description

The reference switch is only active in the operating mode Homing.
The parameter IOsigREF lets you set the type of reference switch.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
IOsigREF	Signal evaluation for reference switch.   1 / Normally Closed: Normally closed NC   2 / Normally Open: Normally open NO   The reference switch is only active while a reference movement to the reference switch is processed.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1564   IDN P-0-3006.0.14

The signal input function "Reference Switch (REF)" must have been parameterized, see chapter Digital Inputs and Outputs (see page 192).

## Software Limit Switches

## Description

Movements can be monitored using software limit switches. A positive position limit and a negative position limit can be set for monitoring.
If the positive or negative position limit switch are reached, the movement stops. An error message is generated and the operating state switches to 7 Quick Stop Active.
The error message can be reset by means of a "Fault Reset". The operating state switches back to 6 Operation Enabled.
The movement can continue, however, only in the opposite direction of the position limit. For example, if the positive position limit was reached, further movement is only possible in negative direction. In the case of further movement in positive direction, a new error message is generated and the operating state switches back to 7 Quick Stop Active.

## Prerequisite

Software limit switch monitoring only works with a valid zero point, see chapter Size of the Movement Range (see page 186).

## Behavior in Operating Modes with Target Positions

In the case of operating modes with target positions, the movement is started normally, even if the target position is greater than the positive position limit or less than the negative position limit. When the position limit is approached, a Quick Stop is executed by the drive such that the motor reaches standstill at the limit.
In the following operating modes, the target position is verified prior to the start of a movement such that the position limit is not traversed regardless of the target position.

- Jog (step movement)


## Behavior in Operating Modes Without Target Positions

In operating modes without target position, by default a Quick Stop is triggered at the position limit.
The parameter MON_SWLimMode allows you to set the behavior when a position limit is approached.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via
fieldbus				

Standstill at the position limit in operating modes without target position requires the parameter LIM_QStopReact to be set to "Deceleration ramp (Quick Stop)", see chapter Stop Movement with Quick Stop (see page 268). If the parameter LIM_QStopReact is set to "Torque ramp (Quick Stop)", the movement may come to a standstill in front of or behind the position limit due to different loads.

## Activation

The software limit switches are activated via the parameter MON_SW_Limits.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
MON_SW_Limits	Activation of software limit switches.   0 / None: Deactivated   1 / SWLIMP: Activation of software limit switches positive direction   2 / SWLIMN: Activation of software limit switches negative direction   3 / SWLIMP+SWLIMN: Activation of software limit switches both directions   Software limit switches can only be activated if the zero point is valid.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	UINT16 R/W per.	Modbus 1542   IDN P-0-3006.0.3

## Setting Position Limits

The software limit switches are set via the parameters MON_swLimP and MON_swLimN.

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
MON_SwLimP	Positive position limit for software limit switch. If a user-defined value entered is outside of the permissible range, the limit switch limits are automatically set to the maximum user-defined value.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_p } \\ & - \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1544 IDN P-0-3006.0.4
MON_SwLimN	Negative position limit for software limit switch.   See description 'MON_swLimP'.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_p } \\ & - \\ & -2147483648 \end{aligned}$	INT32 R/W per.	Modbus 1546   IDN P-0-3006.0.5

## Load-Dependent Position Deviation (Following Error)

## Description

The load-dependent position deviation is the difference between the reference position and the actual position caused by the load inertia.
Parameters are available to read the load-dependent position deviation during operation and the maximum position deviation reached so far.
The maximum permissible load-dependent position deviation can be parameterized. In addition, you can set the error class.

## Availability

Monitoring of the load-dependent position deviation is available in the following operating modes:

- Jog
- Homing
- Cyclic Synchronous Position


## Reading the Position Deviation

The following parameters let you read the load-dependent position deviation in user-defined units or revolutions.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
_p_dif_load_usr	Load-dependent position deviation between   reference and actual positions.   The load-dependent position deviation is the   difference between the reference position and the   actual position caused by the load. This value is   used for following error monitoring.   Type: Signed decimal - 4 bytes	-2147483647	usr_p	INT32
R/-				

The following parameters let you read the maximum value of the load-dependent position deviation reached so far in user-defined units or revolutions.

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_p_dif_load_peak_usr	Maximum value of the load-dependent position deviation.   This parameter contains the maximum loaddependent position deviation reached so far. A write access resets this value.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & - \\ & 2147483647 \end{aligned}$	INT32   R/W	Modbus 7722   IDN P-0-3030.0.21

## Setting the Position Deviation

The following parameter lets you set the threshold for the maximum load-dependent position deviation that is to trigger an error of error class 0 .

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
MON_p_dif_warn	Advisory limit of the load-dependent position deviation (error class 0).   100.0 \% correspond to the maximum position deviation (following error) as specified by means of parameter MON_p_dif_load.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l} \hline \% \\ 0 \\ 75 \\ 100 \end{array}$	UINT16 R/W per.	Modbus 1618 IDN P-0-3006.0.41

The following parameters let you set the maximum load-dependent position deviation at which a movement is canceled with an error of error classes 1,2 , or 3.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
MON_p_dif_load_usr	Maximum load-dependent position deviation.   The load-dependent position deviation is the   difference between the reference position and the   actual position caused by the load.   The minimum value, the factory setting and the   maximum value depend on the scaling factor.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	usr_p   131072   2147483647	INT32   R/W   per.	Modbus 1660   IDN P-0-3006.0.62

## Setting the Error Class

The following parameter lets you set the error class for an excessively high load-dependent position deviation.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
ErrorResp_p_dif	Error response to excessively high load-dependent   position deviation.   1 / Error Class 1: Error class 1   $\mathbf{2} /$ Error Class 2: Error class 2   $3 /$ Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is   disabled.   Modified settings become effective the next time the   power stage is enabled.	1	UINT16   R/W   per.	Modbus 1302   IDN P-0-3005.0.11

## Load-Dependent Velocity Deviation

## Description

The load-dependent velocity deviation is the difference between the reference velocity and the actual velocity caused by the load.
The maximum permissible load-dependent velocity deviation can be parameterized. In addition, you can set the error class.

## Availability

Monitoring of the load-dependent velocity deviation is available in the following operating modes:

- Profile Velocity
- Cyclic Synchronous Velocity


## Reading the Velocity Deviation

The following parameters let you read the load-dependent velocity deviation in user-defined units.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
_v_dif_usr		Load-dependent velocity deviation.   The load-dependent velocity deviation is the   difference between reference velocity and actual   velocity.   Type: Signed decimal - 4 bytes   Available with firmware version $\geq$ V01.06.	-2147483648	-
INT32	R/-	Modbus 7768		
IDN P-0-3030.0.44				
			-	

## Setting the Velocity Deviation

The following parameters let you specify the size of the window for the maximum load-dependent velocity deviation at which a movement is canceled.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
MON_Veldiff	Maximum load-dependent velocity deviation.   Value 0: Monitoring deactivated.   Value >0: Maximum value   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1686   IDN P-0-3006.0.75
MON_Veldiff_Time	Time window for maximum load-dependent velocity deviation.   Value 0: Monitoring deactivated.   Value >0: Time window for maximum value   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.06.	$\begin{array}{\|l} \mathrm{ms} \\ 0 \\ 10 \end{array}$	UINT16 R/W per.	Modbus 1688   IDN P-0-3006.0.76

Setting the Error Class
The following parameter lets you set the error class for an excessively high load-dependent velocity deviation.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
ErrorResp_v_dif	Error response to excessively high load-dependent   velocity deviation.   1 / Error Class 1: Error class 1   2 / Error Class 2: Error class 2   3 / Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is   disabled.   Modified settings become effective the next time the   power stage is enabled.   Available with firmware version $\geq$ V01.06.	1	UINT16   R/W   per.	Modbus 1400   IDN P-0-3005.0.60

## Motor Standstill and Direction of Movement

Description
The status of a movement can be monitored. You can determine whether the motor is at a standstill or whether it moves in a specific direction.
A velocity of $<10$ RPM is interpreted as standstill.



The status is available via signal outputs. In order to read the status, you must first parameterize the signal output functions "Motor Standstill", "Motor Moves Positive" or "Motor Moves Negative", see chapter Digital Inputs and Outputs (see page 192).

## Position Deviation Window

## Description

The position deviation window allows you to monitor whether the motor is within a parameterizable position deviation.
The position deviation is the difference between reference position and actual position.
The position deviation window comprises position deviation and monitoring time.

Availability
The position deviation window is available in the following operating modes.

- Jog
- Homing
- Cyclic Synchronous Position

Settings


The parameters MON_p_DiffWin_usr and MON_ChkTime specify the size of the window.

Status Indication
The status is available via a signal output．
In order to read the status via a signal output，you must first parameterize the signal output function＂In Position Deviation Window＂，see chapter Digital Inputs and Outputs（see page 192）．
The parameter MON＿ChkTime acts on the parameters MON＿p＿DiffWin＿usr（MON＿p＿DiffWin）， MON＿v＿DiffWin，MON＿v＿Threshold and MON＿I＿Threshold．

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
MON＿p＿DiffWin＿usr	Monitoring of position deviation．   The system verifies whether the drive is within the defined deviation during the period set with MON＿ChkTime．   The status can be output via a parameterizable output．   The minimum value，the factory setting and the maximum value depend on the scaling factor．   Type：Signed decimal－ 4 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 131 \\ & 2147483647 \end{aligned}$	INT32 R／W per．	Modbus 1662   IDN P－0－3006．0．63
MON＿ChkTime LanF $\rightarrow$ ，－－ ヒヒんr	Monitoring of time window．   Adjustment of a time for monitoring of position deviation，velocity deviation，velocity value and current value．If the monitored value is in the permissible range during the adjusted time，the monitoring function delivers a positive result． The status can be output via a parameterizable output．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 9999 \end{aligned}$	UINT16 R／W per．	Modbus 1594   IDN P－0－3006．0．29

## Velocity Deviation Window

Description
The velocity deviation window allows you to monitor whether the motor is within a parameterizable velocity deviation.
The velocity deviation is the difference between the reference velocity and the actual velocity.
The velocity deviation window comprises velocity deviation and monitoring time.

Availability
The velocity deviation window is available in the following operating modes.

- Jog
- Homing
- Cyclic Synchronous Velocity
- Cyclic Synchronous Position


## Settings




The parameters MON_v_DiffWin and MON_ChkTime specify the size of the window.

Status Indication
The status is available via a signal output．
In order to read the status via a signal output，you must first parameterize the signal output function＂In Velocity Deviation Window＂，see chapter Digital Inputs and Outputs（see page 192）．
The parameter MON＿ChkTime acts on the parameters MON＿p＿DiffWin＿usr，MON＿v＿DiffWin， MON＿v＿Threshold and MON＿I＿Threshold．

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
MON＿v＿DiffWin	Monitoring of velocity deviation．   The system monitors whether the drive is within the defined deviation during the period set with MON＿ChkTime．   The status can be output via a parameterizable output．   Type：Unsigned decimal－ 4 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	```usr_v 1 10 2147483647```	UINT32 R／W per．	Modbus 1588   IDN P－0－3006．0．26
MON ChkTime LanF $\rightarrow$ ，－－ ヒヒんr	Monitoring of time window．   Adjustment of a time for monitoring of position deviation，velocity deviation，velocity value and current value．If the monitored value is in the permissible range during the adjusted time，the monitoring function delivers a positive result．   The status can be output via a parameterizable output．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 9999 \end{aligned}$	UINT16 R／W per．	Modbus 1594   IDN P－0－3006．0．29

## Velocity Threshold Value

## Description

The velocity threshold value allows you to monitor whether the actual velocity is below a parameterizable velocity value.
The velocity threshold value comprises the velocity and the monitoring time.

## Settings




The parameters MON_v_Threshold and MON_ChkTime specify the size of the window.

Status Indication
The status is available via a signal output.
In order to read the status via a signal output, you must first parameterize the signal output function "Velocity Below Threshold", see chapter Digital Inputs and Outputs (see page 192).
The parameter MON_ChkTime acts on the parameters MON_p_DiffWin_usr, MON_v_DiffWin, MON_v_Threshold and MON_I_Threshold.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
MON_v_Threshold	Monitoring of velocity threshold.   The system monitors whether the drive is below the defined value during the period set with MON_ChkTime.   The status can be output via a parameterizable output.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	```usr_v 1 10 2147483647```	UINT32 R/W per.	Modbus 1590 IDN P-0-3006.0.27
MON_ChkTime $\text { LםпF } \rightarrow \text { - }$ $t \in h r$	Monitoring of time window.   Adjustment of a time for monitoring of position deviation, velocity deviation, velocity value and current value. If the monitored value is in the permissible range during the adjusted time, the monitoring function delivers a positive result.   The status can be output via a parameterizable output.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 9999 \end{aligned}$	UINT16 R/W per.	Modbus 1594   IDN P-0-3006.0.29

## Current Threshold Value

The current threshold value allows you to monitor whether the actual current is below a parameterizable current value.

The current threshold value comprises the current value and the monitoring time.

## Settings




The parameters MON_I_Threshold and MON_ChkTime specify the size of the window.

Status Indication
The status is available via a signal output.
In order to read the status via a signal output, you must first parameterize the signal output function "Current Below Threshold", see chapter Digital Inputs and Outputs (see page 192).
The parameter MON_ChkTime acts on the parameters MON_p_DiffWin_usr, MON_v_DiffWin, MON_v_Threshold and MON_I_Threshold.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
```MON_I_Threshold LanF-> ,-a- , thr```	Monitoring of current threshold.   The system monitors whether the drive is below the defined value during the period set with   MON_ChkTime.   The status can be output via a parameterizable output.   The parameter _Iq_act_rms is used as comparison value.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\begin{aligned} & A_{\text {rms }} \\ & 0.00 \\ & 0.20 \\ & 300.00 \end{aligned}$	UINT16 R/W per.	Modbus 1592   IDN P-0-3006.0.28
MON_ChkTime CanF \rightarrow, - t Ehr	Monitoring of time window. Adjustment of a time for monitoring of position deviation, velocity deviation, velocity value and current value. If the monitored value is in the permissible range during the adjusted time, the monitoring function delivers a positive result. The status can be output via a parameterizable output. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 9999 \end{aligned}$	UINT16 R/W per.	Modbus 1594 IDN P-0-3006.0.29

Section 8.3

Functions for Monitoring Internal Device Signals

What Is in This Section?
This section contains the following topics:

Topic	Page
Temperature Monitoring	296
Monitoring Load and Overload (I^{2} T Monitoring)	297
Commutation Monitoring	299
Monitoring of Mains Phases	300
Ground Monitoring	302

Temperature Monitoring

Temperature of Power Stage

The parameter _PS_T_current indicates the temperature of the power stage.
The parameter _PS_T_warn contains the threshold value for an error of error class 0 . The parameter _PS_T_max indicates the maximum power stage temperature.

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
```_PS_T_current \Piロп tP5```	Temperature of power stage. Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/-	Modbus 7200   IDN P-0-3028.0.16
_PS_T_warn	Advisory temperature limit of power stage (error class 0).   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/per.	Modbus 4108   IDN P-0-3016.0.6
_PS_T_max	Maximum temperature of power stage. Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/per.	Modbus 4110 IDN P-0-3016.0.7

## Temperature of Motor

The parameter _M_T_current indicates the motor temperature.
The parameter _M_T_max indicates the maximum motor temperature.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
$\begin{aligned} & \text { M_T_current } \\ & \text { Пםп } \\ & t \text { Пat } \end{aligned}$	Temperature of motor.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/--	Modbus 7202   IDN P-0-3028.0.17
_M_T_max	Maximum temperature of motor.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/-	Modbus 3360   IDN P-0-3013.0.16

## Monitoring Load and Overload（ $I^{2} \mathrm{~T}$ Monitoring）

Description
The load is the thermal load on the power stage，the motor and the braking resistor．
Load and overload on the individual components are monitored internally；the values can be read by means of parameters．
Overload starts at a load value of $100 \%$ ．
（1）

（2）


1 Load
2 Overload

Load Monitoring
The load can be read using the following parameters：

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
PS load   Пロп   $L d F P$	Load of power stage．   Type：Signed decimal－ 2 bytes	$\%$	INT16 R／－	Modbus 7214   IDN P－0－3028．0．23
M＿load   Пロп   LdF $\Pi$	Load of motor．   Type：Signed decimal－ 2 bytes	$\%$	INT16 R／－	Modbus 7220   IDN P－0－3028．0．26
RES load   Пロா   LUFb	Load of braking resistor．   The braking resistor set via parameter RESint＿ext is monitored．   Type：Signed decimal－ 2 bytes	$\%$	INT16 R／－	Modbus 7208   IDN P－0－3028．0．20

## Overload Monitoring

In the case of $100 \%$ overload of the power stage or the motor, the current is limited internally. In the case of $100 \%$ overload of the braking resistor, the braking resistor is deactivated.
The overload and the peak value can be read using the following parameters:

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_PS_overload	Overload of power stage.   Type: Signed decimal - 2 bytes	$\%$	$\begin{array}{\|l} \hline \text { INT16 } \\ \text { R/- } \\ - \end{array}$	Modbus 7240 IDN P-0-3028.0.36
_PS_maxoverload	Maximum value of overload of power stage. Maximum overload of power stage during the last 10 seconds.   Type: Signed decimal - 2 bytes	\%	$\begin{array}{\|l\|} \hline \text { INT16 } \\ \text { R/- } \\ - \\ - \end{array}$	Modbus 7216 IDN P-0-3028.0.24
_M_overload	Overload of motor (12t).   Type: Signed decimal - 2 bytes	\%	$\begin{array}{\|l} \text { INT16 } \\ \text { R/- } \\ - \\ - \end{array}$	Modbus 7218 IDN P-0-3028.0.25
-M_maxoverload	Maximum value of overload of motor. Maximum overload of motor during the last 10 seconds.   Type: Signed decimal - 2 bytes	\%	INT16   R/-   -	Modbus 7222   IDN P-0-3028.0.27
_RES_overload	Overload of braking resistor (12t).   The braking resistor set via parameter   RESint_ext is monitored.   Type: Signed decimal - 2 bytes	$\%$	$\begin{aligned} & \text { INT16 } \\ & \text { R/- } \\ & - \end{aligned}$	Modbus 7206 IDN P-0-3028.0.19
_RES_maxoverload	Maximum value of overload of braking resistor.   Maximum overload of braking resistor during the last 10 seconds.   The braking resistor set via parameter RESint_ext is monitored.   Type: Signed decimal - 2 bytes	$\%$	$\begin{aligned} & \text { INT16 } \\ & \text { R/- } \\ & - \\ & - \end{aligned}$	Modbus 7210 IDN P-0-3028.0.21

## Commutation Monitoring

Description
Commutation monitoring verifies the plausibility of acceleration and effective motor torque.
If the motor accelerates though the drive control decelerates the motor with the maximum current, an error is detected.

Deactivating commutation monitoring can cause unintended movements.

UNINTENDED MOVEMENT
- Only deactivate commutation monitoring during commissioning and only for test purposes.
- Verify that the commutation monitoring is active prior to putting the equipment into service.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

The parameter MON_commutat lets you deactivate commutation monitoring.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
MON_commutat	Commutation monitoring.   $0 /$ Off: Commutation monitoring off   $1 /$ On: Commutation monitoring on in operating   states 6, 7 and 8   $2 /$ On (OpState6+7): Commutation monitoring on in   operating states 6 and 7   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is   disabled.   Modified settings become effective the next time the   power stage is enabled.	-	UINT16   R/W   per.	Modbus 1290   IDN P-0-3005.0.5

## Monitoring of Mains Phases

Description
If a three-phase drive is missing a mains phase and mains phase monitoring is not correctly set, this can cause overload of the product.

## NOTICE

## INOPERABLE EQUIPMENT DUE TO MISSING MAINS PHASE

- Verify that mains phase monitoring is set to "Automatic Mains Detection" or to "Mains ..." with the correct voltage value if the drive is supplied via the mains phases.
- Verify that mains phase monitoring is set to "DC bus only ..." with the correct voltage value if the drive is supplied via the DC bus.

Failure to follow these instructions can result in equipment damage.

The parameter ErrorResp Flt _AC lets you set the error response to a missing mains phase for threephase devices.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
ErrorResp_Flt_AC		Error response to missing mains phase.   $0 /$ Error Class 0: Error class 0   $1 /$ Error Class 1: Error class 1   $2 /$ Error Class 2: Error class 2   $3 /$ Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is   disabled.   Modified settings become effective the next time the   power stage is enabled.	UINT16	Modbus 1300   R/W

If the product is supplied via the DC bus, mains phase monitoring must be set to "DC bus only ..." with the correct voltage value.

Mains phase monitoring is set by means of the parameter MON_MainsVolt.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
MON_MainsVolt	Detection and monitoring of mains phases.   0 / Automatic Mains Detection: Automatic detection and monitoring of mains voltage   1 / DC-Bus Only (Mains 1~230 V / 3~480 V): DC bus supply only, corresponding to mains voltage 230 V (single-phase) or 480 V (three phases)   2 / DC-Bus Only (Mains 1~115 V / 3~208 V): DC bus supply only, corresponding to mains voltage 115 V (single-phase) or 208 V (three phases)   3 / Mains 1~230 V / 3~480 V: Mains voltage 230 V (single-phase) or 480 V (three phases)   4 / Mains 1~115 V / 3~208 V: Mains voltage 115 V (single-phase) or 208 V (three phases)   5 / Reserved: Reserved   Value 0: As soon as mains voltage detected, the device automatically verifies whether the mains voltage is 115 V or 230 V in the case of single-phase devices or 208 V or $400 / 480 \mathrm{~V}$ in the case of threephase devices.   Values 1 ... 2: If the device is supplied only via the DC bus, the parameter has to be set to the voltage value corresponding to the mains voltage of the supplying device. There is no mains voltage monitoring.   Values $3 \ldots$. 4: If the mains voltage is not detected properly during start-up, the mains voltage to be used can be selected manually.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & 0 \\ & 0 \\ & 5 \end{aligned}$	UINT16 R/W per. expert	Modbus 1310   IDN P-0-3005.0.15

## Ground Monitoring

## Description

When the power stage is enabled, the device monitors the motor phases for ground errors. A ground error occurs when one or more motor phases are short-circuited to the ground (earth) of the application.
A ground error of one or more motor phases is detected. A ground error of the DC bus or the braking resistor is not monitored.

If the ground error monitoring is deactivated, the drive may be rendered inoperable by a ground error.

## NOTICE

INOPERABLE EQUIPMENT DUE TO GROUND ERROR

- Only deactivate ground monitoring during commissioning and only for test purposes.
- Verify that the ground monitoring is active prior to putting the equipment into service.

Failure to follow these instructions can result in equipment damage.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
MON_GroundFault	Ground monitoring.   0 / Off: Ground monitoring off   1 / On: Ground monitoring on   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R/W per. expert	Modbus 1312   IDN P-0-3005.0.16

## Chapter 9

## Examples

## Examples

General Information
The examples show some typical applications of the product. The examples are intended to provide an overview; they are not exhaustive wiring plans.
The examples described here are intended for learning purposes only. In general, they are intended to help you understand how to develop, test, commission, and integrate application logic and/or the device wiring of the equipment associated with your own design in your control systems. The examples are not intended to be used directly on products that are part of a machine or process.

WNARNING
UNINTENDED EQUIPMENT OPERATION
Do not include any wiring information, programming or configuration logic, or parameterization values
from the Examples in your machine or process without thoroughly testing your entire application.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Using the safety function STO integrated in this product requires careful planning. See chapter Safety function STO ("Safe Torque Off") (see page 79) for additional information.

## Example of Operation via Fieldbus

The product is controlled via SERCOS 3. Wiring example


## Chapter 10

## Diagnostics and Troubleshooting

What Is in This Chapter?
This chapter contains the following sections:

Section	Topic	Page
10.1	Diagnostics via HMI	306
10.2	Diagnostics via Signal Outputs	314
10.3	Diagnostics via the Fieldbus	317
10.4	Error Messages	325

## Section 10.1

## Diagnostics via HMI

What Is in This Section?
This section contains the following topics:

Topic	Page
Diagnostics via the Integrated HMI	307
Fieldbus Status LEDs	308
Acknowledging a Motor Change	310
Acknowledging a Module Replacement	311
Displaying error messages via the HMI	312

## Diagnostics via the Integrated HMI

## Overview

The 7 －segment display provides the user with information．


With the factory setting，the 7－segment display shows the operating states．The operating states are described in chapter Operating States（see page 224）．

Message	Description
in 1t	Operating state 1 Start
nrdy	Operating state 2 Not Ready To Switch On
$d .5$	Operating state 3 Switch On Disabled
$r d y$	Operating state 4 Ready To Switch On
5ロ	Operating state 5 Switched On
$r u n$ and $h$ FL $t$	Operating state 6 Operation Enabled
5tar	Operating state 7 Quick Stop Active
FLE	Operating state 8 Fault Reaction Active and 9 Fault

## Additional Messages

The table below provides an overview of the messages that can additionally be displayed on the integrated HMI．

Message	Description
［ Ard	Data on the memory card differs from data in the product． See chapter Memory Card（see page 177）for information on how to proceed．
$d, 5 P$	An external HMI is connected．The integrated HMI has no function．
F 5	Perform a First Setup．See chapter Powering on the Device for the First Time（see page 141）．
חロ	A new motor was detected．See chapter Acknowledging a Motor Change（see page 310）for replacing a motor．
Prat	Parts of the integrated HMI were locked with the parameter HMI locked．
5LEI．．．5LE己	The device has detected a different equipment with modules．See chapter Acknowledging a Module Replacement（see page 311）for replacing modules．
uLow	24 Vdc control supply during initialization not high enough．
WdaL	Undeterminable system error．Contact your Schneider Electric service representative．
日里旦	Undervoltage 24 Vdc control supply．

Fieldbus Status LEDs

General
The fieldbus status LEDs indicate the status of the fieldbus.

Overview of the LEDs


LED LNK

Status	Meaning
$\boldsymbol{*}$ IIIIIIIIIIIIIIIIIIIIIIIII	No link
	Link, 10 MBit, no activity
	Link, 10 MBit, activity
	Link, 100 MBit, no activity

LED SIII

Status	Meaning
	No communication
	Communication phase 0 active
	Communication phase 1 active
	Communication phase 2 active
	Communication phase 3 active
	Communication phase 4 active
	Real-time state is "loopback"
	Application error
	MST transmission error $\geq$ S-0-1003/2
	Communication error
	Identification ("IdentifyDevice")

LED SD

Status	Meaning
	Sub-device is not active
	Sub-device is in state "parametrization level (PL)"
	Sub-device is in state "operating level (OL)"
	Sub-device is in state "application error (C1D)"

## Acknowledging a Motor Change

Procedure for confirming a motor change via the integrated HMI.
If the 7 -segment display shows $\Pi \square t$ :

- Press the navigation button.

The 7-segment display shows 5 AVE.

- Press the navigation button to save the new motor parameters to the nonvolatile memory. The product switches to operating state 4 Ready To Switch On.
Confirming a motor change via the integrated HMI
(1)


1 HMI displays that a replacement of a motor has been detected.
2 Canceling the saving process
3 Saving switching to operating state 4 Ready To Switch On.

## Acknowledging a Module Replacement

General
Note the information in the manuals for the respective modules.

Slot 1
Refer to the manual for the safety module for information on replacing a module in slot 1 .

Slot 2
The replacement of a module is confirmed via the integrated HMI.
The 7-segment display shows $5 L \in 己$.

- Press the navigation button.

The 7-segment display shows 5 AVE.

- Press the navigation button.

The product switches to operating state 4 Ready To Switch On.
Confirming a module change via the integrated HMI


1 HMI displays that a replacement of a module has been detected.
2 Canceling the saving process
3 Saving switching to operating state 4 Ready To Switch On.

## Displaying error messages via the HMI

## Resetting Errors of Error Class 0

If there are errors of error class 0 , the two dots to the right of the 7 -segment display (2) flash. The error code is not directly displayed on the 7 -segment display, but must be explicitly queried by the user.
Procedure for displaying and resetting:

- Remedy the cause.
- Press the navigation button and hold it down.

The 7 -segment display shows the error code.

- Release the navigation button.

The 7 -segment display shows $F r E 5$.

- Press the navigation button to reset the error message.

The 7 -segment display returns to the initial state.

## (1)


(2)



HMI shows an error of error class 0
Indication of error code
3 Resetting an error message
4 Canceling (the error code remains in the memory)
See chapter Error Messages (see page 325) for the meaning of the error codes.

Reading and Acknowledging Errors of Error Classes 1 ... 4
In the case of a detected error of error class 1, the error code and $5 t \square P$ are alternately shown on the 7 segment display
In the case of a detected error of error class $2 \ldots 4$, the error code and $F L E$ are alternately shown on the 7 segment display.
Procedure for displaying and resetting:

- Remedy the cause.
- Press the navigation button.

The 7-segment display shows FrE5.

- Press the navigation button to reset the error message. The product switches to operating state 4 Ready To Switch On.


1 HMI shows and error message with an error code
See chapter Error Messages (see page 325) for the meaning of the error codes.

## Section 10.2

## Diagnostics via Signal Outputs

What Is in This Section?
This section contains the following topics:

Topic	Page
Indicating the Operating State	315
Indicating Error Messages	316

## Indicating the Operating State

Information on the operating state is available via the signal outputs.
The table below provides an overview.

	Signal output function	
Operating state	"No fault"(1)	"Active"(2)
1 Start	0	0
2 Not Ready To Switch On	0	0
3 Switch On Disabled	0	0
4 Ready To Switch On	1	0
5 Switched On	1	0
6 Operation Enabled	1	1
7 Quick Stop Active	0	0
8 Fault Reaction Active	0	0
9 Fault	0	0
(1) The signal		

(1) The signal output function is factory setting for signal output DQO
(2) The signal output function is the factory setting for signal output DQ1

## Indicating Error Messages

## Description

Selected error messages can be output via the signal outputs.
In order to output an error message via a signal output, you must first parameterizes the signal output functions "Selected Warning" or "Selected Error", see chapter Digital Inputs and Outputs (see page 192).

The parameters MON_IO_SelWar1 and MON_IO_SelWar2 are used to specify error codes with the error class 0.

The parameters MON_IO_SelErr1 and MON_IO_SelErr2 are used to specify error codes with the error classes 1 ... 4.

If an error specified in one of these parameters is detected, the corresponding signal output is to be set.
The list of the error messages sorted by error code can be found in the chapter Error Messages (see page 325).

Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
MON_IO_SelWar1	Signal output function Selected Warning (error class 0 ): First error code.   This parameter specifies the error code of an error of error class 0 which is to activate the signal output function.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15120   IDN P-0-3059.0.8
MON_IO_SelWar2	Signal output function Selected Warning (error class   0 ): Second error code.   This parameter specifies the error code of an error of error class 0 which is to activate the signal output function.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15122   IDN P-0-3059.0.9
MON_IO_SelErr1	Signal output function Selected Error (error classes 1 to 4): First error code.   This parameter specifies the error code of an error of error classes $1 . . .4$ which is to activate the signal output function.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15116   IDN P-0-3059.0.6
MON_IO_SelErr2	Signal output function Selected Error (error classes 1 to 4): Second error code.   This parameter specifies the error code of an error of error classes $1 . . .4$ which is to activate the signal output function.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15118   IDN P-0-3059.0.7

## Section 10.3

## Diagnostics via the Fieldbus

What Is in This Section?
This section contains the following topics:

Topic	Page
Fieldbus Communication Error Diagnostics	318
Status Information on Detected Errors	319
Most Recent Detected Error - Status Bits	320
Most Recent Detected Error - Error Code	322
Error Memory	323

## Fieldbus Communication Error Diagnostics

Checking Connections
A properly operating fieldbus is essential for evaluating status and error messages.
If the product cannot be addressed via the fieldbus, first verify the connections.
Verify the following connections:

- System power supply
- Supply connections
- Fieldbus cables and wiring
- Fieldbus connection

Fieldbus Function Test
If the connections are correct, verify that you can address the product on the fieldbus.

## Status Information on Detected Errors

Description
Status information on detected errors are provided via the parameter $S-0-0135$, bits 12 and 13 . The status information shows the error class of a detected error.

The parameter S-0-0390 allows you to read the error code of the detected error.

Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
S-0-0390	Diagnostic number.   The operation data of this parameter contains   detailed information on the diagnostics event with   the highest priority which is currently active in the   drive.   Type: Hexadecimal - 4 bytes   Write access via Sercos: Read only   Class name: GDP_Basic	RD	R/-	IDN S-0-0390


Bits	Meaning
$0 \ldots 15$	Value 0: No error detected.   Value >0: Error code of the detected error.
$16 \ldots 19$	Value 14: Detected error with the error class 0.   Value 15: Detected error with the error class 1, 2, 3, or 4.
$20 \ldots 23$	Reserved
$24 \ldots 29$	Value 1: Sercos FSP IO
$30 \ldots 31$	Value 1: Fully manufacture specific.

The parameters S-0-0011 and S-0-0012 also provide information on detected errors.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-0011	Class 1 diagnostic (C1D).   This parameter provides information on detected errors.   A class 1 diagnostics error leads to a Quick Stop (with transition to operating state Fault).   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	R/-	IDN S-0-0011
S-0-0012	Class 2 diagnostic (C2D).   This parameter provides information on warnings.   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only	0 65535	$\begin{aligned} & \mathrm{R} /- \\ & - \\ & - \end{aligned}$	IDN S-0-0012

## Most Recent Detected Error - Status Bits

Error Bits
The parameters _WarnLatched and _SigLatched contain information on errors of error class 0 and errors of error classes 1 ... 4.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
WarnLatched   Пロп   Wr $\quad 5$	Saved errors of error class 0 , bit-coded.   The bits are set to 0 in the case of a Fault Reset.   Bits 10 and 13 are set to 0 automatically.   Signal state:   0 : Not activated   1: Activated   Bit assignments:   Bit 0: General   Bit 1: Reserved   Bit 2: Out of range (software limit switches, tuning)   Bit 3: Reserved   Bit 4: Active operating mode   Bit 5: Commissioning interface (RS485)   Bit 6: Integrated fieldbus   Bit 7: Reserved   Bit 8: Following error   Bit 9: Reserved   Bit 10: Inputs STO_A and/or STO_B   Bits 11 ... 12: Reserved   Bit 13: Low voltage DC bus or mains phase missing   Bits 14 ... 15: Reserved   Bit 16: Integrated encoder interface   Bit 17: Temperature of motor high   Bit 18: Temperature of power stage high   Bit 19: Reserved   Bit 20: Memory card   Bit 21: Fieldbus module   Bit 22: Encoder module   Bit 23: Safety module eSM   Bits 24 ... 27: Reserved   Bit 28: Transistor for braking resistor overload $\left(I^{2} t\right)$   Bit 29: Braking resistor overload $\left(1^{2} \mathrm{t}\right)$   Bit 30: Power stage overload $\left(1^{2} t\right)$   Bit 31: Motor overload $\left(1^{2} \mathrm{t}\right)$   Monitoring functions are product-dependent.   Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 7192   IDN P-0-3028.0.12


Parameter name   HMI menu   HMI name	Description	Unit	Data type	Parameter address via
Rinimum value				
R/W				
SigLatched		Factory setting		
Persistent				
Maximum value	Expert			

## Most Recent Detected Error - Error Code

## Description

If the master controller receives information concerning a detected error via the process data communication, the following parameters can be used to read the error code.
The list of the error messages sorted by error code can be found in the chapter Error Messages (see page 325).

Most Recent Detected Error with Error Class 0
The parameter _LastWarning allows you to read the error number of the last detected error with error class 0 .

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
LastWarning Пロп LWrn	Code of most recent error of error class 0 . If the error is no longer active, the code is stored until the next Fault Reset.   Value 0: No error of error class 0   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 7186   IDN P-0-3028.0.9

Most Recent Detected Error with Error Class 1 ...
The parameter _LastError allows you to read the error number of the last detected error with error class 1 ... 4.

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { LastError } \\ & \text { Пם } \\ & L F L E \end{aligned}$	Detected error causing a stop (error classes 1 to 4). Error code of the most recent detected error. Consecutive detected errors do not overwrite this error code.   Example: If an error response to a detected limit switch error causes overvoltage, this parameter contains the code of the detected limit switch error.   Exception: Detected errors of error class 4 overwrite existing entries.   Type: Unsigned decimal - 2 bytes		UINT16   R/-	Modbus 7178   IDN P-0-3028.0.5

Error Memory

General
The error memory is an error history of the last 10 error messages. It is not cleared even if the product is powered off. The error memory allows you to read and evaluate past events.
The following information on the events is stored:

- Error class
- Error code
- Motor current
- Number of power on cycles
- Additional error information (for example, parameter numbers)
- Product temperature
- Power stage temperature
- Time the error was detected (with reference to operating hours counter)
- DC Bus Voltage
- Velocity
- Number of Enable cycles after powering on
- Time from Enable until detection of the error

The stored information relates to the situation at the point in time the error was detected.
The list of the error messages sorted by error code can be found in the chapter Error Messages (see page 325).

## Reading the Error Memory

The error memory can only be read sequentially. The parameter ERR_reset must be used to reset the read pointer. Then the first error entry can be read. The read pointer is automatically set to the next entry. A new read access delivers the next error entry. If the error code 0 is returned, there is no additional error entry.

Position of the entry	Meaning
1	First error message (oldest message).
2	Second error message (later message).
$\ldots$	$\ldots$
10	Tenth error message. In the case of ten error   messages, the most recent error message is   contained here.

An error entry consists of several pieces of information which can be read using different parameters. When you read an error entry, the error code must be read first with the parameter _ERR_number.
The following parameters allow you to manage the error memory:

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_ERR_class	Error class.   Value 0: Error class 0   Value 1: Error class 1   Value 2: Error class 2   Value 3: Error class 3   Value 4: Error class 4   Type: Unsigned decimal - 2 bytes	$\begin{gathered} - \\ 0 \\ - \\ 4 \end{gathered}$	UINT16 R/-	Modbus 15364 IDN P-0-3060.0.2
-ERR_number	Error code.   Reading this parameter copies the entire entry for the detected error (error class, time of detection of error, ...) to an intermediate memory from which the elements of the detected error can then be read.   In addition, the read pointer of the error memory is automatically set to the next error entry.   Type: Unsigned decimal - 2 bytes	$\begin{aligned} & - \\ & 0 \\ & - \\ & 65535 \end{aligned}$	UINT16 R/-	Modbus 15362   IDN P-0-3060.0.1


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
_ERR_motor_I	Motor current at the time the error was detected. Type: Unsigned decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$A_{\mathrm{rms}}$	UINT16 R/-	Modbus 15378   IDN P-0-3060.0.9
ERR_powerOn   Пロп   Pallo	Number of power on cycles.   Type: Unsigned decimal - 4 bytes	$\begin{aligned} & 0 \\ & - \\ & 4294967295 \end{aligned}$	UINT32 R/-	Modbus 15108 IDN P-0-3059.0.2
-ERR_qual	Additional information on detected error.   This entry contains additional information on the detected error, depending on the error number.   Example: a parameter address   Type: Unsigned decimal - 2 bytes	$\begin{array}{\|l} \hline- \\ 0 \\ - \\ 65535 \end{array}$	UINT16 R/-	Modbus 15368   IDN P-0-3060.0.4
-ERR_temp_dev	Temperature of device at the time the error was detected.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { INT16 } \\ & \text { R/- } \\ & - \\ & - \end{aligned}$	Modbus 15382   IDN P-0-3060.0.11
_ERR_temp_ps	Temperature of power stage at the time the error was detected.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/--	Modbus 15380 IDN P-0-3060.0.10
-ERR_time	Time of detection of error. With reference to operating hours counter Type: Unsigned decimal - 4 bytes	$\begin{array}{\|l} \mathrm{s} \\ 0 \\ - \\ 536870911 \end{array}$	UINT32 R/-	Modbus 15366   IDN P-0-3060.0.3
_ERR_DCbus	DC bus voltage at the time the error was detected.   Type: Unsigned decimal - 2 bytes   In increments of 0.1 V .	V	UINT16 R/-	Modbus 15374   IDN P-0-3060.0.7
_ERR_motor_v	Motor velocity at the time the error was detected. Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \\ & - \\ & - \end{aligned}$	Modbus 15376   IDN P-0-3060.0.8
-ERR_enable_cycl	Number of cycles of enabling the power stage at error time.   Number of cycles of enabling the power stage from the time the control voltage was applied to the time the error was detected.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 15370   IDN P-0-3060.0.5
_ERR_enable_time	Time between enabling of power stage and detection of the error.   Type: Unsigned decimal - 2 bytes	s	UINT16 R/-	Modbus 15372   IDN P-0-3060.0.6
ERR_reset	Reset error memory read pointer.   Value 1: Set error memory read pointer to oldest error entry.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|c} \hline- \\ 0 \\ - \\ 1 \end{array}$	UINT16 R/W	Modbus 15114   IDN P-0-3059.0.5
ERR_clear	Clear error memory.   Value 1: Delete entries in the error memory   The clearing process is completed if a 0 is returned after a read access.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 15112   IDN P-0-3059.0.4

## Section 10.4

## Error Messages

What Is in This Section?
This section contains the following topics:

Topic	Page
Description of Error Messages	326
Table of Error Messages	327

## Description of Error Messages

## Description

If monitoring functions of the drive detect an error, the drive generates an error message. Each error message is identified by an error code.
The following information is available for each error message:

- Error code
- Error class
- Description of error
- Possible causes
- Possible remedies


## Range of Error Messages

The table below summarizes the error codes classified by range.

Error code	Range
E 1xxx	General
E 2xxx	Overcurrent
E 3xxx	Voltage
E 4xxx	Temperature
E 5xxx	Hardware
E 6xxx	Software
E 7xxx	Interface, wiring
E 8xxx	Fieldbus
E Axxx	Motor movement
E Bxxx	Communication

## Error Class of Error Messages

The error messages are classified according to the following error classes:

Error class	State transition ${ }^{1)}$	Error response	Resetting the error message
0	-	No interruption of the movement	Function "Fault Reset"
1	T11	T13, T14	Stop movement with "Quick Stop"   Stop movement with "Quick Stop" and disable   the power stage when the motor has come to a   standstill
2	T13, T14	Disable the power stage immediately without   stopping the movement first	Function "Fault Reset"
3	T13, T14	Disable the power stage immediately without   stopping the movement first	Power cycle
4	(1) See chapter Operating State (see page 224)		

## Table of Error Messages

## List of the Error Messages Sorted by Error Code

Error   code	Error   class	Description	Cause	Correctives
E 1100	0	Parameter out of permissible value   range	The value entered was outside of the   permissible value range for this   parameter.	The entered value must be within the   permissible value range.
E 1101	0	Parameter does not exist	Error detected by parameter   management: Parameter (index) does   not exist.	Select a different parameter (index).   E 1102 0


Error code	Error class	Description	Cause	Correctives
E 1114	4	Configuration download aborted Parameter _SigLatched Bit 5	During a configuration download, a communication error or an error in the external tool was detected. The configuration was only partially transferred to the drive and might be inconsistent now.	Power the drive off/on and retry to download the configuration or restore the factory settings.
E 1115	0	Incorrect configuration file format Parameter _WarnLatched Bit 5	An external tool has downloaded a configuration which has an incorrect format.	-
E 1116	0	Request is processed asynchronously	-	-
E 1117	0	Asynchronous request blocked	Request to a module is blocked because the module is currently processing another request.	-
E 1118	0	Configuration data incompatible with device	The configuration data contains data from a different device.	Verify device type including type of power stage.
E 1119	0	Incorrect data length, too many bytes	-	-
E 111A	0	Incorrect data length, insufficient number of bytes	-	-
E 111B	4	Configuration download error detected (additional info=Modbus register address)	During a configuration download, one or more configuration values were not accepted by the drive.	Verify that the configuration file is valid and matches the type and version of the drive. The value in the additional error info shows the Modbus register address of the parameter where the initialization error was detected.
E 111C	1	Not possible to initialize recalculation for scaling	A parameter could not be initialized.	The address of the parameter that caused the detected error can be read via the parameter _PAR_ScalingError.
E 111D	3	Original state of a parameter cannot be restored after an error was detected during recalculation of parameters with user-defined units.	The drive contained an invalid configuration before the recalculation was started. An error was detected during the recalculation.	Power the drive off and on again. This may help you to identify the affected parameter(s). Change the parameters as required. Verify that the parameter configuration is valid before starting the recalculation procedure.
E 111E	1	Not possible to recalculate data set	A data set of the operating mode Motion Sequence could not be recalculated.	The address of the parameter and the number of the data set that caused this condition can be read via the parameter _PAR_ScalingError.
E 111F	1	Recalculation not possible.	Invalid scaling factor.	Verify that you really want the selected scaling factor. Try a different scaling factor. Before triggering scaling, reset the parameters with user-defined units.
E 1120	1	Recalculation for scaling not possible	A parameter could not be recalculated.	The address of the parameter that caused this condition can be read via the parameter _PAR_ScalingError.
E 1121	0	Incorrect sequence of steps for scaling (fieldbus)	The recalculation has been started prior to the initialization.	The recalculation must be started after the initialization.
E 1122	0	Recalculation for scaling not possible	Recalculation for scaling is already running.	Wait for the running recalculation for scaling to finish.
E 1123	0	Parameter cannot be changed	Recalculation for scaling is running.	Wait for the running recalculation for scaling to finish.
E 1124	1	Timeout during recalculation for scaling	The time between the initialization of the recalculation and the start of the recalculation has been exceeded (30 seconds).	Recalculation must be started within 30 seconds after initialization.
E 1125	1	Scaling not possible	The scaling factors for position, velocity or acceleration/deceleration are beyond internal calculation limits.	Retry with different scaling factors.
E 1126	0	Configuration is blocked by another access channel	-	Close other access channel (for example, other instance of commissioning software).
E 1127	0	Invalid key received	-	-


Error code	Error class	Description	Cause	Correctives
E 1128	0	Special login is required for Manufacturing Test Firmware	-	-
E 1129	0	Test step not yet started	-	-
E 112A	0	Not possible to enable the capture input	Position capturing has not yet been activated	Activate position capturing via procedure command "Probing cycle" (IDN170).
E 112B	0	Not possible to configure difference value capturing	Capture input 1 has not been set to both edges (IDN169).	Set capture input 1 to both edges.
E 112C	0	Not possible to configure difference value capturing	Capture input 2 has not been set to both edges (IDN169).	Set capture input 2 to both edges.
E 112E	0	Configuration of edges cannot be changed	The configuration of edges cannot be changed because difference value capture is active.	Deactivate difference value capture.
E 1130	0	Incorrect parameter setting	The parameter ENC_ModeOfMaEnc is set to "Velocity And Position". The parameter ErrorResp_PDiffEncM is set to "Error Class 1" or "Error Class 2". The combination of these settings is invalid.	Set parameter ErrorResp_PDiffEncM to "Error Class 3".
E 1300	3	Safety function STO activated (STO_A, STO_B)   Parameter _SigLatched Bit 10	The safety function STO was activated in the operating state Operation Enabled.	Verify correct wiring of the inputs of the safety function STO and perform a Fault Reset.
E 1301	4	STO_A and STO_B different level Parameter _SigLatched Bit 11	The levels of the inputs STO_A and STO_B were different for more than 1 second.	Verify correct wiring of the inputs of the safety function STO.
E 1302	0	Safety function STO activated $\begin{aligned} & \text { (STO_A, STO_B) } \\ & \text { Parameter_WarnLatched Bit } 10 \end{aligned}$	Safety function STO was activated while the power stage was disabled.	Verify correct wiring of the inputs of the safety function STO.
E 1310	2	Frequency of the external reference value signal too high Parameter _SigLatched Bit 28	The frequency of the external reference value signals (A/B signals, P/D signals or CW/CCW signals) is higher than the permissible value.	Verify the frequency of the external reference values. Verify the gear ratio in the operating mode Electronic Gear.
E 1311	0	The selected signal input function or signal output function cannot be configured	The selected signal input function or signal output function cannot be used in the selected operating mode.	Select another function or change the operating mode.
E 1312	0	Limit switch or reference switch signal not defined for signal input function	Reference movements require limit switches. These limit switches are not assigned to inputs.	Assign the signal input functions Positive Limit Switch, Negative Limit Switch and Reference Switch.
E 1313	0	Configured debounce time not possible for this signal input function	The signal input function does not support the selected debounce time.	Set the debounce time to a valid value.
E 1314	4	At least two inputs have the same signal input function.	The same signal input function has been assigned to at least two inputs.	Reconfigure the inputs.
E 1315	0	Frequency of reference value signal is too high.   Parameter _WarnLatched Bit 28	The frequency of the pulse signal (A/B, Pulse/Direction, CW/CCW) exceeds the specified range. Received pulses may be lost.	Adapt the frequency of the reference value signal to match the input specification of the drive. Also adapt the gear ratio in the operating mode Electronic Gear to the application requirements (position accuracy and velocity).
E 1316	1	Position capture via signal input currently not possible Parameter SigLatched Bit 28	Position capture is already being used.	-
E 1317	0	Interference at PTI input   Parameter _WarnLatched Bit 28	Interfering pulses or impermissible edge transitions ( $A$ and $B$ signal simultaneously) have been detected.	Verify cable specifications, shield connection and EMC.
E 1318	0	The selected type of usage of the analog inputs is not possible.	At least two analog inputs are configured with the same type of usage.	Reconfigure the analog inputs.
E 1501	4	System error detected: DriveCom state machine indeterminable state	-	-


Error code	Error class	Description	Cause	Correctives
E 1502	4	System error detected: HWL low-level state machine indeterminable state	-	-
E 1503	1	Quick Stop triggered via fieldbus	A Quick Stop has been triggered via the fieldbus. The Quick Stop option code has been set to -1 or -2 which causes the drive to transition to the operating state 9 Fault instead of the operating state 7 Quick Stop Active.	-
E 1504	2	Power stage cannot be enabled Parameter _SigLatched Bit 4	The signal input function "Servo On" has been assigned to an input. However, there is a 0 level the signal input.	There must be a 1 level at the signal input.
E 1600	0	Oscilloscope: No additional data available	-	-
E 1601	0	Oscilloscope: Parameterization incomplete	-	-
E 1602	0	Oscilloscope: Trigger variable not defined	-	-
E 1606	0	Logging still active	-	-
E 1607	0	Logging: No trigger defined	-	-
E 1608	0	Logging: Invalid trigger option	-	-
E 1609	0	Logging: No channel selected	-	-
E 160A	0	Logging: No data available	-	-
E 160B	0	Parameter cannot be logged	-	-
E 160C	1	Autotuning: Moment of inertia outside permissible range	The load inertia is too high.	Verify that the system can easily be moved.   Verify the load.   Use a differently rated drive.
E 160E	1	Autotuning: Test movement could not be started	-	-
E 160F	1	Autotuning: Power stage cannot be enabled	Autotuning was not started in the operating state Ready To Switch On.	Start Autotuning when the drive is in the operating state Ready To Switch On.
E 1610	1	Autotuning: Processing stopped	Autotuning stopped by user command or by detected error (see additional error message in error memory, for example, DC bus undervoltage, limit switches triggered)	Remove the cause of the stop and restart Autotuning.
E 1611	1	System error detected: Parameter could not be written during Autotuning (additional info=Modbus register address)	-	-
E 1612	1	System error detected: Parameter could not be read during Autotuning	-	-
E 1613	1	Autotuning: Maximum permissible movement range exceeded Parameter _SigLatched Bit 2	The movement exceeded the adjusted movement range during Autotuning.	Increase the movement range value or disable movement range monitoring by setting AT_DIS $=0$.
E 1614	0	Autotuning: Already active	Autotuning has been started twice simultaneously or an Autotuning parameter is modified during Autotuning (parameter AT_dis and AT_dir).	Wait for Autotuning to finish before restarting Autotuning.
E 1615	0	Autotuning: This parameter cannot be changed while Autotuning is active	Parameter AT_gain or AT_J are written during Autotuning.	Wait for Autotuning to finish before changing the parameter.
E 1617	1	Autotuning: Friction torque or load torque too great	The current limit has been reached (parameter CTRL_I_max).	Verify that the system can easily be moved.   Verify the load.   Use a differently rated drive.


Error code	Error class	Description	Cause	Correctives
E 1618	1	Autotuning: Optimization aborted	The internal Autotuning sequence has not been finished, there may have been a following error.	See the additional information provided in the error memory.
E 1619	0	Autotuning: Velocity jump in parameter AT_n_ref is not sufficient	Parameter AT_n_ref < 2 *   AT_n_tolerance.   The drive only checks this for the first velocity jump.	Modify the parameter AT_n_ref or AT_n_tolerance to meet the required condition.
E 1620	1	Autotuning: Load torque too high	Product rating is not suitable for the machine load.   Detected machine inertia is too high compared to the inertia of the motor.	Reduce load, verify rating.
E 1621	1	System error detected: Calculation error	-	-
E 1622	0	Autotuning: Not possible to perform Autotuning	Autotuning can only be performed if no operating mode is active.	Terminate the active operating mode or disable the power stage.
E 1623	1	Autotuning: HALT request has stopped the autotuning process	Autotuning can only be performed if no operating mode is active.	Terminate the active operating mode or disable the power stage.
E 1A00	0	System error detected: FIFO memory overflow	-	-
E 1A01	3	Motor has been changed (different type of motor)   Parameter_SigLatched Bit 16	Detected motor type is different from previously detected motor.	Confirm the change.
E 1A03	4	System error detected: Hardware and firmware do not match	-	-
E 1B00	3	System error detected: Incorrect parameters for motor and power stage Parameter_SigLatched Bit 30	Incorrect manufacturer parameter value (data) non-volatile memory of device.	Replace device.
E 1B02	3	Target value too high.   Parameter_SigLatched Bit 30	-	-
E 1B04	2	Product of encoder simulation resolution and the maximum velocity is too high Parameter _SigLatched Bit 30	Value in parameter CTRL_v_max or resolution or the encoder simulation ESIM_scale are too high.	Reduce the resolution of the encoder simulation or the maximum velocity in parameter CTRL_v_max.
E 1B05	2	Error detected during parameter switching   Parameter _SigLatched Bit 30	-	-
E 1B06	3	Wake \& shake cannot be started. Parameter _SigLatched Bit 30	Motor velocity is too high at the beginning of the wake and shake procedure.	Verify that the motor is at a standstill at the beginning wake and shake procedure.
E 1B08	3	Position difference during the wake and shake procedure is too high.	Incorrect motor data entered by user (especially motor resistance, motor inertia (in case of rotary motors) or motor mass (in case of linear motors)). Incorrect setting for parameter WakeAndShakeGain.	Verify motor data. Verify setting of parameter WakeAndShakeGain.
E 1B0B	1	The operating state at the beginning of the commutation offset identification must be Ready To Switch On.	-	Set the operating state to Ready To Switch On and restart commutation offset identification.
E 1B0C	3	Motor velocity too high.	-	-
E 1B0D	3	Velocity value determined by velocity observer is incorrect	Incorrect system inertia for velocity observer calculations. Incorrect velocity observer dynamics. System inertia changes during operation. In this case, operation with velocity observer is not possible and the velocity observer must be deactivated.	Change the velocity observer dynamics via the parameter CTRL_SpdObsDyn.   Change the system inertia used for velocity observer calculations via the parameter CTRL_SpdObsInert. If the detected error persists, deactivate the velocity observer.


Error code	Error class	Description	Cause	Correctives
E 1B0E	3	Not possible to determine the commutation angle at the end of the wake and shake procedure	Incorrect motor data, for example motor resistance, motor inertia (in case of rotary motors) or motor mass (in case of linear motors). Incorrect setting for parameter WakeAndShakeGain. Holding brake (if available) not properly wired.	Verify correct motor data.   Verify setting of parameter   WakesAndShakeGain.   Verify correct wiring of holding brake.
E 1B0F	3	Velocity deviation too high	-	-
E 2300	3	Power stage overcurrent   Parameter _SigLatched Bit 27	Motor short circuit and disabling of the power stage.   Motor phases are inverted.	Verify the motor power connection.
E 2301	3	Braking resistor overcurrent   Parameter _SigLatched Bit 27	Braking resistor short circuit.	If you use the internal braking resistor, contact your Schneider Electric service representative.   If you use an external braking resistor, verify correct wiring and rating of the braking resistor.
E 3100	par.	Missing mains supply, undervoltage mains supply or overvoltage mains supply   Parameter _SigLatched Bit 15	Missing phase(s) for more than 50 ms . Mains voltage is out of range. Mains frequency is out of range.	Verify that the values of the mains power supply network comply with the technical data.
E 3200	3	DC bus overvoltage   Parameter_SigLatched Bit 14	Excessive regeneration during deceleration.	Verify correct deceleration ramp, rating of drive and braking resistor.
E 3201	3	DC bus undervoltage (shutdown threshold)   Parameter _SigLatched Bit 13	Power supply outage, insufficient power supply.	Verify mains supply.
E 3202	2	DC bus undervoltage (Quick Stop threshold)   Parameter _SigLatched Bit 13	Power supply outage, insufficient power supply.	Verify mains supply.
E 3206	0	Undervoltage DC bus, missing mains supply, undervoltage mains supply or overvoltage mains supply   Parameter _WarnLatched Bit 13	Missing phase(s) for more than 50 ms . Mains voltage is out of range. Mains frequency is out of range. Mains voltage and setting of parameter MON_MainsVolt do not match (for example, mains voltage is 230 V and MON_MainsVolt is set to 115 V ).	Verify that the values of the mains power supply network comply with the technical data.   Verify the settings of the parameter for reduced mains voltage.
E 3300	0	The winding voltage of the motor is lower than the nominal supply voltage of the drive	If the winding voltage of the motor is lower than the nominal supply voltage of the drive, this may result in motor overtemperature due to high current ripple.	Verify the motor temperature. In the case of overtemperature, use a motor with a higher winding voltage or use a drive with a lower nominal supply voltage.
E 4100	3	Power stage overtemperature Parameter _SigLatched Bit 18	Excessively high ambient temperature due to, for example, dust.	Improve heat dissipation. If a fan is installed, verify correct operation of the fan.
E 4101	0	Power stage overtemperature   Parameter _WarnLatched Bit 18	Excessively high ambient temperature due to, for example, dust.	Improve heat dissipation. If a fan is installed, verify correct operation of the fan.
E 4102	0	Power stage overload (I2t)   Parameter WarnLatched Bit 30	The current has exceeded the nominal value for an extended period of time.	Verify rating, reduce cycle time.
E 4200	3	Device overtemperature   Parameter _SigLatched Bit 18	Excessively high ambient temperature due to, for example, dust.	Improve heat dissipation. If a fan is installed, verify correct operation of the fan.
E 4300	2	Motor overtemperature   Parameter _SigLatched Bit 17	Ambient temperature is too high.   Duty cycle is too high.   Motor not properly mounted (thermal isolation).   Motor overload.	Verify motor installation: The heat must be dissipated via the mounting surface. Reduce ambient temperature. Provide ventilation.


Error   code	Error   class	Description	Cause	Correctives
E 4301	0	Motor overtemperature   Parameter_WarnLatched Bit 17	Ambient temperature is too high.   Duty cycle is too high.   Motor not properly mounted (thermal   isolation).   Motor overload.	Verify motor installation: The heat must   be dissipated via the mounting surface.   Reduce ambient temperature.   Provide ventilation.
E 4302	0	Motor overload (I2t)   Parameter_WarnLatched Bit 31	The current has exceeded the nominal   value for an extended period of time.	Verify that the system can easily be   moved.   Verify the load.   Use a differently sized motor, if   necessary.
E 4303	0	No motor temperature monitoring	The temperature parameters (in   electronic nameplate of motor, non-   volatile memory of encoder) are   unavailable or invalid; parameter A12   is equal to 0.	Contact your Schneider Electric   service representative.   Replace motor.
E 4304	0	The encoder does not support motor   temperature monitoring.	-   E 4402	0


Error code	Error class	Description	Cause	Correctives
E 5431	3	System error: Nonvolatile memory write error   Parameter_SigLatched Bit 29	-	-
E 5432	3	System error: Nonvolatile memory state machine Parameter SigLatched Bit 29	-	-
E 5433	3	System error: Nonvolatile memory address error Parameter SigLatched Bit 29	-	-
E 5434	3	System error: Nonvolatile memory incorrect data length   Parameter _SigLatched Bit 29	-	-
E 5435	4	System error: Nonvolatile memory not formatted   Parameter _SigLatched Bit 29	-	-
E 5436	4	System error: Nonvolatile memory incompatible structure   Parameter _SigLatched Bit 29	-	-
E 5437	4	System error detected: Nonvolatile memory checksum error (manufacturer data) Parameter _SigLatched Bit 29	-	-
E 5438	3	System error detected: Nonvolatile memory checksum error (user parameters)   Parameter _SigLatched Bit 29	-	-
E 5439	3	System error detected: Nonvolatile memory checksum error (fieldbus parameters)   Parameter _SigLatched Bit 29	-	-
E 543B	4	System error detected: No valid manufacturer data   Parameter_SigLatched Bit 29	-	-
E 543E	3	System error detected: Nonvolatile memory checksum error (Nolnit parameter)   Parameter _SigLatched Bit 29	-	-
E 543F	3	System error detected: Nonvolatile memory checksum error (motor parameters)   Parameter _SigLatched Bit 29	-	-
E 5441	4	System error detected: Nonvolatile memory checksum error (global control loop parameter set) Parameter _SigLatched Bit 29	-	-
E 5442	4	System error detected: Nonvolatile memory checksum error (control loop parameter set 1)   Parameter _SigLatched Bit 29	-	-
E 5443	4	System error detected: Nonvolatile memory checksum error (control loop parameter set 2)   Parameter _SigLatched Bit 29	-	-
E 5444	4	System error detected: Nonvolatile memory checksum error (NoReset parameter)   Parameter _SigLatched Bit 29	-	-


Error code	Error class	Description	Cause	Correctives
E 5445	4	System error detected: Nonvolatile memory checksum error (hardware information)   Parameter _SigLatched Bit 29	-	-
E 5446	4	System error detected: Nonvolatile memory checksum error (for power outage data)   Parameter _SigLatched Bit 29	Internal nonvolatile memory not operative.	Restart the drive. If the detected error persists, contact your Schneider Electric service representative.
E 5448	2	System error detected: Communication with memory card Parameter _SigLatched Bit 20	-	-
E 5449	2	System error detected: Memory card bus is busy   Parameter SigLatched Bit 20	-	-
E 544A	4	System error detected: Nonvolatile memory checksum error (administration data) Parameter _SigLatched Bit 29	-	-
E 544C	4	System error detected: Nonvolatile memory is write-protected Parameter _SigLatched Bit 29	-	-
E 544D	2	System error detected: Memory card Parameter _SigLatched Bit 20	The last saving procedure may not have been successful; the memory card may be inoperative.	Retry saving the data. Replace the memory card.
E 544E	2	System error detected: Memory card Parameter _SigLatched Bit 20	The last saving procedure may not have been successful; the memory card may be inoperative.	Retry saving the data. Replace the memory card.
E 544F	2	System error detected: Memory card Parameter _SigLatched Bit 20	The last saving procedure may not have been successful; the memory card may be inoperative.	Retry saving the data. Replace the memory card.
E 5451	0	System error detected: No memory card available   Parameter _WarnLatched Bit 20	-	-
E 5452	2	System error detected: Data on memory card and device do not match Parameter _SigLatched Bit 20	Different type of device.   Different type of power stage.   Data on memory card does not match firmware version of device.	-
E 5453	2	System error detected: Incompatible data on the memory card Parameter SigLatched Bit 20	-	-
E 5454	2	System error detected: Capacity of detected memory card insufficient Parameter _SigLatched Bit 20	-	-
E 5455	2	System error detected: Memory card not formatted Parameter SigLatched Bit 20	-	Update memory card (drive to card).
E 5456	1	System error detected: Memory card is write-protected Parameter _SigLatched Bit 20	The memory card has been writeprotected.	Remove memory card or disable write protection.
E 5457	2	System error detected: Incompatible memory card   Parameter _SigLatched Bit 20	Memory card capacity is insufficient.	Replace memory card
E 5462	0	Memory card implicitly written by the device Parameter _WarnLatched Bit 20	The content of the memory card and the content of the nonvolatile memory are not identical.	-
E 546C	0	Nonvolatile memory file not available	-	-
E 5600	3	Motor connection phase error detected Parameter _SigLatched Bit 26	Missing motor phase.	-


Error code	Error class	Description	Cause	Correctives
E 5603	3	Commutation error detected (additional info=Internal_DeltaQuep) Parameter _SigLatched Bit 26	Incorrect wiring of motor cable. Encoder signals are lost or subject to interference.   The load torque is greater than the motor torque.   The encoder nonvolatile memory contains incorrect data (encoder phase offset is incorrect).   Motor is not adjusted.	Verify motor phases, verify encoder wiring.   Improve EMC, verify grounding and shield connection.   Use a differently sized motor that can withstand the load torque.   Verify the motor data. Contact your Schneider Electric service representative.
E 6102	4	System error detected: Internal software error Parameter _SigLatched Bit 30	-	-
E 6103	4	System error detected: System stack overflow   Parameter _SigLatched Bit 31	-	-
E 6104	0	System error detected: Division by zero (internal)	-	-
E 6105	0	System error detected: Overflow during 32 bit calculation (internal)	-	-
E 6106	4	System error detected: Size of data interface does not match Parameter _SigLatched Bit 30	-	-
E 6107	0	Parameter outside of value range (calculation error detected)	-	-
E 6108	0	Function not available	-	-
E 6109	0	System error detected: Internal range exceeded	-	-
E 610A	2	System error detected: Calculated value cannot be represented as a 32 bit value	-	-
E 610D	0	Error detected in selection parameter	Incorrect parameter value selected.	Verify the value to be written.
E 610E	4	System error detected: 24 VDC below undervoltage threshold for shutdown	-	-
E 610F	4	System error detected: Internal timer basis missing (Timer0)   Parameter _SigLatched Bit 30	-	-
E 6111	2	System error detected: Memory area locked Parameter SigLatched Bit 30	-	-
E 6112	2	System error detected: Out of memory Parameter _SigLatched Bit 30	-	-
E 6113	1	System error detected: Calculated value cannot be represented as a 16 bit value	-	-
E 6114	4	System error detected: Impermissible function call from interrupt service routine	Incorrect programming	-
E 6117	0	Holding brake cannot be released manually.	The holding brake cannot be released manually because it is still applied manually.	First, switch from applying the holding brake manually to Automatic, then to releasing the holding brake manually.
E 7100	4	System error detected: Invalid power   stage data   Parameter _SigLatched Bit 30	Error detected in power stage data stored in device (incorrect CRC), error detected in internal memory data.	Contact your Schneider Electric service representative or replace the device.
E 7110	2	System error detected: Internal braking resistor	Internal braking resistor is inoperative or not connected.	Contact your Schneider Electric service representative.
E 7111	0	Parameter cannot be changed because the external braking resistor is active.	An attempt is made to change one of the parameters RESext_ton, RESext_P or RESext_R even though the external braking resistor is active.	Verify that the external braking resistor is not active if one of the parameters RESext_ton, RESext_P or RESext_R has to be changed.

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Error } \\ \text { code }\end{array} & \begin{array}{l}\text { Error } \\ \text { class }\end{array} & \begin{array}{l}\text { Description }\end{array} & \text { Cause } & \text { Correctives } \\ \hline \text { E 7112 } & 2 & \begin{array}{l}\text { No external braking resistor connected }\end{array} \\ \hline \text { E 7120 } & 4 & \begin{array}{l}\text { External braking resistor activated } \\ \text { (Parameter RESint_ext), but no } \\ \text { external resistor is detected. }\end{array} & \begin{array}{l}\text { Verify wiring of the external braking } \\ \text { resistor. Verify correct resistance. }\end{array} \\ \hline \text { E 7121 } & 2 & \begin{array}{l}\text { Parameter_SigLatched Bit 16 }\end{array} & \text { Motor data is incorrect (incorrect CRC). }\end{array} \begin{array}{l}\text { Contact your Schneider Electric } \\ \text { service representative or replace the } \\ \text { motor. }\end{array}\right]$

Error code	Error class	Description	Cause	Correctives
E 7320	4	System error detected: Invalid encoder parameter   Parameter _SigLatched Bit 16	Communication channel (Hiperface) to encoder is subject to interference, motor encoder has not been factoryparameterized.	Contact your Schneider Electric service representative.
E 7321	3	Timeout reading the absolute position from the encoder Parameter _SigLatched Bit 16	Communication channel (Hiperface) to encoder is subject to interference or motor encoder is inoperative.	Verify EMC measures.
E 7327	0	Error bit set in Hiperface answer   Parameter   WarnLatched Bit 16	Insufficient EMC.	Verify wiring (shield).
E 7328	4	Motor encoder: Position evaluation error detected Parameter _SigLatched Bit 16	Encoder has detected incorrect position evaluation.	Contact your Schneider Electric service representative or replace the motor.
E 7329	0	Motor encoder Warn signal Parameter _WarnLatched Bit 16	EMC.	Contact your Schneider Electric service representative or replace the motor.
E 7330	4	System error detected: Motor encoder (Hiperface)   Parameter _SigLatched Bit 16	-	Verify EMC measures. Contact your Schneider Electric service representative.
E 7331	4	System error detected: Motor encoder initialization   Parameter _SigLatched Bit 30	-	Verify EMC measures. Contact your Schneider Electric service representative.
E 7335	0	Communication with motor encoder active   Parameter WarnLatched Bit 16	Command is being processed or communication may be disturbed (EMC).	Verify EMC measures. Contact your Schneider Electric service representative.
E 733F	4	Amplitude of encoder analog signals too low Parameter _SigLatched Bit 16	Incorrect encoder wiring.   Encoder not connected.   Encoder signals subject to EMC interference (shield connection, cabling, etc.).	Verify EMC measures.   Contact your Schneider Electric service representative.
E 7340	3	Reading of absolute position aborted Parameter _SigLatched Bit 16	Communication channel (Hiperface) to encoder is subject to interference. Encoder (in motor) is inoperative.	Verify EMC measures. Contact your Schneider Electric service representative.
E 7341	0	Encoder overtemperature   Parameter _WarnLatched Bit 16	The maximum permissible duty cycle is exceeded.   The motor was not mounted properly, for example, it is thermally isolated. The motor is blocked so that more current is used than under normal conditions.   The ambient temperature is too high.	Reduce the duty cycle, for example, reduce acceleration.   Supply additional cooling, for example, use a fan.   Mount the motor in such a way as to increase thermal conductivity.   Use a differently rated drive or motor. Replace the motor.
E 7342	2	Encoder overtemperature   Parameter _SigLatched Bit 16	The maximum permissible duty cycle is exceeded.   The motor was not mounted properly, for example, it is thermally isolated. The motor is blocked so that more current is used than under normal conditions.   The ambient temperature is too high.	Reduce the duty cycle, for example, reduce acceleration.   Supply additional cooling, for example, use a fan.   Mount the motor in such a way as to increase thermal conductivity.   Use a differently rated drive or motor. Replace the motor.
E 7343	0	Absolute position is different from incremental position Parameter WarnLatched Bit 16	Encoder is subject to EMC interference.   Motor encoder is inoperative.	Verify EMC measures. Contact your Schneider Electric service representative.
E 7344	3	Absolute position is different from incremental position   Parameter _SigLatched Bit 16	Encoder is subject to EMC interference.   Motor encoder is inoperative.	Verify EMC measures. Contact your Schneider Electric service representative.
E 7345	0	Amplitude of analog signals too high, limit of AD conversion exceeded	Encoder signals subject to EMC interference (shield connection, wiring, etc.).   Encoder inoperative.	Verify EMC measures. Contact your Schneider Electric service representative.
E 7346	4	System error detected: Encoder not ready Parameter _SigLatched Bit 16	-	Verify EMC measures. Contact your Schneider Electric service representative.


Error   code	Error   class	Description	Cause	Correctives		
E 7347	0	System error detected: Position   initialization not possible	Analog and digital encoder signals   subject to massive interference.	Verify EMC measures.   Contact your Schneider Electric   service representative.		
E 7348	3	Timeout reading encoder temperature   Parameter_SigLatched Bit 16	Encoder without temperature sensor,   incorrect encoder connection.	Verify EMC measures.   Contact your Schneider Electric   service representative.		
E 7349	0	Discrepancy between absolute and   analog encoder phases	Analog encoder signals are subject to   interference.   Encoder inoperative.	Verify EMC measures.   Contact your Schneider Electric   service representative.		
E 734A	3	Amplitude of analog signals from   encoder too high, signals are clipped   Parameter_SigLatched Bit 16	Incorrect encoder wiring.   Encoder hardware interface   inoperative.	-		
E 734B	0	Signal position evaluation of analog   encoder inoperative   Parameter_WarnLatched Bit 16	Incorrect encoder wiring.   Encoder hardware interface   inoperative.	-		
E 734C	par.	Error detected with quasi absolute   position   Parameter_SigLatched Bit 16	The motor shaft may have been moved   while the drive was powered down. A   quasi absolute position has been   detected that is not within the   permissible motor shaft deviation   range.	If the quasi absolute function is active,   only power down the drive if the motor   is at a standstill and do not move the   motor shaft when the drive is off.		
E 7605	4	4	E	Configuration error detected: No motor   encoder type selected for encoder   module   Parameter_SigLatched Bit 22		-
:---						


Error code	Error class	Description	Cause	Correctives
E 7606	4	Configuration error detected: No machine encoder type selected for encoder module   Parameter _SigLatched Bit 22	-	-
E 7607	4	Encoder module cannot be identified Parameter _SigLatched Bit 22	The encoder module is indeterminable.	Use correct encoder module.
E 7608	4	Encoder module power supply overcurrent   Parameter _SigLatched Bit 22	- Short circuit at connector or encoder cable.   - Incorrect or inoperative encoder.	-
E 7609	4	Encoder not connected to encoder module   Parameter SigLatched Bit 22	Connector not connected to module or not connected to motor/encoder. Incorrect or inoperative encoder cable.	-
E 760A	3	Encoder module in slot 2 missing.   Parameter _SigLatched Bit 22	Module has been removed or module is inoperative.	-
E 760C	2	Maximum encoder frequency   exceeded   Parameter _SigLatched Bit 22	Velocity too high for the encoder.	-
E 760D	4	Configuration error detected: Incorrect use of encoder module Parameter _SigLatched Bit 22	Incorrect value in parameter ENC2_usage.	-
E 760E	2	Position evaluation error detected (signal tracking error detected) Parameter _SigLatched Bit 22	Encoder signals subject to EMC interference	Verify wiring and cable shield.
E 760F	0	Incorrect position evaluation (interference detected) Parameter _WarnLatched Bit 22	Encoder signals subject to EMC interference	Verify wiring, cable shield.
E 7610	0	Resolver: Loss of position tracking, position is inaccurate Parameter _WarnLatched Bit 22	- Motor velocity is too high.   - Motor acceleration is too fast.	- Reduce velocity.   - Reduce acceleration.   - Reduce resolver resolution.   - Adapt resolver excitation frequency.
E 7611	2	Resolver: Signal degradation, position is inaccurate Parameter _SigLatched Bit 22	Resolver is inoperative.   Resolver signals are subject to interference.   Resolver cable is too long.	Replace resolver.   Verify resolver cable: wiring and shield connection.   Additional info bits:   D5: Sine/cosine inputs exceed DOS out of range threshold.   D4: Sine/cosine inputs exceed DOS mismatch threshold.
E 7612	3	Resolver: Loss of signal, position unreliable Parameter _SigLatched Bit 22	Resolver is inoperative.   Resolver wiring is incorrect. Resolver signals are subject to excessive interference. Resolver is unsuitable for drive. Incorrect parameter transformation ratio.	Verify resolver cable: wiring and shield connection.   Replace resolver.   Additional info bits:   D7: Sine/cosine inputs clipped.   D6: Sine/cosine inputs below LOS threshold.
E 7613	3	Resolver: Signal communication subject to interference Parameter _SigLatched Bit 22	Resolver signals are subject to interference.	Verify resolver cable: wiring and shield connection.
E 7614	3	Error detected at resolver power supply.   Parameter _SigLatched Bit 22	Resolver is not properly connected.	Verify resolver cable.
E 7615	3	System error detected: Encoder module RES is not ready for position evaluation   Parameter _SigLatched Bit 22	EMC.	Verify resolver cable.
E 7616	3	System error detected: Resolver timeout Parameter_SigLatched Bit 22	-	Replace encoder module.
E 7617	1	Resolver velocity is too high Parameter _SigLatched Bit 22	Motor velocity is too high.	Reduce motor velocity.


Error code	Error class	Description	Cause	Correctives
E 7618	4	Encoder 2 Hall sensor error detected Parameter SigLatched Bit 22	Incorrect wiring or inoperative cable for Hall signals of encoder 2.	Verify encoder cable.
E 7619	4	Incorrect communication between module and encoder Parameter _SigLatched Bit 22	Incorrect encoder wiring/adjustment or incorrect encoder parameter settings (example: parameter ENCDigSSICoding is set for SSI encoder).	Verify encoder cable: wiring and shield connection.. Verify encoder parameter settings. Verify encoder adjustment.
E 761A	0	Incorrect communication between module and encoder Parameter _WarnLatched Bit 22	Incorrect encoder wiring.	Verify encoder cable: wiring and shield connection.
E 761B	4	Connected type of EnDat encoder is not supported   Parameter _SigLatched Bit 22	-	Use a supported EnDat encoder.
E 761C	4	Configuration error detected: Invalid SSI encoder parameter setting Parameter _SigLatched Bit 22	Incorrect values in parameter ENCDigSSIResSgl or ENCDigSSIResMult.	-
E 761D	2	Maximum velocity of the encoder is exceeded   Parameter _SigLatched Bit 22	Velocity too high for the encoder. In the case of SSI or EnDat2.2, the reason may also be a detected encoder communication error.	-
E 761E	2	Encoder module overtemperature Parameter _SigLatched Bit 22	The ambient temperature is too high.	Improve the heat dissipation in the control cabinet.
E 761F	2	Position evaluation error detected (AB encoder signals)   Parameter _SigLatched Bit 22	No sync signal available.	-
E 7620	4	Checksum error detected in EnDat encoder data   Parameter _SigLatched Bit 22	-	-
E 7621	1	Runtime compensation was not successful Parameter SigLatched Bit 22	-	Verify encoder cable: wiring and shield connection.
E 7622	0	Resolver timeout   Parameter _WarnLatched Bit 22	System error detected.	Replace encoder module
E 7623	0	Absolute encoder signal is not available   Parameter WarnLatched Bit 22	There is no encoder available at the input specified via the parameter ENC_abs_source.	Verify wiring, verify encoder. Change the value of the parameter ENC_abs_source.
E 7624	0	Absolute position for encoder 2 cannot be set Parameter WarnLatched Bit 22	No encoder connected or encoder does not support setting of absolute positions.	Use an encoder that supports direct setting of the absolute position via ENC2_setpabs.
E 7625	0	Not possible to set the absolute position for encoder 1.   Parameter _WarnLatched Bit 22	There is no encoder connected to the input for encoder 1.	Connect an encoder to the input for encoder 1 before trying to set the absolute position directly via ENC1_abs_pos.
E 7626	4	Overflow error detected during encoder scaling Parameter _SigLatched Bit 22	The multiturn resolution of the machine encoder with reference to the motor shaft exceeds the system limits, for example, due to the mechanical gear ratio between machine encoder and motor encoder.	Reduce the number of bits of the multitun resolution that are used for position evaluation via the parameter ENCDigResMulUsed.
E 7627	4	Configuration error detected: Invalid BISS encoder parameter setting Parameter _SigLatched Bit 22	Incorrect values in parameters ENCDigBISSResSgl or ENCDigBISSResMult.	-
E 7628	0	BISS encoder bits 'War' or 'Err' are set Parameter _WarnLatched Bit 22	The bits are used for diverse types of monitoring such as:   - Encoder temperature is too high.   - Service life of LED inside encoder exceeded.   - Position is not reliable.	Replace encoder.
E 7629	3	BISS initialization error detected Parameter _SigLatched Bit 22	-	-


Error code	Error class	Description	Cause	Correctives
E 7701	4	System error detected: Timeout during connection to power stage Parameter SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7702	4	System error detected: Invalid data received from power stage Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7703	4	System error detected: Data exchange with power stage lost Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7704	4	System error detected: Exchange of identification data from power stage not successful Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7705	4	System error detected: Checksum identification data from power stage incorrect Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7706	4	System error detected: No identification frame received from power stage Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7707	4	System error detected: Type of power stage and manufacture data do not match	-	Contact your Schneider Electric service representative.
E 7708	4	PIC voltage supply too low Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7709	4	System error detected: Invalid numbers of data received Parameter SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 770A	2	PIC received data with incorrect parity Parameter _SigLatched Bit 31	-	Contact your Schneider Electric service representative.
E 7800	1	eSM module: System error detected:   Error of class 1 forced   Parameter SigLatched Bit 23	-	-
E 7801	2	eSM module: System error detected:   Error of class 2 forced   Parameter _SigLatched Bit 23	-	-
E 7802	3	eSM module: System error detected: Error of class 3 forced Parameter _SigLatched Bit 23	-	-
E 7803	4	eSM module: System error detected:   Error of class 4 forced   Parameter SigLatched Bit 23	-	-
E 7804	3	eSM module: Insufficient deceleration for Quick Stop Parameter _SigLatched Bit 23	Quick Stop ramp of drive lower than Quick Stop ramp configured for eSM.	Change ramp in eSM or drive.
E 7805	1	eSM module: Error detected during Safe Operating Stop (SOS) Parameter _SigLatched Bit 23	Motor movement during Safe Operating Stop (SOS).	Keep motor from moving while Safe Operating Stop is active (external forces, loads).
E 7806	1	eSM module: Safely Limited Speed (SLS) exceeded in machine operating mode Setup Mode   Parameter _SigLatched Bit 23	Delay for reaching Safely Limited Speed (SLS) too low or eSM deceleration ramp too high.	Increase delay for eSM control of Safely Limited Speed (SLS) or decrease eSM deceleration ramp for reaching Safely Limited Speed (SLS).
E 780A	2	eSM module: /ESTOP signal for EMERGENCY STOP triggered Parameter _SigLatched Bit 23	EMERGENCY STOP is active.	Reset EMERGENCY STOP.
E 780B	0	eSM module: Not ready for Fault Reset Parameter WarnLatched Bit 23	eSM is in state Quick Stop Active or Fault Reaction Active or Fault.	Wait until eSM is no longer in state Quick Stop Active or Fault Reaction Active or Fault or reboot the drive.


Error code	Error class	Description	Cause	Correctives
E 780C	0	eSM module: Not ready for eSM Disable   Parameter _WarnLatched Bit 23	Safety module eSM is not in operating state Operation Enabled.	eSM Disable requires the safety module eSM to be in operating state Operation Enabled.
E 780F	0	eSM module: Parameter cannot be written in this operating state Parameter WarnLatched Bit 23	Parameter cannot be written in this eSM state.	Change eSM state to write this parameter.
E 7810	0	eSM module: Incorrect password Parameter _WarnLatched Bit 23	The password that was sent by the configuration tool is not identical to the password stored in the device.	Send the stored password.
E 7811	0	eSM module: Timeout during parameter download (default values loaded)   Parameter _WarnLatched Bit 23	Incorrect connection or EMC.	Verify wiring (shield).
E 7813	0	eSM module: Parameter checksum cannot be written in this operating state Parameter _WarnLatched Bit 23	eSM is not ready to be configured.	Use correct password. Reconfigure safety module eSM. Contact your Schneider Electric service representative.
E 7814	0	eSM module: Parameter checksum incorrect (default values loaded) Parameter _WarnLatched Bit 23	EMC.   The commissioning software is outdated and not compatible with the safety module eSM.	Verify wiring (shield). Install latest commissioning software version.
E 7815	0	eSM module: Undertemperature Parameter WarnLatched Bit 23	Temperature too low.	-
E 7816	0	eSM module: Overtemperature Parameter _WarnLatched Bit 23	Temperature too high.	Verify the ambient conditions. Verify that the flow of air is sufficient (pollution, objects).
E 7818	2	eSM module: System error detected: ESM5VDC undervoltage Parameter _SigLatched Bit 23	Error detected in eSM 5 V supply.	-
E 7819	2	eSM module: Overload outputs channel A Parameter _SigLatched Bit 23	Short circuit or overload.	Verify wiring and connected devices.
E 781A	4	eSM module: System error detected:   5V overvoltage   Parameter _SigLatched Bit 23	eSM internal power supply error detected	-
E 781B	4	eSM module: System error detected: 5 V undervoltage   Parameter _SigLatched Bit 23	eSM internal power supply error detected	-
E 781D	2	eSM module: ESMSTART: Maximum permissible pulse duration exceeded Parameter _SigLatched Bit 23	Pulse duration longer than 4 seconds.	Pulse duration must be less than 4 seconds.
E 781E	4	eSM module: System error detected:   RAM   Parameter _SigLatched Bit 23	eSM RAM error detected	-
E 781F	4	eSM module: System error detected:   Stack overflow   Parameter _SigLatched Bit 23	-	-
E 7820	4	eSM module: System error detected:   Program sequence control (communication)   Parameter _SigLatched Bit 23	Software watchdog eSM (CPU_B)	-
E 7821	4	eSM module: System error detected: Program sequence control (Idle task) Parameter SigLatched Bit 23	-	-
E 7825	4	eSM module: System error detected:   Firmware checksum   Parameter _SigLatched Bit 23	-	-
E 7826	0	eSM module: Parameter outside of permissible value range Parameter _WarnLatched Bit 23	Parameter outside of permissible value range.	Verify parameter value.


Error code	Error class	Description	Cause	Correctives
E 7827	2	eSM module: Parameter checksum error detected Parameter _SigLatched Bit 23	Saved parameter values are invalid.	Reconfigure the eSM. Contact your Schneider Electric service representative.
E 7828	2	eSM module: System error detected: SPI framing error detected Parameter _SigLatched Bit 23	-	-
E 7829	4	eSM module: Input states channel A and channel $B$ are not identical Parameter _SigLatched Bit 23	Wire break or connected devices are inoperable.	Verify wiring and connected devices.
E 782A	2	eSM module: Output states channel A and channel $B$ are not identical Parameter _SigLatched Bit 23	Short circuit to 24 V DC. System error detected.	Verify wiring and connected devices. Verify connection of STO_A and STO_B. Contact your Schneider Electric service representative.
E 782B	3	eSM module: System error detected: Position evaluation error detected (values not identical) Parameter _SigLatched Bit 23	CPU_A and CPU_B have different position values. This condition may have been caused by the encoder.	-
E 782C	3	eSM module: System error detected: Velocity evaluation error detected (values not identical) Parameter _SigLatched Bit 23	CPU_A and CPU_B have different velocity values. This condition may have been caused by the encoder.	-
E 782F	2	eSM module: System error detected: Error detected during dynamization of STO signal Parameter _SigLatched Bit 23	-	-
E 7833	0	eSM module: System error detected: Nonvolatile memory incorrect checksum (default values loaded) Parameter _WarnLatched Bit 23	Nonvolatile memory inoperative.	-
E 7834	0	eSM module: Safety module replaced (default values loaded) Parameter _WarnLatched Bit 23	This safety module has not been configured with this drive. The parameters have been reset to the default values.	Reconfigure the safety module.
E 7835	4	eSM module: Commutation position Parameter _SigLatched Bit 23	Encoder error or error in internal communication with the drive detected (for example, EMC).	Verify EMC. Verify encoder connection. Contact your Schneider Electric service representative.
E 7836	4	eSM module: Parameter checksums not identical Parameter _SigLatched Bit 23	Parameter of CPU_A is not identical to parameter of CPU_B. Not possible to load parameters into safety module eSM.	Retry loading the parameters into the safety module eSM. If the condition persists, contact your Schneider Electric service representative.
E 7837	0	eSM module: System error detected:   Boot program: Invalid address   Parameter_WarnLatched Bit 23	Invalid write access of bootloader to flash memory range.	-
E 7838	1	eSM module: Safely Limited Speed (SLS) exceeded in machine operating mode Automatic Mode Parameter _SigLatched Bit 23	Drive velocity greater than configured eSM speed limit.	Reduce velocity of the drive or verify eSM speed limit for machine operating mode Automatic Mode.
E 7839	2	eSM module: Input ESMSTART Iow instead of high (automatic start) Parameter SigLatched Bit 23	ESMSTART is configured for automatic start and must be high at start.	Verify parameter configuration of ESMSTART. Verify wiring of ESMSTART.
E 783A	2	eSM module: Input ESMSTART high instead of low (manual start) Parameter _SigLatched Bit 23	ESMSTART is configured for manual start and must be low at start.	Verify parameter configuration of ESMSTART. Verify wiring of ESMSTART.
E 783B	2	eSM module: Guard door acknowledgment: The acknowledgement signal is available for too long a time. Parameter _SigLatched Bit 23	The acknowledgement signal is available for more than 6 seconds.	The acknowledgement signal must be available for less than 6 seconds.


Error code	Error class	Description	Cause	Correctives
E 783C	4	eSM module: System error detected: States of eSM state machines not identical Parameter _SigLatched Bit 23	-	-
E 783F	2	eSM module: Output AUXOUT1 (cross fault to another output detected) Parameter SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 7840	2	eSM module: Output /INTERLOCK_OUT (cross fault to another output detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 7841	2	eSM module: Output RELAY_OUT_A (cross fault to another output detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 7842	2	eSM module: Output CCM24V_OUT_A (cross fault to another output detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 7843	2	eSM module: Output AUXOUT1 (cross   fault to 24 V detected)   Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 7844	2	eSM module: Output   /INTERLOCK_OUT (cross fault to 24 V   detected)   Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 7845	2	eSM module: Output RELAY_OUT_A (cross fault to 24 V detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 7846	2	eSM module: Output CCM24V_OUT_A (cross fault to 24 V detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	-
E 7848	2	eSM module: System error detected: Input ESMSTART_A   Parameter SigLatched Bit 23	-	-
E 7849	2	eSM module: System error detected: Input SETUPENABLE_A   Parameter SigLatched Bit 23	-	-
E 784A	2	eSM module: System error detected: Input SETUPMODE_A   Parameter _SigLatched Bit 23	-	-
E 784B	2	eSM module: System error detected:   Input GUARD_A   Parameter _SigLatched Bit 23	-	-
E 784C	2	eSM module: System error detected:   Input GUARD_ACK   Parameter _SigLatched Bit 23	-	-
E 784D	2	eSM module: System error detected:   Input /INTERLOCK_IN_A   Parameter SigLatched Bit 23	-	-
E 784E	2	eSM module: System error detected:   Input /ESTOP_A   Parameter _SigLatched Bit 23	-	-
E 784F	2	eSM module: System error detected: Input NOTUSED_A   Parameter _SigLatched Bit 23	-	-
E 7850	2	eSM module: Overload outputs channel B Parameter _SigLatched Bit 23	Short circuit or overload.	Verify wiring and connected devices.


Error code	Error class	Description	Cause	Correctives
E 7851	4	eSM module: System error detected: UART overrun/framing error Parameter _SigLatched Bit 23	-	-
E 7852	2	eSM module: System error detected: ResEnc (encoder resolution) is set to 0 Parameter _SigLatched Bit 23	-	-
E 7853	4	eSM module: System error detected: CPU synchronization Parameter _SigLatched Bit 23	-	-
E 7854	2	eSM module: No motor movement for 36 hours   Parameter _SigLatched Bit 23	There has not been a minimum motor movement for the last 36 hours.	There must be a minimum motor movement at least once every 36 hours.
E 7855	2	eSM module: System error detected:   Timeout high-priority tests (5 sec)   Parameter _SigLatched Bit 23	-	-
E 7856	2	eSM module: System error detected:   Timeout low-priority tests   Parameter _SigLatched Bit 23	-	-
E 7857	2	eSM module: Parameter dec_Qstop (minimum deceleration) is set to 0 Parameter _SigLatched Bit 23	Module is not configured.	Download a configuration.
E 7858	2	eSM module: Output AUXOUT2 (cross   fault to another output detected)   Parameter SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 7859	2	eSM module: Output /INTERLOCK_OUT (cross fault to another output detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 785A	2	eSM module: Output RELAY_OUT_B (cross fault to another output detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 785B	2	eSM module: Output CCM24V_OUT_B (cross fault to another output detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to another output.	Verify wiring and connected devices.
E 785C	2	eSM module: Output AUXOUT2 (cross   fault to 24 V detected)   Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 785D	2	eSM module: Output   /INTERLOCK_OUT (cross fault to 24 V   detected)   Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 785E	2	eSM module: Output RELAY_OUT_B (cross fault to 24 V detected)   Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 785F	2	eSM module: Output CCM24V_OUT_B (cross fault to 24 V detected) Parameter _SigLatched Bit 23	Cross fault detection detected a cross fault to 24 V .	Verify wiring and connected devices.
E 7861	2	eSM module: System error detected: Input ESMSTART_B   Parameter _SigLatched Bit 23	-	-
E 7862	2	eSM module: System error detected: Input SETUPENABLE_B   Parameter _SigLatched Bit 23	-	-
E 7863	2	eSM module: System error detected: Input SETUPMODE_B   Parameter SigLatched Bit 23	-	-


Error code	Error class	Description	Cause	Correctives
E 7864	2	eSM module: System error detected: Input GUARD_B   Parameter _SigLatched Bit 23	-	-
E 7865	2	eSM module: System error detected: Input GUARD_ACK   Parameter _SigLatched Bit 23	-	-
E 7866	2	eSM module: System error detected: Input /INTERLOCK_IN_B   Parameter_SigLatched Bit 23	-	-
E 7867	2	eSM module: System error detected: Input /ESTOP_B   Parameter _SigLatched Bit 23	-	-
E 786A	4	eSM module: Undertemperature Parameter _SigLatched Bit 23	Temperature of the eSM too low.	Verify ambient conditions.
E 786C	2	eSM module: Overvoltage ESM24VDC Parameter _SigLatched Bit 23	Voltage too high at the ESM24VDC.	Verify power supply.
E 786D	4	eSM module: Overtemperature Parameter _SigLatched Bit 23	Temperature too high.	Verify the ambient conditions. Verify that the flow of air is sufficient (pollution, objects).
E 786E	4	eSM module: System error detected: Operating states not identical Parameter _SigLatched Bit 23	-	-
E 7870	4	eSM module: System error detected: Software versions not identical Parameter SigLatched Bit 23	-	-
E 7871	3	eSM module: Error detected during Safe Operating Stop (SOS) after detected error Parameter_SigLatched Bit 23	Motor movement during Safe Operating Stop (SOS).	-
E 7872	4	eSM module: System error detected: Software incompatible with hardware Parameter SigLatched Bit 23	-	-
E 7873	1	eSM module: Error detected during deceleration to Safely Limited Speed (SLS)   Parameter _SigLatched Bit 23	Velocity of drive greater than speed limit configured for eSM Safely Limited Speed (SLS).	Verify speed limit and delay time for eSM Safely Limited Speed (SLS). Adapt the drive values for ramp and velocity, if necessary.
E 7874	2	eSM module: Repeated error detected during Safe Operating Stop (SOS) Parameter SigLatched Bit 23	-	-
E 7875	4	eSM module: Repeated error detected during deceleration for Quick Stop Parameter _SigLatched Bit 23	-	-
E 7876	3	eSM module: /INTERLOCK_IN not high (timeout if t_Relay $=2$ )   Parameter _SigLatched Bit 23	-	-
E 7877	2	eSM module: Input/INTERLOCK_IN is high even though Ignore has been configured Parameter _SigLatched Bit 23	-	-
E 7878	2	eSM module: Speed limit for machine operating mode Setup Mode (eSM_v_maxSetup) higher than speed limit for machine operating mode Automatic Mode (eSM_v_maxAuto) Parameter _SigLatched Bit 23	Speed limit for machine operating mode Setup Mode must not be greater than speed limit for machine operating mode Automatic Mode.	Verify the speed limits for machine operating modes Automatic Mode and Setup Mode and change them as required.
E 7879	4	eSM module: System error detected: Indeterminable state of eSM state machine Parameter _SigLatched Bit 23	-	-


Error code	Error class	Description	Cause	Correctives
E 787A	2	eSM module: ESM24VDC undervoltage Parameter SigLatched Bit 23	Voltage at the ESM24VDC connector to low.	Verify power supply.
E 787D	4	eSM module: System error detected: Asynchronous communication (UART/SPI)   Parameter_SigLatched Bit 23	-	-
E 787E	4	eSM module: System error detected:   RAM (bit)   Parameter _SigLatched Bit 23	-	-
E 787F	4	eSM module: Encoder signal error detected Parameter _SigLatched Bit 23	Encoder or encoder cable inoperative. Incorrect signal evaluation in drive.	-
E 7880	2	eSM module: Indeterminable service Parameter _SigLatched Bit 23	-	-
E 7881	2	eSM module: Parameter does not exist Parameter _SigLatched Bit 23	Parameter does not exist.	Verify the parameter number.
E 7882	4	eSM module: System error detected:   3_3V overvoltage   Parameter SigLatched Bit 23	Overvoltage in internal eSM power supply.	-
E 7883	4	eSM module: System error detected:   3_3V undervoltage   Parameter SigLatched Bit 23	Undervoltage in internal eSM power supply.	-
E 7884	4	eSM module: System error detected:   Temperature sensor   Parameter _SigLatched Bit 23	Temperature sensor for CPU_A or CPU_B does not work properly.	-
E 7886	2	eSM module: No speed limit for negative direction set for directiondependent SLS   Parameter _SigLatched Bit 23	Direction-dependent SLS is active, but no speed limit greater than 0 RPM has been specified in the parameter eSM_v_maxSetup or in parameter eSM_SLSnegDirS.	Set a speed limit for directiondependent SLS greater than 0 RPM in the parameter_eSM_v_maxSetup or in the parameter eSM_SLSnegDirS or deactivate direction-dependent SLS via the parameter eSM_FuncSwitches.
E 7887	2	eSM module: Speed limit for SLS in negative direction has been specified, but direction-dependant SLS has not been activated Parameter _SigLatched Bit 23	Direction-dependent SLS is not active, but a speed limit for directiondependent SLS in negative direction has been specified.	Set the speed limit for directiondependent SLS in negative direction in parameter eSM_SLSnegDirS to 0 RPM or activate direction-dependent SLS via the parameter eSM_FuncSwitches.
E 7889	2	eSM module: Order of speed limits for multiple SLS in positive direction is incorrect Parameter _SigLatched Bit 23	The values for the speed limits for multiple SLS are not in ascending order.	Set correct speed limits for multiple SLS.
E 788A	2	eSM module: Order of speed limits for multiple SLS in negative direction is incorrect Parameter _SigLatched Bit 23	The values for the speed limits for multiple SLS are not in ascending order.	Set correct speed limits for multiple SLS.
E 788B	2	eSM module: Invalid speed limit for multiple SLS in positive direction Parameter _SigLatched Bit 23	Speed limit for multiple SLS in positive direction has a value of zero.	Set a speed limit not equal to zero for multiple SLS.
E 788C	2	eSM module: Invalid speed limit for multiple SLS in negative direction has a value of zero Parameter _SigLatched Bit 23	Speed limit for multiple SLS in negative direction has a value of zero.	Set a speed limit not equal to zero for multiple SLS.
E 788D	2	eSM module: Two types of multiple SLS selected at the same time Parameter _SigLatched Bit 23	eSM module: Two types of multiple SLS selected at the same time.	Select a single type of multiple SLS.
E 7900	4	Module in fieldbus slot not correctly detected Parameter _SigLatched Bit 21	Fieldbus module not correctly mounted in the slot.   Unsupported fieldbus module inserted. Fieldbus module inoperative.   EMC.	Replace fieldbus module. Improve EMC.


Error code	Error class	Description	Cause	Correctives
E 7901	4	Indeterminable type of fieldbus module detected in fieldbus slot Parameter _SigLatched Bit 21	The type of module detected in fieldbus slot is not supported by the drive.	Use supported type of fieldbus module. Refer to manual or catalog.
E 7903	3	Fieldbus module in slot 3 missing Parameter _SigLatched Bit 21	Fieldbus module has been removed or fieldbus module is inoperative.	Confirm or cancel HMI dialog box for fieldbus module replacement. Install a new fieldbus module.
E 7904	0	Parameter access error detected in fieldbus module	Fieldbus module parameter does not exist or cannot be written.	-
E 7905	3	Fieldbus module in slot 3 has been changed Parameter _SigLatched Bit 21	The fieldbus module has been replaced by another type of fieldbus module.	Confirm the new fieldbus module via the HMI dialog.
E 7906	0	Internal timeout in communication with fieldbus module	Internal communication with fieldbus module not correct. Fieldbus module inoperative. EMC.	Replace fieldbus module. Improve EMC.
E A060	2	Calculated velocity too high for operating mode Electronic Gear Parameter _SigLatched Bit 4	Gear ratio or reference velocity value too high	Reduce the gear ratio or reference velocity.
E A061	2	Position change in reference value for operating mode Electronic Gear too high   Parameter	Position reference change is too high. Error detected at signal input for reference value.	Reduce the resolution of the master. Verify signal input for reference value signal.
E A065	0	Parameters cannot be written   Parameter _WarnLatched Bit 4	A data set is still active.	Wait until the currently active data set has been terminated.
E A067	1	Invalid value in data set (additional info = data set number (low byte) and entry (high byte))   Parameter _SigLatched Bit 4	Value not possible in data set.	See also parameters _MSM_error_num and _MSM_error_entry for additional information.
E A068	0	Offset positioning not possible   Parameter _WarnLatched Bit 4	Operating mode Electronic Gear inactive or no gear method selected.	Start operating mode Electronic Gear and/or select a gear method.
E A069	0	Setting the offset position is not possible Parameter_WarnLatched Bit 4	If offset positioning is active, it is not possible to set the position offset.	Wait until ongoing offset positioning has finished.
E A06B	2	Position deviation in operating mode Electronic Gear too high Parameter _SigLatched Bit 4	The position deviation has become excessively high due to a velocity limitation or the release of direction.	Verify the velocity of the external reference values and the velocity limitation. Verify release of direction.
E A300	0	Deceleration after HALT request still running	HALT was removed too soon. New command was sent before motor standstill was reached after a HALT request.	Wait for complete stop before removing HALT signal. Wait until motor has come to a complete standstill.
E A301	0	Drive in operating state Quick Stop Active	Error with error class 1 detected. Drive stopped with Quick Stop.	-
E A302	1	Stop by positive limit switch Parameter _SigLatched Bit 1	The positive limit switch was activated because movement range was exceeded, incorrect operation of limit switch or signal disturbance.	Verify application.   Verify limit switch function and connection.
E A303	1	Stop by negative limit switch Parameter _SigLatched Bit 1	The negative limit switch was activated because movement range was exceeded, incorrect operation of limit switch or signal disturbance.	Verify application.   Verify limit switch function and connection.
E A304	1	Stop by reference switch   Parameter _SigLatched Bit 1	-	-
E A305	0	Power stage cannot be enabled in the operating state Not Ready To Switch On	Fieldbus: An attempt was made to enable the power stage in the operating state Not Ready To Switch On.	Refer to the state diagram.


Error code	Error class	Description	Cause	Correctives
E A306	1	Stop by user-initiated software stop Parameter _SigLatched Bit 3	Drive is in operating state Quick Stop Active due to a software stop request. The activation of a new operating mode is not possible, the error code is sent as the response to the activation command.	Clear break condition with command Fault Reset.
E A307	0	Interruption by internal software stop	In the operating modes Homing and Jog, the movement is internally interrupted by an internal software stop. The activation of a new operating mode is not possible, the error code is sent as the response to the activation command.	Perform a Fault Reset.
E A308	0	Drive is in operating state Fault or Fault Reaction Active	Error with error class 2 or higher detected.	Verify the error code, remove the cause and perform a Fault Reset.
E A309	0	Drive not in operating state Operation Enabled	A command was sent that requires the drive to be in the operating state Operation Enabled (for example, a command to change the operating mode).	Set drive to operating state Operation Enabled and repeat the command.
E A310	0	Power stage not enabled	Command cannot be used because the power stage is not enabled (operating state Operation Enabled or Quick Stop Active).	Set drive to an operating state in which the power stage is enabled, see state diagram.
E A311	0	Operating mode change active	A start request for an operating mode has been received while a change of the operating mode was active.	Wait until the operating mode change has terminated before triggering a start request for another operating mode.
E A312	0	Profile generation interrupted	-	-
E A313	0	Position overflow, zero point is therefore no longer valid (ref_ok=0)	The movement range limits were exceeded and the zero point is no longer valid. An absolute movement requires a valid zero point.	Define a valid zero point by means of the operating mode Homing.
E A314	0	No valid zero point	Command needs a valid zero point (ref_ok=1).	Define a valid zero point by means of the operating mode Homing.
E A315	0	Homing active	Command cannot be used while the operating mode Homing is active.	Wait until reference movement is finished.
E A316	0	Overflow during calculation of acceleration	-	-
E A317	0	Motor is not at a standstill	Command sent which is not permissible when the motor is not at a standstill.   For example:   - Change of software limit switches   - Change of handling of monitoring   signals   - Setting of reference point   - Teach in of data set	Wait until the motor has come to a standstill (x_end = 1).
E A318	0	Operating mode active (x_end=0)	Activation of a new operating mode is not possible while another operating mode is still active.	Wait until the command in the operating mode has finished (x_end=1) or terminate active operating mode with HALT command.
E A319	1	Manual tuning/Autotuning: Movement out of range   Parameter _SigLatched Bit 2	The movement exceeds the parameterized maximum movement range.	Verify permissible movement range value and time interval.
E A31A	0	Manual tuning/Autotuning: Amplitude/offset too high	Amplitude plus offset for tuning exceed internal velocity or current limitation.	Choose lower amplitude and offset values.
E A31B	0	Halt requested	Command not permissible while Halt is requested.	Clear Halt request and repeat command.
E A31C	0	Invalid position setting with software limit switch	Value for negative (positive) software limit switch is greater (less) than value for positive (negative) software limit switch.	Set correct position values.


Error code	Error   class	Description	Cause	Correctives
E A31D	0	Velocity range exceeded (parameter CTRL_v_max, M_n_max)	The velocity was set to a value greater than the maximum permissible velocity in parameter CTRL_v_max or M_n_max, whichever is lower.	If the value of parameter $M _n _$max is greater than the value of parameter CTRL_v_max, increase the value of parameter CTRL_v_max or reduce the velocity value.
E A31E	1	Stop by positive software limit switch Parameter _SigLatched Bit 2	Not possible to execute command because positive software limit switch was triggered.	Return to the permissible movement range.
E A31F	1	Stop by negative software limit switch Parameter _SigLatched Bit 2	Not possible to execute command because negative software limit switch was triggered.	Return to the permissible movement range.
E A320	par.	Permissible position deviation exceeded Parameter _SigLatched Bit 8	External load or acceleration are too high.	Reduce external load or acceleration. Use a differently rated drive, if necessary.   Error response can be adjusted via parameter ErrorResp_p_dif.
E A321	0	Invalid setting for RS422 position interface	-	-
E A322	0	Error detected in ramp calculation	-	-
E A323	3	System error detected: Processing error detected during generation of profile	-	-
E A324	1	Error detected during homing (additional info = detailed error code) Parameter _SigLatched Bit 4	Homing movement was stopped in response to a detected error, the detailed reason is indicated by the additional info in the error memory.	$\begin{aligned} & \text { Possible sub-error codes: } \\ & \text { E A325, E A326, E A327, E A328 or } \\ & \text { E A329. } \end{aligned}$
E A325	1	Limit switch to be approached not enabled Parameter _SigLatched Bit 4	Homing to positive limit switch or negative limit switch is disabled.	Enable limit switch via 'IOsigLimP' or 'IOsigLimN'.
E A326	1	Reference switch not found between positive limit switch and negative limit switch Parameter _SigLatched Bit 4	Reference switch inoperative or not correctly connected.	Verify the function and wiring of the reference switch.
E A329	1	More than one signal positive limit switch/negative limit switch/reference switch active Parameter _SigLatched Bit 4	Reference switch or limit switch not connected correctly or supply voltage for switches too low.	Verify the wiring and 24 VDC supply voltage.
E A32A	1	Positive limit switch triggered with negative direction of movement Parameter _SigLatched Bit 4	Start reference movement with negative direction (for example, reference movement to negative limit switch) and activate the positive limit switch (switch in opposite direction of movement).	Verify correct connection and function of limit switch.   Activate a jog movement with negative direction of movement (target limit switch must be connected to the negative limit switch).
E A32B	1	Negative limit switch triggered with positive direction of movement Parameter _SigLatched Bit 4	Start reference movement with positive direction (for example, reference movement to positive limit switch) and activate the negative limit switch (switch in opposite direction of movement).	Verify correct connection and function of limit switch.   Activate a jog movement with positive direction of movement (target limit switch must be connected to the positive limit switch).
E A32C	1	Reference switch error detected (switch signal briefly enabled or switch overtraveled)   Parameter _SigLatched Bit 4	Switch signal disturbance.   Motor subjected to vibration or shock when stopped after activation of the switch signal.	Verify supply voltage, cabling and function of switch.   Verify motor response after stopping and optimize control loop settings.
E A32D	1	Positive limit switch error detected (switch signal briefly enabled or switch overtraveled)   Parameter _SigLatched Bit 4	Switch signal disturbance.   Motor subjected to vibration or shock when stopped after activation of the switch signal.	Verify supply voltage, cabling and function of switch.   Verify motor response after stopping and optimize control loop settings.
E A32E	1	Negative limit switch error detected (switch signal briefly enabled or switch overtraveled)   Parameter _SigLatched Bit 4	Switch signal disturbance.   Motor subjected to vibration or shock when stopped after activation of the switch signal.	Verify supply voltage, cabling and function of switch.   Verify motor response after stopping and optimize control loop settings.


Error code	Error class	Description	Cause	Correctives
E A32F	1	Index pulse not found Parameter _SigLatched Bit 4	Index pulse signal not connected or not working properly.	Verify index pulse signal and connection.
E A330	0	Reference movement to index pulse cannot be reproduced. Index pulse is too close to the switch   Parameter $\qquad$ WarnLatched Bit 4	The position difference between the index pulse and the switching point is insufficient.	Increase the distance between the index pulse and the switching point. If possible, the distance between the index pulse and the switching point should be a half motor revolution.
E A332	1	Jog error detected (additional info = detailed error code)   Parameter _SigLatched Bit 4	Jog movement was stopped in response to a detected error.	For additional info, verify the detailed error code in the error memory.
E A333	3	System error detected: Invalid internal selection	-	-
E A334	2	Timeout Standstill Window monitoring	Position deviation after movement greater than standstill window. This may have been caused by an external load.	Verify load.   Verify settings for standstill window (parameter MON_p_win, MON_p_winTime and MON_p_winTout).   Optimize control loop settings.
E A336	1	System error detected: Jerk limitation with position offset after end of movement (additional info = offset in Inc.)	-	-
E A337	0	Operating mode cannot be continued Parameter _WarnLatched Bit 4	Continuation of interrupted movement in operating mode Profile Position is not possible because another operating mode had been active in the meantime.   In the operating mode Motion Sequence, continuation is not possible if a motion blend was interrupted.	Restart the operating mode.
E A338	0	Operating mode unavailable   Parameter _WarnLatched Bit 4	The selected operating mode is not available.	-
E A33A	0	No valid zero point (ref_ok=0) Parameter _WarnLatched Bit 4	No zero point defined by means of operating mode Homing.   Zero point no longer valid due to movement beyond permissible movement range.   Motor does not have an absolute encoder.	Use operating mode Homing to define a valid zero point.   Use a motor with an absolute encoder.
E A33C	0	Function not available in this operating mode   Parameter _WarnLatched Bit 4	Activation of a function which is not available in the active operating mode.   Example: Start of backlash compensation while autotuning/manual tuning is active.	-
E A33D	0	Motion blend is already active Parameter _WarnLatched Bit 4	Change of motion blend during the ongoing motion blend (end position of motion blend not yet reached)	Wait for the motion blend to complete before setting the next position.
E A33E	0	No movement activated Parameter _WarnLatched Bit 4	Activation of a motion blend without movement.	Start a movement before the motion blend is activated.
E A33F	0	Position of motion blend movement not in the range of the ongoing movement Parameter _WarnLatched Bit 4	The position of the motion blend is outside of the movement range.	Verify the position of the motion blend and the movement range.
E A340	1	Error detected in operating mode Motion Sequence (additional info = detailed error code)   Parameter _SigLatched Bit 4	The operating mode Motion Sequence was stopped in response to a detected error. Verify the error memory for details on the detected error.	See the additional error information.
E A341	0	Position of motion blend has already been passed   Parameter _WarnLatched Bit 4	The movement has passed beyond the position of the motion blend.	-
E A342	1	Target velocity was not reached at motion blend position.   Parameter _SigLatched Bit 4	The position of the motion blend was overtraveled, the target velocity was not reached.	Reduce the ramp velocity so that the target velocity is reached at the position of the motion blend.


Error code	Error class	Description	Cause	Correctives
E A343	0	Processing only possible with linear ramp   Parameter WarnLatched Bit 4	Motion blend position was set with a non-linear ramp.	Set a linear ramp.
E A344	par.	Maximum position deviation between motor encoder and machine encoder exceeded   Parameter _SigLatched Bit 8	Incorrect or inoperative encoder cable. Machine encoder not connected or not supplied correctly.   Different counting directions of motor encoder and machine encoder. Incorrect setting of resolution factors (numerator or denominator) of machine encoder.	Verify encoder connection.   Verify parameterization of machine encoder.
E A347	0	Permissible position deviation exceeded Parameter _WarnLatched Bit 8	External load or acceleration are too high.	Reduce external load or acceleration. Threshold value can be adjusted via the parameter MON_p_dif_warn.
E A348	1	No analog reference value source selected   Parameter_SigLatched Bit 4	No analog reference value selected	Select an analog reference value source.
E A349	0	Position setting exceeds system limits	Position scaling of POSscaleDenom and POSscaleNum results in a scaling factor that is too small.	Change POSscaleDenom and POSscaleNum in such a way as to increase the resulting scaling factor.
E A34A	0	Velocity setting exceeds system limits	The velocity scaling of 'VELscaleDenom' and 'VELscaleNum' results in a scaling factor that is too small.   The velocity has been set to a value greater than the maximum possible velocity (the maximum velocity is 13200 RPM).	Change 'VELscaleDenom' and 'VELscaleNum' in such a way as to increase the resulting scaling factor.
E A34B	0	Ramp setting exceeds system limits	The ramp scaling of 'RAMPscaleDenom' and 'RAMPscaleNum' results in a scaling factor that is too small.	Change of 'RAMPscaleDenom' and 'RAMPscaleNum' in such a way as to increase the resulting scaling factor.
E A34C	0	Resolution of scaling too high (range exceeded)	-	-
E A350	1	Change for jerk filter input position too great Parameter _SigLatched Bit 4	Operating mode Electronic Gear with processing method 'Position synchronization with compensation movement' has been activated which resulted in a position change greater than 0.25 revolutions.	Deactivate jerk filter processing for Electronic Gear or use processing method 'Position synchronization without compensation movement'.
E A351	1	Function cannot be executed with this position scaling factor   Parameter _SigLatched Bit 4	The positions scaling factor is set to a value less than 1rev/131072usr_p, which is less than the internal resolution.   In the operating mode Cyclic Synchronous Position, the resolution is not set to 1rev/131072usr_p.	Use a different position scaling factor or deactivate the selected function.
E A355	1	Error detected during relative movement after capture (additional info = detailed error code)   Parameter _SigLatched Bit 4	Movement was stopped by error.	Verify the error memory.
E A356	0	Function Relative Movement After Capture not assigned to a digital input	-	Assign the function Relative Movement After Capture to a digital input.
E A357	0	Deceleration still running	Command is not permissible during deceleration.	Wait until motor has come to a complete standstill.
E A358	1	Target position overtraveled with function Relative Movement After Capture Parameter _SigLatched Bit 4	Stopping distance too small or velocity too high at the point in time of the capture event.	Reduce the velocity.
E A359	0	Request cannot be processed since the relative movement after capture is still active	-	-


Error code	Error class	Description	Cause	Correctives
E A35A	1	Selected data set cannot be started Parameter _SigLatched Bit 4	The data set with the selected number is not available.	Verify the number of the data set.
E A35C	1	Movement to new reference position is not possible after a limit switch has been triggered and a Fault Reset has been performed	The difference between the actual position and the reference position is too great.	-
E A35D	par.	Permissible velocity deviation exceeded   Parameter _SigLatched Bit 8	Load or acceleration too high.	Reduce load or acceleration.
E B100	0	RS485/Modbus: Indeterminable service Parameter _WarnLatched Bit 5	Unsupported Modbus service was received.	Verify application on the Modbus master.
E B101	1	Incorrect I/O data configuration (additional info = Modbus register address)   Parameter_SigLatched Bit 21	The I/O data configuration or the Modbus I/O scanning configuration contains an invalid parameter.	Verify the configuration of the I/O data.
E B102	0	Fieldbus module: General error detected   Parameter WarnLatched Bit 21	-	-
E B103	2	Fieldbus module: Controlling communication channel has been closed Parameter _SigLatched Bit 21	-	-
E B104	2	Fieldbus module: Internal communication error detected Parameter _SigLatched Bit 21	-	-
E B105	2	Fieldbus module: I/O data timeout Parameter _SigLatched Bit 21	-	-
E B106	2	Fieldbus module: I/O data mapping error detected Parameter SigLatched Bit 21	-	-
E B107	4	Fieldbus module: Nonvolatile memory error detected in module Parameter _SigLatched Bit 21	-	-
E B108	1	Fieldbus module: Active IOC physical layer does not match the IOC physical layer of the detected fieldbus module. Parameter _SigLatched Bit 21	The manufacturer data has been stored with a physical layer different from the physical layer normally used by the module.	Contact your Schneider Electric service representative.
E B109	4	Fieldbus module: Synchronization heartbeat lost between module and drive Parameter _SigLatched Bit 21	-	-
E B120	2	Cyclic communication: Incorrect cycle time Parameter _SigLatched Bit 21	The drive does not support the configured cycle time or the difference between the measured cycle time and the configured cycle time is too great.	Change the cycle time in the master controller to a cycle time supported by the drive or verify synchronization requirements.
E B121	2	Cyclic communication:   Synchronization signal missing   Parameter _SigLatched Bit 21	Two cycles have passed without a synchronization signal having been received.	Analyze the communication.
E B122	2	Cyclic communication: Incorrect synchronization Parameter _SigLatched Bit 21	One signal was missing and the expected second signal was received at an incorrect point in time. The master controller may be unable to provide the required synchronization signals at the set cycle time, for example, due to insufficient computing power.	Analyze the communication or increase the cycle time.
E B123	2	Cyclic communication: The selected cycle time tolerance is too high Parameter _SigLatched Bit 21	The cycle time tolerance may not exceed one quarter of the set cycle time.	Enter a correct value.


Error   code	Error   class	Description	Cause	Correctives
E B124	0	Cyclic Communication: Drive is not   synchronous with master cycle   Parameter_WarnLatched Bit 21	Operating mode has been activated   but drive is not synchronized to   external synchronization signal.	After having started the   synchronization mechanism, wait for   120 cycles before activating the   operating mode.
E B200	0	RS485/Modbus: Protocol error   detected   Parameter_WarnLatched Bit 5	Logical protocol error detected:   Incorrect length or unsupported   subfunction.	Verify application on the Modbus   master.
E B201	2	RS485/Modbus: Interruption of the   connection   Parameter_SigLatched Bit 5	Connection monitoring has detected   an interruption of the connection.	Verify all connections and cables used   for data exchange. Verify that the   device is on.
E B202	0	RS485/Modbus: Interruption of the   connection   Parameter_WarnLatched Bit 5	Connection monitoring has detected   an interruption of the connection.	Verify all connections and cables used   for data exchange. Verify that the   device is on.
E B203	0	RS485/Modbus: Incorrect number of   monitor objects   Parameter_WarnLatched Bit 5	-	-
E B700	0	Drive Profile Lexium: On activation of   the profile, no dmControl, refA or refB   has been mapped.	dmControl, refA or refB have not been   mapped.	Map dmControl, refA or refB.
E B702	1	Insufficient velocity resolution due to   velocity scaling	Due to the configured velocity scaling,   the velocity resolution in REFA16 is   insufficient.	Change the velocity scaling.
E B703	0	Drive Profile Lexium: Write request   with incorrect data type.	-	-

## Chapter 11

## Parameters

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Representation of the Parameters	358
List of Parameters	360
List of Mappable Parameters	453

## Representation of the Parameters

## Description

This chapter provides an overview of the parameters which can be used for operating the product.
Unsuitable parameter values or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameter values or data do not become active until after a restart.

## A WARNING

## UNINTENDED EQUIPMENT OPERATION

- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values or data.
- Never modify a parameter value unless you fully understand the parameter and all effects of the modification.
- Restart the drive and verify the saved operational data and/or parameter values after modifications.
- Carefully run tests for all operating states and potential error situations when commissioning, upgrading or otherwise modifying the operation of the drive.
- Verify the functions after replacing the product and also after making modifications to the parameter values and/or other operational data.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

## Overview

The way parameters are shown provides information required for unique identification, the default values and the properties of a parameter.

Structure of the parameter representation:

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
$\begin{aligned} & \text { ABCDE } \\ & \operatorname{C\square \cap F\rightarrow ~} \cap F- \\ & \operatorname{Prп} \end{aligned}$	Short description   Selection values   1 / Abc1 / 月 ட [ I: Explanation 1   2 / Abc2 / В ட [ ᄅ: Explanation 2   Description and details	$\begin{aligned} & A_{p k} \\ & 0.00 \\ & 3.00 \\ & 300.00 \end{aligned}$	UINT32 R/W per.	Fieldbus 1234

Field "Parameter Name"
The parameter name uniquely identifies a parameter.

Field "HMI menu" and "HMI name"
HMI menu shows the sequence of menus and commands to access the parameter via the HMI.

## Field "Description"

## Short description:

The short description contains information on the parameter and a cross reference to the page that describes the use of the parameter.

Selection values:
In the case of parameters which offer a selection of settings, the value to be entered via the fieldbus, the designation of the value for entry via the commissioning software and the designation of the value for entry via the are specified.
1 = Value for input via fieldbus
Abc1 = Designation for entry via the commissioning software
А白 с $\quad=$ Designation for entry via the HMI
Description and details:
Provides further information on the parameter

Field "Unit"
The unit of the value.

Field "Minimum Value"
The minimum value which can be entered.

Field "Factory Settings"
Settings when the product is shipped.

## Field "Maximum Value"

The maximum value which can be entered.

Field "Data Type"
If the minimum and the maximum values are not explicitly indicated, the valid range of values is determined by the data type.

Data type	Minumum value	Maximum value
INT8	-128	127
UINT8	0	255
INT16	-32768	32767
UINT16	0	65535
INT32	-2147483648	2147483647
UINT32	0	4294967295

Field "R/W"
Indicates read and/or write values
" $R /$ " values can only be read
"R/W" values can be read and written.

Field "Persistent"
"per." indicates whether the value of the parameter is persistent, i.e. whether it remains in the memory after the device is powered off.
When a value of a persistent parameter is modified via the HMI, the drive stores the value automatically in the persistent memory.
When a value of a persistent parameter is modified via the commissioning software or the fieldbus, the user must explicitly store the modified value in the persistent memory.
Parameters for the safety module eSM are modified using the commissioning software. The parameter values are saved persistently after transfer. Explicit saving to the persistent memory is not required in the case of the eSM module.

## Field "Parameter Address"

Each parameter has a unique parameter address. The parameter address is used to access the parameter via the fieldbus.

## Decimal Numbers Entered via the Fieldbus

Please note that parameter values are entered via the fieldbus without a decimal point. All decimal places must be entered.
Input examples:

Value	Commissioning software	Fieldbus
20	20	20
5.0	5.0	50
23.57	23.57	2357
1.000	1.000	1000

List of Parameters

Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-0011	Class 1 diagnostic (C1D).   This parameter provides information on detected errors.   A class 1 diagnostics error leads to a Quick Stop (with transition to operating state Fault).   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only	$\begin{array}{\|l} 0 \\ 0 \\ 65535 \end{array}$	R/-	IDN S-0-0011
S-0-0012	Class 2 diagnostic (C2D).   This parameter provides information on warnings.   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only	$\begin{array}{\|l} 0 \\ 0 \\ 65535 \end{array}$	R/-	IDN S-0-0012
S-0-0014	Interface Status.   This parameter contains the status of the SERCOS interface.   Type: Binary - 2 bytes   Write access via Sercos: Read only   Class name: SCP_VarCFG	$\begin{array}{\|l\|} \hline- \\ 0 \\ 0 \\ 16383 \end{array}$	R/-	IDN S-0-0014
S-0-0017	IDN-list of all operation data.   This parameter contains all procedure commands and parameters supported by the drive.   Type: IDN - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: GDP_Basic		R/-	IDN S-0-0017
S-0-0021	IDN list of invalid operation data for CP2.   This parameter contains an IDN list with IDNs which are considered invalid by the drive when it performs the CP3 transition check (S-0-0127).   Type: IDN - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: SCP_VarCFG, SCP_Diag		R/-	IDN S-0-0021
S-0-0022	IDN list of invalid operation data for CP3.   This parameter contains an IDN list with IDNs which are considered invalid by the drive when it performs the CP4 transition check (S-0-0128).   Type: IDN - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: SCP_VarCFG, SCP_Diag		R/-	IDN S-0-0022
S-0-0032	Primary Operation Mode.   This parameter sets the primary operating mode of the drive. The operating mode is started via bits 8,9 and 10 in the parameter Drive Control (S-0-0134). The active operating mode is indicated by bits 8,9 and 10 in the status word (S-0-0135).   Type: Hexadecimal - 2 bytes   Write access via Sercos: CP2, CP3	$\begin{array}{\|l} 3 \\ 3 \\ 3 \end{array}$		IDN S-0-0032
S-0-0033	Secondary Operation Mode 1.   This parameter sets the secondary operating mode 1 of the drive. The operating mode is started via bits 8, 9 and 10 in the parameter Drive Control (S-00134). The active operating mode is indicated by bits 8,9 and 10 in the status word (S-0-0135).   Type: Hexadecimal - 2 bytes   Write access via Sercos: CP2, CP3	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$		IDN S-0-0033


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
S-0-0034	Secondary Operation Mode 2.   This parameter sets the secondary operating mode 2 of the drive. The operating mode is started via bits 8,9 and 10 in the parameter Drive Control (S-00134). The active operating mode is indicated by bits 8,9 and 10 in the status word (S-0-0135).   Type: Hexadecimal - 2 bytes Write access via Sercos: CP2, CP3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & - \\ & - \end{aligned}$	IDN S-0-0034
S-0-0047	Position Command Value.   This parameter contains the target values for operating modes with position target values.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4	$\begin{array}{\|l} -2147483648 \\ \hline 2147483647 \end{array}$	$\begin{aligned} & \text { R/W } \\ & - \\ & - \end{aligned}$	IDN S-0-0047
S-0-0051	Position Feedback Value 1 (motor feedback.)   This parameter contains the position data of the motor encoder.   Type: Signed decimal - 4 bytes   Write access via Sercos: Read only	$\begin{array}{\|l\|} \hline-2147483648 \\ \hline 2147483647 \end{array}$	R/-	IDN S-0-0051
S-0-0099	Reset class 1 diagnostic.   If this procedure command is received by the drive via the service channel, the detected errors, the error bits and the shut-down mechanism are cleared.   Type: Binary - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: GDP_Basic	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 7 \end{aligned}$	R/W	IDN S-0-0099
S-0-0127	CP3 transition check.   This procedure command instructs the drive to verify that all parameters necessary for CP3 have been transferred. If an error is detected, parameter S-0-0021 contains the appropriate IDNs. After correct termination of the command by the master, the master can activate CP3.   Type: Binary - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_VarCFG	$\begin{aligned} & -\overline{0} \\ & 0 \\ & - \\ & \hline \end{aligned}$	R/W	IDN S-0-0127
S-0-0128	CP4 transition check.   This procedure command instructs the drive to verify that all parameters necessary for CP4 have been transferred. If an error is detected, parameter S-0-0022 contains the appropriate IDNs. After correct termination of the command by the master, the master can activate CP4.   Type: Binary - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_VarCFG	$\begin{aligned} & \overline{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & - \\ & - \end{aligned}$	IDN S-0-0128
S-0-0134	Drive Control.   This parameter contains the control word.   Type: Hexadecimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4	$\overline{0}$ $65535$	$\begin{aligned} & \text { R/W } \\ & - \\ & - \end{aligned}$	IDN S-0-0134
S-0-0135	Drive Status.   This parameter contains the status word of the AT.   It can be used for diagnostics purposes.   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only	0 $65535$	R/-	IDN S-0-0135
S-0-0148	Drive controlled homing procedure command. This parameter starts homing with the homing method settings made in the drive objects. See the product manual for details on homing.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4	$0$	R/W	IDN S-0-0148


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-0187	IDN list of configurable data as producer. This parameter contains a list of all IDNs with operation data (feedback values) which can be cyclically processed by the drive.   Type: IDN - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: SCP_VarCFG		$\mathrm{R} /-$	IDN S-0-0187
S-0-0188	IDN list of configurable data as consumer. This parameter contains a list of all IDNs with operation data command values) which can be cyclically processed by the drive.   Type: IDN - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: SCP_VarCFG		$\mathrm{R} /-$	IDN S-0-0188
S-0-0390	Diagnostic number.   The operation data of this parameter contains detailed information on the diagnostics event with the highest priority which is currently active in the drive.   Type: Hexadecimal - 4 bytes   Write access via Sercos: Read only   Class name: GDP_Basic	0   0 $4294967295$	$\begin{aligned} & \mathrm{R} /- \\ & - \\ & - \end{aligned}$	IDN S-0-0390
S-0-1000.0.0	SCP Type \& Version.   This parameter contains a list of the SERCOS communication capabilities/communication classes and the appropriate version supported by the drive. Type: Hexadecimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG		$\mathrm{R} /-$	IDN S-0-1000.0.0
S-0-1002	Communication Cycle time (tScyc).   This parameter specifies the intervals at which the cyclic real-time data is transmitted. Possible values are $1000 \mu \mathrm{~s}, 2000 \mu \mathrm{~s}$ and $4000 \mu \mathrm{~s}$.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG   In increments of $0.001 \mu \mathrm{~s}$.	$\begin{aligned} & \mu \mathrm{s} \\ & 1000.000 \\ & 1000.000 \\ & 4000.000 \end{aligned}$	R/W	IDN S-0-1002
S-0-1003	Allowed MST losses in CP3/CP4.   This parameter specifies the maximum number of successive communication cycles during which a drive is permitted to not receive the MST in CP3 and CP4.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG	$\begin{aligned} & \hline- \\ & 0 \\ & 2 \\ & 65535 \end{aligned}$		IDN S-0-1003
S-0-1005	Minimum feedback processing time (t5).   This parameter specifies the time required by the drive for receiving and processing actual values (such as encoder or touch probe data) and providing them in ATs.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: Read only   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\mu \mathrm{s}$	$\begin{array}{\|l} R /- \\ - \\ - \end{array}$	IDN S-0-1005
S-0-1006	AT0 transmission starting time (t1).   This parameter specifies the nominal time interval between the end of MST and the beginning of ATO.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\mu \mathrm{s}$	$\mathrm{R} / \mathrm{W}$	IDN S-0-1006


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
S-0-1007	Synchronisation Time (tSync).   This parameter specifies the point in time at which all producer cycle times (producing and consuming connections) in a drive are synchronized. This value is set by the master. It must be less than the value for the synchronization cycle time. The synchronization cycle time is the least common multiple of all producer cycle times (tPcyc) to be synchronized in the network.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\mu \mathrm{s}$   0 $4294967.295$	R/W	IDN S-0-1007
S-0-1008	MDT Command value valid time (t3). This parameter determines the point in time at which the drive is permitted to access the new reference values, related to the synchronization time.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\begin{aligned} & \mu \mathrm{s} \\ & 0 \\ & - \\ & 4000.000 \end{aligned}$	R/W - -	IDN S-0-1008
S-0-1009	Device Control Offset in MDT.   This parameter specifies the MDT number and the position within the specified MDT for device control. This parameter is transferred by the master to each drive during CP2 and becomes effective in the master and drive in CP3.   Type: Hexadecimal - 2 bytes Write access via Sercos: CP2   Class name: SCP_VarCFG	$\overline{0}$ $1492$	R/W - -	IDN S-0-1009
S-0-1010	Lengths of MDTs.   This parameter contains the lengths of the four possible MDTs in octets. These values are required for the initialization of the SERCOS hardware.   Type: Unsigned decimal - 2 bytes (variable length)   Write access via Sercos: CP2   Class name: SCP_VarCFG	$\overline{0}$ $1494$		IDN S-0-1010
S-0-1011	Device Status Offset in AT.   This parameter specifies the position of the status field of the drive in the AT in octets. This parameter is transferred by the master to each drive during CP2 and becomes effective in the master and drive in CP3.   Type: Hexadecimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG	$\overline{0}$ $1492$		IDN S-0-1011
S-0-1012	Length of Ats.   This parameter contains the lengths of the four possible ATs in octets. These values are required for the initialization of the SERCOS hardware.   Type: Unsigned decimal - 2 bytes (variable length)   Write access via Sercos: CP2   Class name: SCP_VarCFG	0 $1494$	$\begin{aligned} & \text { R/W } \\ & - \\ & - \end{aligned}$	IDN S-0-1012
S-0-1013	SVC offset in MDT.   This parameter specifies the position of the service channel in the MDT for the drive. This parameter is transferred by the master to each drive during CP2 and becomes effective in CP3.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG	0 $1484$	R/W	IDN S-0-1013


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
S-0-1014	SVC offset in AT.   This parameter specifies the position of the service channel in the AT for the drive. This parameter is transferred by the master to each drive during CP2 and becomes effective in CP3.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG	$\begin{array}{\|l} \hline- \\ 0 \\ - \\ 1484 \end{array}$	R/W	IDN S-0-1014
S-0-1015	Ring delay.   This parameter contains the entire ring delay determined by the master. The master assigns this value to the drives.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\begin{aligned} & \mu \mathrm{s} \\ & 0 \\ & - \\ & 1048.575 \end{aligned}$	R/W	IDN S-0-1015
S-0-1016	Slave delay (P/S).   This parameter contains the slave delay. After the master has assigned the ring delay (S-0-1015) to the slaves, the slaves measure their own delay (SYNCCNT-P/SYNCCNT-S) when the procedure command S-0-1024 is executed.   Type: Unsigned decimal - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\begin{aligned} & \mu \mathrm{s} \\ & 0 \\ & - \\ & 4294967.296 \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1016
S-0-1017	NRT transmission time.   This parameter contains the NRT transmission time. Type: Hexadecimal - 1 byte (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG	$\begin{array}{\|l} \mu s \\ 0 \\ 650000 \\ 4000000 \end{array}$	$\mathrm{R} /-$	IDN S-0-1017
S-0-1019	MAC Address.   The drive writes its MAC address to this parameter. Type: Unsigned decimal - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: SCP_NRT		$\mathrm{R} / \mathrm{W}$	IDN S-0-1019
S-0-1020	Current IP address.   This parameter contains the IP address of the SERCOS III interface of the drive. The master can change the IP address by writing this parameter. Type: Unsigned decimal - 1 byte (variable length) Write access via Sercos: CP2, CP3, CP4 Class name: SCP_NRT		R/W	IDN S-0-1020
S-0-1021	Subnet Mask.   This parameter contains the subnet mask. The master can change the subnet mask for IP communication via the NRT channel.   Type: Unsigned decimal - 1 byte (variable length)   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_NRT		R/W	IDN S-0-1021
S-0-1022	Gateway address.   This parameter contains the gateway address. The master can change the gateway address for IP communication via the NRT channel.   Type: Unsigned decimal - 1 byte (variable length)   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_NRT			IDN S-0-1022


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-1023	SYNC jitter.   This parameter contains the maximum synchronization jitter. The synchronization jitter is used by the drive to calculate the MST window ( 2 x synchronization jitter). This parameter is transmitted to all drives supporting SCP_Sync.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SPC_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\mu \mathrm{s}$		IDN S-0-1023
S-0-1024	SYNC delay measuring procedure command. This procedure command causes the drive to determine its slave delay (S-0-1016) depending on the ring delay (S-0-1015).   Type: Binary - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_Sync	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	R/W	IDN S-0-1024
S-0-1026	Version of communication hardware.   This parameter contains the SERCOS III-specific communication hardware identification.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only   Class name: SCP_VarCFG		$\begin{aligned} & R /- \\ & - \\ & - \end{aligned}$	IDN S-0-1026
S-0-1027.0.1	Requested MTU.   The requested MTU specifies the maximum number of octets that can be sent via the NRT channel by higher layers.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_NRT	$46$ $1500$	R/W	IDN S-0-1027.0.1
S-0-1027.0.2	Effective MTU.   This parameter contains the current MTU. The current MTU is calculated using the parameters S-01017 and S-0-1027.0.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: Read only   Class name: SCP_NRT	$46$ $1500$	$\begin{aligned} & R /- \\ & - \\ & - \end{aligned}$	IDN S-0-1027.0.2
S-0-1028	Error counter MST P/S.   This parameter is an error counter which is incremented if no valid MST is received at port 1 or port 2 during CP 3 and CP4.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: Read only   Class name: SCP_Diag	$\begin{array}{\|l} 0 \\ 0 \\ 65535 \end{array}$	$\begin{aligned} & R /- \\ & - \\ & - \end{aligned}$	IDN S-0-1028
S-0-1031	Test pin assignment Port $1 \&$ Port 2.   This parameter is used to assign communicationrelated hardware signals to the test pins TS1 and TS2.   Type: Binary - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_Diag	$\begin{aligned} & 0 \\ & 0 \\ & 3855 \end{aligned}$		IDN S-0-1031
S-0-1035	Error counter Port1 and Port2.   This parameter is an error counter which counts the detected Ethernet errors.   Type: Hexadecimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Class name: SCP_VarCFG	$\begin{array}{\|l} 0 \\ 0 \\ 65535 \end{array}$		IDN S-0-1035
S-0-1040	SERCOS address.   This parameter contains the SERCOS device address assigned to the drive.   Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Class name: SCP_VarCFG	0   0 511		IDN S-0-1040


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-1040.0.128	Topology address.   This parameter contains the topology address of the drive (physical position in the network). This address is independent of the SERCOS address.   This parameter is a manufacturer-specific extension of the standard parameter.   Type: IDN - 2 bytes   Write access via Sercos: Read only	0   0 511	R/-	IDN S-0-1040.0.128
S-0-1041	AT Command value valid time (t9).   This parameter determines the point in time at which the drive is permitted to access the new reference values from the AT.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2   Class name: SCP_Sync   In increments of $0.001 \mu \mathrm{~s}$.	$\begin{aligned} & \mu \mathrm{s} \\ & 0 \\ & - \\ & 4000.000 \end{aligned}$	R/W	IDN S-0-1041
S-0-1044	Device Control.   This parameter contains the control information (for example, topology control, fast-forward, loopback, physical topology, ring, etc.) set by the master and evaluated by the drive.   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only   Class name: SCP_Diag		R/-	IDN S-0-1044
S-0-1045	Device Status.   This parameter contains the status information (for example, topology status, fast-forward, loopback, physical topology, ring, etc.) set by the drive and evaluated by the master.   Type: Hexadecimal - 2 bytes   Write access via Sercos: Read only   Class name: SCP_Diag		R/-	IDN S-0-1045
S-0-1046	List of SERCOS addresses in device. If a device comprises multiple SERCOS slaves, this parameter contains the SERCOS addresses of the slaves that participate in the communication.   Type: Unsigned decimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: SCP_VarCFG	$\begin{aligned} & - \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	R/-	IDN S-0-1046
S-0-1050.x.01	Connection setup.   This parameter is used to configure connections.   Type: Hexadecimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG, SCP_Sync,   SCP_WDCon	$\begin{array}{\|l} 0 \\ 8218 \\ 65535 \end{array}$	R/W	IDN S-0-1050.x. 01
S-0-1050.x.02	Connection Number.   The connection number is used to identify a connection. The producer and all consumers of the same connection have the same connection number.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	R/W	IDN S-0-1050.x. 02
S-0-1050.x.03	Telegram Assignment.   This parameter contains the telegram type (MDT or AT), the telegram number and the telegram offset of connection control for this connection.   Type: Hexadecimal - 2 bytes   Write access via Sercos: CP2   Class name: SCP_VarCFG	$\begin{aligned} & 0 \\ & 0 \\ & 15828 \end{aligned}$	R/W	IDN S-0-1050.x. 03


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via   fieldbus
S-0-1050.x.04	Max. Length Of Connection.   This parameter specifies the maximum length of this   connection.   Type: Unsigned decimal -2 bytes   White access via Sercos: Read only   Class name: SCP_VarCFG	-   2	R/-   2	-
S-0				


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-1300.0.03	Vendor Code.   This parameter contains the vendor code. The vendor code is a unique number assigned to each vendor and helps to identify a SERCOS device.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: Read only   Class name: GDP_Basic	$\begin{aligned} & - \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1300.0.03
S-0-1300.0.04	Device Name.   This parameter contains the device name published in vendor's price list.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only   Class name: GDP_Id	$\begin{array}{\|l} \hline- \\ 0 \\ - \\ 255 \end{array}$	$\mathrm{R} /-$	IDN S-0-1300.0.04
S-0-1300.0.05	Vendor Device ID.   The parameter contains the vendor device ID. The vendor device ID is a unique device ID managed by the vendor; it identifies the component number.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only   Class name: GDP_Basic	$\begin{array}{\|l\|} \hline- \\ 0 \\ - \\ 255 \end{array}$	$\mathrm{R} /-$	IDN S-0-1300.0.05
S-0-1300.0.08	Hardware Revision.   This parameter contains the hardware revision of the device.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only	$\begin{aligned} & \hline- \\ & 0 \\ & - \\ & 255 \\ & \hline \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1300.0.08
S-0-1300.0.09	Software Revision.   This parameter contains the firmware version of the drive.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only	$\begin{array}{\|l} \hline- \\ 0 \\ - \\ 255 \end{array}$	$\mathrm{R} /-$	IDN S-0-1300.0.09
S-0-1300.0.11	Order Number.   This parameter contains the order number of the drive.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only		$\mathrm{R} /-$	IDN S-0-1300.0.11
S-0-1300.0.12	Serial Number.   This parameter contains the serial number of the drive.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only   Class name: GDP_Id	$\begin{array}{\|l\|} \hline- \\ 0 \\ - \\ 255 \end{array}$	$\mathrm{R} /-$	IDN S-0-1300.0.12
S-0-1300.1.09	Software Revision.   This parameter contains the software version of the SERCOS III Communication Option.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only	$\begin{array}{\|l\|} \hline- \\ 0 \\ - \\ 255 \end{array}$	$\mathrm{R} /-$	IDN S-0-1300.1.09
S-0-1300.1.10	Firmware Loader Revision.   This parameter contains the revision of the firmware loader or bootloader implemented in the drive.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only	$\begin{aligned} & \hline- \\ & 0 \\ & - \\ & 255 \\ & \hline \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1300.1.10
S-0-1300.2.09	Software Revision.   This parameter contains the software version of the FPGA of the SERCOS communication option.   Type: Text - 1 byte (variable length)   Write access via Sercos: Read only	$\begin{aligned} & 0 \\ & - \\ & 255 \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1300.2.09
S-0-1301	List of GDP classes \& Version.   This parameter contains a list of the generic profile capabilities and the versions supported by the drive. Type: Hexadecimal - 2 bytes (variable length) Write access via Sercos: Read only Class name: GDP_Basic	$257$ $5889$	R/-	IDN S-0-1301


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
S-0-1302.0.01	FSP Type \& Version.   This parameter contains the function-specific type and the function-dependent version of the resource.   Type: Hexadecimal - 4 bytes   Write access via Sercos: Read only   Class name: GDP_Basic	$\begin{aligned} & 0 \\ & - \\ & 4294967295 \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1302.0.01
S-0-1302.0.02	Function groups.   The operation data of this parameter contains a list of all instanced function groups.   Type: IDN - 4 bytes (variable length)   Write access via Sercos: Read only   Class name: GDP_Basic	$\begin{aligned} & 0 \\ & - \\ & 4294967295 \end{aligned}$	$\mathrm{R} /-$	IDN S-0-1302.0.02
S-0-1302.0.03	Application Type.   The operation data of this parameter contains the type of the sub-device application (for example, main spindle drive, round axis, $X$ axis, etc.).   Type: Text - 1 byte (variable length)   Write access via Sercos: CP2, CP3, CP4 Class name: GDP_Id	$\begin{aligned} & - \\ & 0 \\ & - \\ & 255 \end{aligned}$	R/W	IDN S-0-1302.0.03


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_AccessInfo	Access channel information.   Low byte: Exclusive access   Value 0: No   Value 1: Yes   High byte: Access channel   Value 0: Reserved   Value 1: I/O   Value 2: HMI   Value 3: Modbus RS485   Value 4: Fieldbus main channel   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 280   IDN P-0-3001.0.12
_actionStatus	Action word.   Signal state:   0 : Not activated   1: Activated   Bit assignments:   Bit 0: Error class 0   Bit 1: Error class 1   Bit 2: Error class 2   Bit 3: Error class 3   Bit 4: Error class 4   Bit 5: Reserved   Bit 6: Motor is at a standstill (_n_act < 9 RPM)   Bit 7: Motor movement in positive direction   Bit 8: Motor movement in negative direction   Bit 9: Assignment can be set via parameter   DPL_intLim   Bit 10: Assignment can be set via parameter DS402intLim   Bit 11: Profile generator idle (reference velocity is 0 )   Bit 12: Profile generator decelerates   Bit 13: Profile generator accelerates   Bit 14: Profile generator moves at constant speed   Bit 15: Reserved   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 7176   IDN P-0-3028.0.4


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
- ${ }^{\text {TT }}$ - ${ }^{\text {d }}$	Moment of inertia of the system. Is automatically calculated during Autotuning. Type: Unsigned decimal - 2 bytes In increments of $0.1 \mathrm{~kg} \mathrm{~cm}^{2}$.	$\begin{aligned} & \mathrm{kg} \mathrm{~cm}^{2} \\ & 0.1 \\ & 0.1 \\ & 6553.5 \end{aligned}$	UINT16 R/per.	Modbus 12056   IDN P-0-3047.0.12
_AT_M_friction	Friction torque of the system.   Is determined during Autotuning.   Type: Unsigned decimal - 2 bytes   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/-	Modbus 12046   IDN P-0-3047.0.7
-AT_M_load	Constant load torque.   Is determined during Autotuning.   Type: Signed decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$A_{\text {rms }}$	INT16   R/-	Modbus 12048   IDN P-0-3047.0.8
_AT_progress	Progress of Autotuning.   Type: Unsigned decimal - 2 bytes	$\begin{array}{\|l\|} \hline \% \\ 0 \\ 0 \\ 100 \end{array}$	UINT16 R/-	Modbus 12054   IDN P-0-3047.0.11
_AT_state	Autotuning status.   Bit assignments:   Bits 0 ... 10: Last processing step   Bit 13: auto_tune_process   Bit 14: auto_tune_end   Bit 15: auto_tune_err   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 12036   IDN P-0-3047.0.2
_Cap1CountCons	Capture input 1 event counter (continuous).   Counts the capture events.   The event counter is reset when capture input 1 is activated.   By reading this parameter, the parameter   "_Cap1PosCons" is updated and locked so it cannot be changed. Both parameter values remain consistent.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2606   IDN P-0-3010.0.23
_Cap1Pos	Capture input 1 captured position (one-time).   Captured position at the time of the "capture signal".   The captured position is re-calculated after "Position   Setting" or "Reference Movement".   Type: Signed decimal - 4 bytes	usr_p	$\begin{array}{\|l\|} \hline \text { INT32 } \\ \text { R/- } \\ - \\ - \end{array}$	Modbus 2572   IDN P-0-3010.0.6
_Cap1PosCons	Capture input 1 captured position (continuous). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   By reading the parameter "_Cap1CountCons", this parameter is updated and locked so it cannot be changed. Both parameter values remain consistent. Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2608   IDN P-0-3010.0.24
_Cap2CountCons	Capture input 2 event counter (continuous).   Counts the capture events.   The event counter is reset when capture input 2 is activated.   By reading this parameter, the parameter   "_Cap2PosCons" is updated and locked so it cannot be changed. Both parameter values remain consistent.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2610   IDN P-0-3010.0.25
_Cap2Pos	Capture input 2 captured position (one-time).   Captured position at the time of the "capture signal".   The captured position is re-calculated after "Position   Setting" or "Reference Movement".   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2574   IDN P-0-3010.0.7


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_Cap2PosCons	Capture input 2 captured position (continuous). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   By reading the parameter "_Cap2CountCons", this parameter is updated and locked so it cannot be changed. Both parameter values remain consistent. Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2612   IDN P-0-3010.0.26
_Cap3CountCons	Capture input 3 event counter (continuous).   Counts the capture events.   The event counter is reset when capture input 3 is activated.   By reading this parameter, the parameter "_Cap3PosCons" is updated and locked so it cannot be changed. Both parameter values remain consistent.   Available with hardware version $\geq R S 03$.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2614   IDN P-0-3010.0.27
_Cap3Pos	Capture input 3 captured position (one-time). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   Available with hardware version $\geq R S 03$.   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2598   IDN P-0-3010.0.19
_Cap3PosCons	Capture input 3 captured position (continuous). Captured position at the time of the "capture signal". The captured position is re-calculated after "Position Setting" or "Reference Movement".   By reading the parameter "_Cap3CountCons", this parameter is updated and locked so it cannot be changed. Both parameter values remain consistent.   Available with hardware version $\geq R S 03$.   Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2616   IDN P-0-3010.0.28
_CapStatus	Status of the capture inputs.   Read access:   Bit 0: Position captured via input CAP1   Bit 1: Position captured via input CAP2   Bit 2: Position captured via input CAP3   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2562   IDN P-0-3010.0.1
_CommutCntAct	Actual value of commutation monitoring counter. Type: Signed decimal - 2 bytes Available with firmware version $\geq$ V01.06.		$\begin{aligned} & \text { INT16 } \\ & \text { R/- } \end{aligned}$	Modbus 16324   IDN P-0-3063.0.98
_Cond_State4	Conditions for transition to operating state Ready To Switch On.   Signal state:   0 : Condition not met   1: Condition met   Bit 0: DC bus or mains voltage   Bit 1: Inputs for safety function   Bit 2: No configuration download ongoing   Bit 3: Velocity greater than limit value   Bit 4: Absolute position has been set   Bit 5: Holding brake not manually released   Type: Unsigned decimal - 2 bytes	-	UINT16 R/-	Modbus 7244   IDN P-0-3028.0.38


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_CTRL_ActParSet	Active control loop parameter set.   Value 1: Control loop parameter set 1 is active   Value 2: Control loop parameter set 2 is active   A control loop parameter set is active after the time for the parameter switching (CTRL_ParChgTime) has elapsed.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 4398 IDN P-0-3017.0.23
_CTRL_KPid	Current controller d component $P$ gain.   This value is calculated on the basis of the motor parameters.   Type: Unsigned decimal - 2 bytes   In increments of $0.1 \mathrm{~V} / \mathrm{A}$.   Modified settings become effective immediately.	$\begin{array}{\|l} \text { V/A } \\ 0.5 \\ - \\ 1270.0 \end{array}$	UINT16 R/per.	Modbus 4354 IDN P-0-3017.0.1
_CTRL_KPiq	Current controller $q$ component $P$ gain.   This value is calculated on the basis of the motor parameters.   Type: Unsigned decimal - 2 bytes   In increments of $0.1 \mathrm{~V} / \mathrm{A}$.   Modified settings become effective immediately.	$\begin{aligned} & \text { V/A } \\ & 0.5 \\ & - \\ & 1270.0 \end{aligned}$	UINT16 R/per.	Modbus 4358 IDN P-0-3017.0.3
_CTRL_TNid	Current controller d component integral action time. This value is calculated on the basis of the motor parameters.   Type: Unsigned decimal - 2 bytes   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.13 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R/per.	Modbus 4356 IDN P-0-3017.0.2
_CTRL_TNiq	Current controller q component integral action time. This value is calculated on the basis of the motor parameters.   Type: Unsigned decimal - 2 bytes   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.13 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R/per.	Modbus 4360 IDN P-0-3017.0.4
_DCOMopmd_act	Active operating mode.   -6 / Manual Tuning / Autotuning: Manual Tuning /   Autotuning   -1 / Jog: Jog   0 / Reserved: Reserved   4 / Profile Torque: Profile Torque   6 / Homing: Homing   8 / Cyclic Synchronous Position: Cyclic   Synchronous Position   9 / Cyclic Synchronous Velocity: Cyclic   Synchronous Velocity   10 / Cyclic Synchronous Torque: Cyclic   Synchronous Torque   Type: Signed decimal - 2 bytes	$\begin{array}{\|l} -6 \\ 0 \\ 10 \end{array}$	INT16 R/-	Modbus 6920 IDN P-0-3027.0.4


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
_DCOMstatus	DriveCom status word.   Bit assignments:   Bit 0: Operating state Ready To Switch On   Bit 1: Operating state Switched On   Bit 2: Operating state Operation Enabled   Bit 3: Operating state Fault   Bit 4: Voltage Enabled   Bit 5: Operating state Quick Stop   Bit 6: Operating state Switch On Disabled   Bit 7: Error of error class 0   Bit 8: HALT request active   Bit 9: Remote   Bit 10: Target Reached   Bit 11: Internal Limit Active   Bit 12: Operating mode-specific   Bit 13: x_err   Bit 14: x_end   Bit 15: ref_ok   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 6916   IDN P-0-3027.0.2
	Temperature of device.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/-	Modbus 7204   IDN P-0-3028.0.18
-ENC_AmplMax	Maximum value of the SinCos amplitude. This value is only available if monitoring of the SinCos amplitude has been activated.   Type: Unsigned decimal - 2 bytes Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \mathrm{mV} \\ & - \\ & - \\ & - \end{aligned}$	UINT16   R/-   -	Modbus 16320   IDN P-0-3063.0.96
_ ENC_AmplMean	Mean value of the SinCos amplitude. This value is only available if monitoring of the SinCos amplitude has been activated.   Type: Unsigned decimal - 2 bytes Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \mathrm{mV} \\ & - \\ & - \\ & - \end{aligned}$	UINT16   R/-   -	Modbus 16316   IDN P-0-3063.0.94
-ENC_AmplMin	Minimum value of the SinCos amplitude. This value is only available if monitoring of the SinCos amplitude has been activated. Type: Unsigned decimal - 2 bytes Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \mathrm{mV} \\ & - \\ & - \\ & - \end{aligned}$	UINT16 R/--	Modbus 16318   IDN P-0-3063.0.95
-ENC_AmplVal	Value of the SinCos amplitude.   This value is only available if monitoring of the SinCos amplitude has been activated.   Type: Unsigned decimal - 2 bytes Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \mathrm{mV} \\ & - \\ & - \\ & - \end{aligned}$	UINT16   R/-	Modbus 16314   IDN P-0-3063.0.93
- Enc2Cos	Cosine signal of encoder 2.   Type: Signed decimal - 2 bytes In increments of 0.001 V .   Available with firmware version $\geq$ V01.06.	V	$\begin{aligned} & \hline \text { INT16 } \\ & \text { R/- } \end{aligned}$	Modbus 20746   IDN P-0-3081.0.5
_Enc2Sin	Sine signal of encoder 2.   Type: Signed decimal - 2 bytes   In increments of 0.001 V .   Available with firmware version $\geq$ V01.06.	$\mathrm{V}$	INT16 R/-	Modbus 20748   IDN P-0-3081.0.6
_ ENCAnaHallStatu	Sequence of Hall effect sensor signals of analog encoder.   This parameter can be used to read the sequence of the Hall effect sensor signals of an analog encoder with the interface "SinCos 1 Vpp (with Hall)".   Type: Unsigned decimal - 2 bytes	$\begin{array}{\|l} \hline- \\ 0 \\ \hline \\ \hline \end{array}$	UINT16 R/-	Modbus 20742   IDN P-0-3081.0.3


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_ERR_class	Error class.   Value 0: Error class 0   Value 1: Error class 1   Value 2: Error class 2   Value 3: Error class 3   Value 4: Error class 4   Type: Unsigned decimal - 2 bytes	$\begin{aligned} & - \\ & 0 \\ & - \\ & 4 \end{aligned}$	UINT16 R/-	Modbus 15364   IDN P-0-3060.0.2
_ERR_DCbus	DC bus voltage at the time the error was detected.   Type: Unsigned decimal - 2 bytes   In increments of 0.1 V .	V	UINT16 R/-	Modbus 15374   IDN P-0-3060.0.7
_ERR_enable_cycl	Number of cycles of enabling the power stage at error time.   Number of cycles of enabling the power stage from the time the control voltage was applied to the time the error was detected.   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 15370   IDN P-0-3060.0.5
_ERR_enable_time	Time between enabling of power stage and detection of the error.   Type: Unsigned decimal - 2 bytes	S	UINT16 R/-	Modbus 15372   IDN P-0-3060.0.6
_ERR_motor_I	Motor current at the time the error was detected.   Type: Unsigned decimal - 2 bytes   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/-	Modbus 15378   IDN P-0-3060.0.9
_ERR_motor_v	Motor velocity at the time the error was detected. Type: Signed decimal - 4 bytes	usr_v	$\begin{array}{\|l\|} \hline \text { INT32 } \\ \text { R/- } \end{array}$	Modbus 15376   IDN P-0-3060.0.8
_ERR_number	Error code.   Reading this parameter copies the entire entry for the detected error (error class, time of detection of error, ...) to an intermediate memory from which the elements of the detected error can then be read.   In addition, the read pointer of the error memory is automatically set to the next error entry.   Type: Unsigned decimal - 2 bytes	$65535$	UINT16 R/-	Modbus 15362   IDN P-0-3060.0.1
ERR_powerOn   Пロп   PoWa	Number of power on cycles.   Type: Unsigned decimal - 4 bytes	0 $4294967295$	UINT32 R/-	Modbus 15108   IDN P-0-3059.0.2
-ERR_qual	Additional information on detected error.   This entry contains additional information on the detected error, depending on the error number.   Example: a parameter address   Type: Unsigned decimal - 2 bytes	$\begin{aligned} & 0 \\ & - \\ & 65535 \end{aligned}$	UINT16 R/-	Modbus 15368   IDN P-0-3060.0.4
-ERR_temp_dev	Temperature of device at the time the error was detected.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/-	Modbus 15382   IDN P-0-3060.0.11
_ERR_temp_ps	Temperature of power stage at the time the error was detected.   Type: Signed decimal - 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R/-	Modbus 15380 IDN P-0-3060.0.10
-ERR_time	Time of detection of error.   With reference to operating hours counter   Type: Unsigned decimal - 4 bytes	$\begin{aligned} & \mathrm{S} \\ & 0 \\ & - \\ & 536870911 \end{aligned}$	UINT32 R/-	Modbus 15366   IDN P-0-3060.0.3


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
_ErrNumFbParSvc	Last error code of fieldbus parameter services. Some fieldbusses only provide general error codes if a request for a parameter service is not successful. This parameter returns the vendorspecific error code of the last unsuccessful service. Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 16518 IDN P-0-3064.0.67
	eSM function.   Active eSM function   Value 0: Safe Torque Off (STO)   Value 1: No function active   Value 2: Safe Operating Stop (SOS)   Value 3: Safely Limited Speed (SLS)   Value 4: Reserved   Value 5: Safe Stop 1 (SS1)   Value 6: Safe Stop 2 (SS2)   Value 7: Safe Operating Stop (SOS) after error Value 8: Safely Limited Speed (SLS) in machine operating mode Automatic Mode   If bit 15 of the value is set: GUARD_ACK was triggered   Type: Unsigned decimal - 2 bytes		UINT16 R/--	Modbus 19502   IDN P-0-3076.0.23
_eSM_LI_act	eSM digital inputs channel B.   Signal state:   0: 0 level   1: 1 level   Bit assignments:   Bit 0: /ESTOP_B   Bit 1: GUARD_B   Bit 3: SETUPMODE_B   Bit 4: SETUPENABLE_B   Bit 6: GUARD_ACK   Bit 8: ESMSTART   Bit 9: /INTERLOCK_IN   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 19492   IDN P-0-3076.0.18
_eSM_LI_mask	eSM digital inputs channel B mask. Mask of active digital inputs   0 : Digital input is not active   1: Digital input is active   Bit assignments:   See digital inputs channel.   Type: Unsigned decimal - 2 bytes		UINT16   R/-   -	Modbus 19494   IDN P-0-3076.0.19
_eSM_LO_act	eSM digital outputs channel B.   Signal state:   0: 0 level   1: 1 level   Bit assignments:   Bit 0: CCM24V_OUT_B   Bit 1: Drive operating state 6 Operation Enabled (B)   Bit 2: RELAY_OUT_B   Bit 3: AUXOUT2   Bit 4: /INTERLOCK_OUT   Bits 5 ... 15: Reserved   Type: Unsigned decimal - 2 bytes		UINT16   R/-   -	Modbus 19496   IDN P-0-3076.0.20


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { eSM_state } \\ & \text { Пan } \\ & 5 \Pi 5 t \end{aligned}$	eSM operating state.   0 /eSM module missing / 7 , 55 : eSM module missing   1 / Start/5trt:Start   2 / Not Ready To Switch On / nrdy: Not Ready   To Switch On   3 / Switch On Disabled / d, 5: Switch On Disabled   4 / Ready To Switch On / rdy: Ready To Switch On   6 / Operation Enabled / run: Operation Enabled   7 / Quick Stop / 75 E P: Quick Stop   8 / Fault Reaction Active / FLE: Fault Reaction   Active   9 / Fault / F L $t$ : Fault   Status word of eSM state machine   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 19500   IDN P-0-3076.0.22
_eSMVer	eSM revision of firmware.   Revision of firmware:   Bits 0 ... 7: Firmware evolution (dec)   Bits 8 ... 15: Firmware minor revision (dec)   Bits 16 ... 23: Firmware major revision (dec)   Bits 24 ... 31: Reserved   Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 19486 IDN P-0-3076.0.15
_fwNoSlot1	Firmware number of slot 1.   Example: PR0912.00   The value is provided as a decimal value: 91200 . If no module is installed, the value 0 is returned.   Type: Unsigned decimal - 4 bytes		UINT32   R/-	Modbus 558 IDN P-0-3002.0.23
_fwNoSlot2	Firmware number of slot 2.   Example: PR0912.00   The value is provided as a decimal value: 91200 . If no module is installed, the value 0 is returned.   Type: Unsigned decimal - 4 bytes		UINT32   R/-	Modbus 568 IDN P-0-3002.0.28
_fwNoSlot3	Firmware number of slot 3.   Example: PR0912.00   The value is provided as a decimal value: 91200 . If no module is installed, the value 0 is returned.   Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 578 IDN P-0-3002.0.33
_fwNoSlot3Boot	Firmware number of slot 3 (Bootloader).   Example: PR0912.00   The value is provided as a decimal value: 91200. If no module is installed, the value 0 is returned.   Type: Unsigned decimal - 4 bytes		UINT32   R/-	Modbus 590 IDN P-0-3002.0.39
_fwNoSlot3FPGA	Firmware number of slot 3 (FPGA).   Example: PR0912.00   The value is provided as a decimal value: 91200 . If no module is installed, the value 0 is returned.   Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 584 IDN P-0-3002.0.36
_fwNoSlot 3 PRU	Firmware number of slot 3 (PRU).   Example: PR0912.00   The value is provided as a decimal value: 91200 . If no module is installed, the value 0 is returned.   Type: Unsigned decimal - 4 bytes		UINT32   R/-	Modbus 596 IDN P-0-3002.0.42


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_fwRevSlot1	Firmware revision of slot 1 .   The version format is $X X . Y Y . Z Z$.   Part XX.YY is contained in parameter _fwVerSlot1.   Part $Z Z$ is used for quality evolution and contained in this parameter.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 45   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 562   IDN P-0-3002.0.25
_fwRevSlot2	Firmware revision of slot 2.   The version format is $X X . Y Y . Z Z$.   Part XX. YY is contained in parameter _fwVersSlot2.   Part $Z Z$ is used for quality evolution and contained in this parameter.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 45   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 572   IDN P-0-3002.0.30
$\begin{aligned} & \text { fwRevSlot3 } \\ & \text { CםnF } \rightarrow \text { InF- } \\ & \text { } r E V \end{aligned}$	Firmware revision of slot 3.   The version format is $X X . Y Y . Z Z$.   Part XX.YY is contained in parameter _fwVerSlot3.   Part $Z Z$ is used for quality evolution and contained in this parameter.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 45   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 582   IDN P-0-3002.0.35
$\begin{aligned} & \text { fwRevSlot3Boot } \\ & \text { ᄃםnF } \rightarrow \text { inF- } \\ & \text { brEV } \end{aligned}$	Firmware revision of slot 3 (Bootloader).   The version format is XX.YY.ZZ.BB.   Part $X X . Y Y$ is contained in parameter _fwVerSlot3Boot.   Part ZZ.BB is used for quality evolution and contained in this parameter.   If no module is installed, the value 0 is returned.   Example: V01.23.45.67   The value is provided as a decimal value: 4567   Type: Unsigned decimal - 2 bytes	-	UINT16 R/-	Modbus 594   IDN P-0-3002.0.41
$\begin{aligned} & \text { fwRevSlot3FPGA } \\ & \text { ᄃםnF } \rightarrow \text { inF- } \\ & \text { FrEV } \end{aligned}$	Firmware revision of slot 3 (FPGA).   The version format is $X X . Y Y . Z Z$.   Part $X X . Y Y$ is contained in parameter _fwVerSlot3FPGA.   Part ZZ is used for quality evolution and contained in this parameter.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 45   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 588   IDN P-0-3002.0.38
$\begin{aligned} & \text { fwRevSlot3PRU } \\ & \text { CanF } \rightarrow \text { пF } \\ & \text { PrEV } \end{aligned}$	Firmware revision of slot 3 (PRU).   The version format is $X X$.YY.ZZ.B.   Part $X X . Y Y$ is contained in parameter _fwVerSlot3PRU.   Part ZZ.B is used for quality evolution and contained in this parameter.   If no module is installed, the value 0 is returned.   Example: V01.23.45.6   The value is provided as a decimal value: 456   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 600   IDN P-0-3002.0.44


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_fwVersSlot1	Firmware version of slot 1.   The version format is $X X . Y Y . Z Z$.   Part $X X . Y Y$ is contained in this parameter.   Part ZZ is contained in parameter _fwRevSlot1.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 123   Type: Unsigned decimal - 2 bytes	- -	UINT16 R/-	Modbus 560 IDN P-0-3002.0.24
_fwVersSlot2	Firmware version of slot 2.   The version format is $X X . Y Y . Z Z$.   Part $X X . Y Y$ is contained in this parameter.   Part ZZ is contained in parameter _fwRevSlot2.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 123   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 570   IDN P-0-3002.0.29
$\begin{aligned} & \text { fwVersSlot3 } \\ & \bar{C} \square \square F \rightarrow \operatorname{nF}- \\ & \text { RVEr } \end{aligned}$	Firmware version of slot 3 .   The version format is $X X . Y Y . Z Z$.   Part $X X . Y Y$ is contained in this parameter.   Part ZZ is contained in parameter _fwRevSlot3.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 123   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 580 IDN P-0-3002.0.34
```_fwVersSlot3Boot LanF-> וпF- bVEr```	Firmware version of slot 3 (Bootloader).   The version format is XX.YY.ZZ.BB.   Part $X X . Y Y$ is contained in this parameter.   Part ZZ.BB is contained in parameter _fwRevSlot3Boot.   If no module is installed, the value 0 is returned.   Example: V01.23.45.67   The value is provided as a decimal value: 123   Type: Unsigned decimal - 2 bytes	\|-	UINT16 R/-	Modbus 592   IDN P-0-3002.0.40
```_fwVersSlot3FPGA LanF-> וпF- FVEr```	Firmware version of slot 3 (FPGA).   The version format is $X X . Y Y . Z Z$.   Part $X X . Y Y$ is contained in this parameter.   Part $Z Z$ is contained in parameter _fwRevSlot3FPGA.   If no module is installed, the value 0 is returned.   Example: V01.23.45   The value is provided as a decimal value: 123   Type: Unsigned decimal - 2 bytes	\|-	UINT16 R/-	Modbus 586 IDN P-0-3002.0.37
```_fwVersSlot3PRU LםпF-> וпF- PVEr```	Firmware version of slot 3 (PRU).   The version format is XX.YY.ZZ.B.   Part $X X . Y Y$ is contained in this parameter.   Part ZZ.B is contained in parameter _fwRevSlot3PRU.   If no module is installed, the value 0 is returned.   Example: V01.23.45.6   The value is provided as a decimal value: 123   Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 598   IDN P-0-3002.0.43


Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
_HMdisREFtoIDX	Distance from switching point to index pulse. Allows you to verify the distance between the index pulse and the switching point and serves as a criterion for determining whether the reference movement with index pulse can be reproduced. The parameter _HMdisREFtoIDX_usr allows you to enter the value in user-defined units. Type: Signed decimal - 4 bytes In increments of 0.0001 revolution.	revolution	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 10264 IDN P-0-3040.0.12
_HMdisREFtoIDX_usr	Distance from switching point to index pulse. Allows you to verify the distance between the index pulse and the switching point and serves as a criterion for determining whether the reference movement with index pulse can be reproduced. Type: Signed decimal - 4 bytes	$\begin{array}{\|l} \text { usr_p } \\ -2147483648 \\ - \\ 2147483647 \end{array}$	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 10270 IDN P-0-3040.0.15
_hwVerscPu	Hardware version of control board. Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 548 IDN P-0-3002.0.18
_hwVersPS	Hardware version of power stage. Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 552 IDN P-0-3002.0.20
_hwVersSlot1	Hardware version of module in slot 1. Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 556 IDN P-0-3002.0.22
_hwVersSlot2	Hardware version of module in slot 2. Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 566 IDN P-0-3002.0.27
_hwVersSlot3	Hardware version of module in slot 3. Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 576 IDN P-0-3002.0.32
	Total motor current. Type: Signed decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\text {rms }}$	INT16 R/-	Modbus 7686 IDN P-0-3030.0.3
_Id_act_rms	Actual motor current (d component, field weakening). Type: Signed decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	INT16 R/-	Modbus 7684 IDN P-0-3030.0.2
_Id_ref_rms	Reference motor current (d component, field weakening). Type: Signed decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	INT16 R/-	Modbus 7714 IDN P-0-3030.0.17
_Imax_act	Currently effective current limitation. Value of the currently effective current limitation. This is one of the following values (whichever is lowest): - CTRL_I_max (only during normal operation) - LIM_I_maxQSTP (only during Quick Stop) - LIM_I_maxHalt (only during Halt) - Current limitation via digital input - _M_I_max (only if motor is connected) - _PS_I_max Limitations caused by l2t monitoring are also taken into account. Type: Unsigned decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R/-	Modbus 7248 IDN P-0-3028.0.40

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
_Imax_system	Current limitation of the system. This parameter specifies the maximum system current. This is the lower value of the maximum motor current and the maximum power stage current. If no motor is connected, only the maximum power stage current is taken into account in this parameter. Type: Unsigned decimal - 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$.	Arms	UINT16 R/-	Modbus 7246 IDN P-0-3028.0.39
_Inc_ENC2Raw	Raw increment value of encoder 2. This parameter is only needed for commissioning of encoder 2 in case of an unknown machine encoder resolution. Type: Signed decimal - 4 bytes	Enclnc	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7754 IDN P-0-3030.0.37
_InvalidParam	Modbus address of parameter with invalid value. If a configuration error is detected, the Modbus address of the parameter with an invalid value is indicated here. Type: Unsigned decimal - 2 bytes	$\left\lvert\, \begin{aligned} & - \\ & - \\ & 0 \\ & - \end{aligned}\right.$	UINT16 R/-	Modbus 7180 IDN P-0-3028.0.6
_IO_act	Physical status of the digital inputs and outputs. Low byte: Bit 0: DIO Bit 1: DI1 Bit 2: DI2 Bit 3: DI3 Bit 4: DI4 Bit 5: DI5 High byte: Bit 8: DQ0 Bit 9: DQ1 Bit 10: DQ2 Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2050 IDN P-0-3008.0.1
$\begin{aligned} & \text { IO_DI_act } \\ & \Pi \square \pi \\ & d, \Pi \square \end{aligned}$	Status of digital inputs. Bit assignments: Bit 0: DIO Bit 1: DI1 Bit 2: DI2 Bit 3: DI3 Bit 4: DI4 Bit 5: DI5 Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2078 IDN P-0-3008.0.15
$\begin{aligned} & \text { IO_DQ_act } \\ & \Pi \square \Pi \\ & d \square \Pi \square \end{aligned}$	Status of digital outputs. Bit assignments: Bit 0: DQ0 Bit 1: DQ1 Bit 2: DQ2 Type: Unsigned decimal - 2 bytes	\|-	UINT16 R/-	Modbus 2080 IDN P-0-3008.0.16
$\begin{aligned} & \text {-IO_STO_act } \\ & \Pi \text { IO } \\ & 5 t a \end{aligned}$	Status of the inputs for the safety-related function STO. Bit 0: STO_A Bit 1: STO_B If no safety module eSM is plugged in, this parameter indicates the status of the signal inputs STO_A and STO_B. If a safety module eSM is plugged in, the safety function STO can be triggered via the signal inputs or via the safety module eSM. This parameter indicates whether or not the safety function STO was triggered (regardless of whether it was triggered via the signal inputs or via the safety module eSM). Type: Unsigned decimal - 2 bytes		UINT16 R/-	Modbus 2124 IDN P-0-3008.0.38

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
＿IOdataMtoS01	I／O parameter data Master to Slave－parameter 01. Data of the cyclic communication between the master and slave． This parameter contains the data of the first parameter mapped from the master to the slave． The parameters＿IOdataMtoS02 to＿IOdataMtoS16 contain the data of the remaining mapped parameters． Type：Unsigned decimal－ 4 bytes	$\begin{aligned} & 0 \\ & \text { FFFFFFFF hex } \\ & 4294967295 \end{aligned}$	UINT32 R／－	Modbus 16386 IDN P－0－3064．0．1
＿IOdataStoM01	I／O parameter data Slave to Master－parameter 01. Data of the cyclic communication between the master and slave． This parameter contains the data of the first parameter mapped from the slave to the master． The parameters＿IOdataStoM02 to＿IOdataStoM16 contain the data of the remaining mapped parameters． Type：Unsigned decimal－ 4 bytes	0 FFFFFFFF hex 4294967295	UINT32 R／－	Modbus 16450 IDN P－0－3064．0．33
＿IOmappingMtoS01	I／O parameter mapping Master to Slave－parameter 01. Mapping of the cyclic communication between the master and slave． This parameter contains the mapping of the first parameter mapped from the master to the slave． The parameters＿IOmappingMtoS02 to ＿IOmappingMtoS16 contain the mapping of the remaining mapped parameters． Type：Unsigned decimal－ 2 bytes	0 FFFF hex 65535	UINT16 R／－	Modbus 16418 IDN P－0－3064．0．17
＿IOmappingStoM01	I／O parameter mapping Slave to Master－parameter 01. Mapping of the cyclic communication between the master and slave． This parameter contains the mapping of the first parameter mapped from the slave to the master． The parameters＿IOmappingStoM02 to ＿IOmappingStoM16 contain the mapping of the remaining mapped parameters． Type：Unsigned decimal－ 2 bytes	0 FFFF hex 65535	UINT16 R／－	Modbus 16482 IDN P－0－3064．0．49
Iq＿act＿rms Пロп Я月ェ	Actual motor current（q component，generating torque）． Type：Signed decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	$\mathrm{A}_{\mathrm{rms}}$	INT16 R／－	Modbus 7682 IDN P－0－3030．0．1
$\begin{aligned} & \text {-Iq_ref_rms } \\ & \text { Пם } \\ & \text { 耳rEF } \end{aligned}$	Reference motor current（q component，generating torque）． Type：Signed decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	$\mathrm{A}_{\mathrm{rms}}$	INT16 R／－	Modbus 7712 IDN P－0－3030．0．16
$\begin{aligned} & \text { LastError } \\ & \text { Пםn } \\ & L F L E \end{aligned}$	Detected error causing a stop（error classes 1 to 4）． Error code of the most recent detected error． Consecutive detected errors do not overwrite this error code． Example：If an error response to a detected limit switch error causes overvoltage，this parameter contains the code of the detected limit switch error． Exception：Detected errors of error class 4 overwrite existing entries． Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 7178 IDN P－0－3028．0．5
＿LastError＿Qual	Additional info on most recent error． This parameter contains additional information on the most recent detected error，depending on the error code．For example：a parameter address． Type：Unsigned decimal－ 2 bytes	$\begin{aligned} & - \\ & - \\ & 0 \end{aligned}$	UINT16 R／－	Modbus 7230 IDN P－0－3028．0．31

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
LastWarning Пロп LWrn	Code of most recent error of error class 0 ． If the error is no longer active，the code is stored until the next Fault Reset． Value 0：No error of error class 0 Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 7186 IDN P－0－3028．0．9
＿M＿BRK＿T＿apply	Holding brake application time． Type：Unsigned decimal－ 2 bytes	ms	UINT16 R／－	Modbus 3394 IDN P－0－3013．0．33
＿M＿BRK＿T＿release	Holding brake release time． Type：Unsigned decimal－ 2 bytes	ms	UINT16 R／－	Modbus 3396 IDN P－0－3013．0．34
＿M＿Enc＿Cosine	Voltage of cosine signal of encoder． Type：Signed decimal－ 2 bytes In increments of 0.001 V ． Available with firmware version $\geq \mathrm{V} 01.06$ ．	V	INT16 R／－	Modbus 7254 IDN P－0－3028．0．43
－M＿Enc＿Sine	Voltage of sine signal of encoder． Type：Signed decimal－ 2 bytes In increments of 0.001 V ． Available with firmware version $\geq \mathrm{V} 01.06$ ．	V	INT16 R／－	Modbus 7256 IDN P－0－3028．0．44
$\begin{aligned} & \text { M_Encoder } \\ & C \square \cap F \rightarrow 1 \cap F- \\ & 5 E \cap 5 \end{aligned}$	Type of motor encoder． 1 ／SinCos With HiFa／5Wh ：SinCos with Hiperface 2 ／SinCos Without HiFa／5Wah：SinCos without Hiperface 3 ／SinCos With Hall／5W h R：SinCos with Hall 4 ／SinCos With EnDat／5WEn：SinCos with EnDat $5 /$ EnDat Without SinCos／EndA：EnDat without SinCos 6 ／Resolver／r E 5a：Resolver 7 ／Hall／h R L L ：Hall（not supported yet） 8 ／BISS／b ，5 5：BISS High byte： Value 0：Rotary encoder Value 1：Linear encoder Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 3334 IDN P－0－3013．0．3
＿M＿HoldingBrake	Holding brake identification． Value 0：Motor without holding brake Value 1：Motor with holding brake Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 3392 IDN P－0－3013．0．32
－M＿I＿0	Continuous stall current of motor． Type：Unsigned decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	Arms	UINT16 R／－	Modbus 3366 IDN P－0－3013．0．19
	Maximum current of motor． Type：Unsigned decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R／－	Modbus 3340 IDN P－0－3013．0．6
	Nominal current of motor． Type：Unsigned decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R／－	Modbus 3342 IDN P－0－3013．0．7
－M＿I2t	Maximum permissible time for maximum current of motor． Type：Unsigned decimal－ 2 bytes	ms	UINT16 R／－	Modbus 3362 IDN P－0－3013．0．17

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
_M_Jrot	Moment of inertia of motor. Units: Rotary motors: kgcm^{2} Linear motors: kg Type: Unsigned decimal - 4 bytes In increments of 0.001 motor_f.	motor_f	UINT32 R/-	Modbus 3352 IDN P-0-3013.0.12
_M_kE	Voltage constant kE of motor. Voltage constant in Vrms at 1000 RPM. Units: Rotary motors: Vrms/RPM Linear motors: Vrms/(m/s) Type: Unsigned decimal - 4 bytes In increments of 0.1 motor_u.	motor_u	UINT32 R/-	Modbus 3350 IDN P-0-3013.0.11
-M_L_d	Inductance d component of motor. Type: Unsigned decimal - 2 bytes In increments of 0.01 mH .	mH	UINT16 R/-	Modbus 3358 IDN P-0-3013.0.15
-M_L_q	Inductance q component of motor. Type: Unsigned decimal - 2 bytes In increments of 0.01 mH .	mH	UINT16 R/-	Modbus 3356 IDN P-0-3013.0.14
$\begin{aligned} & \text { M_load } \\ & \Pi \square n \\ & L \quad d F \Pi \end{aligned}$	Load of motor. Type: Signed decimal - 2 bytes	\%	INT16 R/-	Modbus 7220 IDN P-0-3028.0.26
-M_M_0	Continuous stall torque of motor. A value of 100% in operating mode Profile Torque corresponds to this parameter. Units: Rotary motors: Ncm Linear motors: N Type: Unsigned decimal - 2 bytes	motor_m	UINT16 R/-	Modbus 3372 IDN P-0-3013.0.22
_M_M_max	Maximum torque of motor. Type: Unsigned decimal - 2 bytes In increments of 0.1 Nm.	Nm	UINT16 R/-	Modbus 3346 IDN P-0-3013.0.9
_M_M_nom	Nominal torque/force of motor. Units: Rotary motors: Ncm Linear motors: N Type: Unsigned decimal - 2 bytes	motor_m	UINT16 R/-	Modbus 3344 IDN P-0-3013.0.8
_M_maxoverload	Maximum value of overload of motor. Maximum overload of motor during the last 10 seconds. Type: Signed decimal - 2 bytes	$\%$	INT16 R/-	Modbus 7222 IDN P-0-3028.0.27
$\begin{aligned} & \bar{M}_{-}^{\mathrm{M} _\max } \\ & \Gamma \square п F \rightarrow \text { inF- } \\ & \Pi \cap \Pi F \end{aligned}$	Maximum permissible speed of rotation/velocity of motor. Units: Rotary motors: RPM Linear motors: mm/s Type: Unsigned decimal - 2 bytes	motor_v	UINT16 R/-	Modbus 3336 IDN P-0-3013.0.4
-M_n_nom	Nominal speed of rotation/velocity of motor. Units: Rotary motors: RPM Linear motors: mm/s Type: Unsigned decimal - 2 bytes	motor_v	UINT16 R/-	Modbus 3338 IDN P-0-3013.0.5
-M_overload	Overload of motor (12t). Type: Signed decimal - 2 bytes	\%	INT16 R/-	Modbus 7218 IDN P-0-3028.0.25

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
＿M＿Polepair	Number of pole pairs of motor． Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 3368 IDN P－0－3013．0．20
－M＿PolePairPitch	Pole pair pitch of motor． Type：Unsigned decimal－ 2 bytes In increments of 0.01 mm ．	mm	UINT16 R／－	Modbus 3398 IDN P－0－3013．0．35
－M＿R＿UV	Winding resistance of motor． Type：Unsigned decimal－ 2 bytes In increments of 0.01Ω ．	Ω	UINT16 R／－	Modbus 3354 IDN P－0－3013．0．13
M＿T＿current Пロп t חロ	Temperature of motor． Type：Signed decimal－ 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R／－	Modbus 7202 IDN P－0－3028．0．17
－M＿T＿max	Maximum temperature of motor． Type：Signed decimal－ 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R／－	Modbus 3360 IDN P－0－3013．0．16
$\begin{aligned} & \text { М_Type } \\ & \bar{C} \cap F \rightarrow \text { ı } F- \\ & \Pi ヒ У P \end{aligned}$	Motor type． Value 0：No motor selected Value＞0：Connected motor type Type：Unsigned decimal－ 4 bytes		UINT32 R／－	Modbus 3332 IDN P－0－3013．0．2
－M＿U＿max	Maximum voltage of motor． Type：Unsigned decimal－ 2 bytes In increments of 0.1 V ．	V	UINT16 R／－	Modbus 3378 IDN P－0－3013．0．25
－M＿U＿nom	Nominal voltage of motor． Type：Unsigned decimal－ 2 bytes In increments of 0.1 V ．	V	UINT16 R／－	Modbus 3348 IDN P－0－3013．0．10
＿ModuleSlot1	Module in slot 1. 0 ／None：No module 1025 ／eSM：Safety module eSM Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 554 IDN P－0－3002．0．21
＿ModuleSlot2	Module in slot 2. 0 ／None：No module 769 ／Encoder ANA：Encoder module ANA 770 ／Encoder DIG：Encoder module DIG 771 ／Encoder RSR：Encoder module RSR Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 564 IDN P－0－3002．0．26
＿ModuleSlot3	Module in slot 3. 0 ／None：No module 513 ／CANopen（D－SUB）：Fieldbus CANopen（D－ SUB） 514 ／CANopen（RJ45）：Fieldbus CANopen（RJ45） 515 ／DeviceNet（Open－Style）：Fieldbus DeviceNet （Open－Style） 517 ／CANopen（Open－Style）：Fieldbus CANopen （Open－Style） 528 ／ProfibusDP：Fieldbus Profibus DP 529 ／EtherNetIP：Fieldbus EtherNetIP 530 ／EtherCAT：Fieldbus EtherCAT 531 ／SercosII：Fieldbus Sercos II 533 ／SercosIII：Fieldbus Sercos III Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 574 IDN P－0－3002．0．31
$\begin{aligned} & \text { n_act }_{n} \\ & \text { non } \\ & \text { n } \end{aligned}$	Actual speed of rotation． Type：Signed decimal－ 2 bytes	RPM	INT16 R／－	Modbus 7696 IDN P－0－3030．0．8

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
＿n＿act＿ENC1	Actual speed of rotation of encoder 1. Type：Signed decimal－ 2 bytes	RPM	INT16 R／－	Modbus 7760 IDN P－0－3030．0．40
－n＿act＿ENC2	Actual speed of rotation of encoder 2 （module）． Type：Signed decimal－ 2 bytes	RPM	INT16 R／－	Modbus 7740 IDN P－0－3030．0．30
$\begin{aligned} & \text { n_ref } \\ & \Pi \text { Пם } \\ & n r E F \end{aligned}$	Reference speed of rotation． Type：Signed decimal－ 2 bytes	RPM	INT16 R／－	Modbus 7694 IDN P－0－3030．0．7
OpHours Пロп －Ph	Operating hours counter． Type：Unsigned decimal－ 4 bytes	s	UINT32 R／－	Modbus 7188 IDN P－0－3028．0．10
	Absolute position with reference to the encoder range． This value corresponds to the modulo position of the absolute encoder range． The value is no longer valid if the gear ratio of machine encoder and motor encoder is changed．A restart is required in such a case． Type：Unsigned decimal－ 4 bytes	usr_p	UINT32 R／－	Modbus 7710 IDN P－0－3030．0．15
＿p＿absmodulo	Absolute position with reference to internal resolution in internal units． This value is based on encoder raw position with reference to internal resolution（131072 Inc）． Type：Unsigned decimal－ 4 bytes	Inc	UINT32 R／－	Modbus 7708 IDN P－0－3030．0．14
＿p＿act	Actual position． Type：Signed decimal－ 4 bytes	usr_p	INT32 R／－	Modbus 7706 IDN P－0－3030．0．13
＿p＿act＿ENC1	Position of encoder 1. Type：Signed decimal－ 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7758 IDN P－0－3030．0．39
＿p＿act＿ENC1＿int	Actual position of encoder 1 in internal units． Type：Signed decimal－ 4 bytes	Inc	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7756 IDN P－0－3030．0．38
＿p＿act＿ENC2	Position of encoder 2 （module）． Type：Signed decimal－ 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7732 IDN P－0－3030．0．26
＿p＿act＿ENC2＿int	Actual position of encoder 2 （module）in internal units． Type：Signed decimal－ 4 bytes	Inc	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7730 IDN P－0－3030．0．25
＿p＿act＿int	Actual position in internal units． Type：Signed decimal－ 4 bytes	Inc	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7700 IDN P－0－3030．0．10

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
_p_dif	Position deviation including dynamic position deviation. Position deviation is the difference between reference position and actual position. The position deviation consists of the load-dependent position deviation and the dynamic position deviation. The parameter _p_dif_usr allows you to enter the value in user-defined units. Type: Signed decimal - 4 bytes In increments of 0.0001 revolution.	$\begin{aligned} & \text { revolution } \\ & -214748.3648 \\ & - \\ & 214748.3647 \end{aligned}$	$\begin{array}{\|l} \text { INT32 } \\ \text { R/- } \end{array}$	Modbus 7716 IDN P-0-3030.0.18
_p_dif_load	Load-dependent position deviation between reference and actual positions. The load-dependent position deviation is the difference between the reference position and the actual position caused by the load. This value is used for following error monitoring. The parameter _p_dif_load_usr allows you to enter the value in user-defined units. Type: Signed decimal - 4 bytes In increments of 0.0001 revolution.	$\begin{aligned} & \text { revolution } \\ & -214748.3648 \\ & - \\ & 214748.3647 \end{aligned}$	$\begin{array}{\|l} \text { INT32 } \\ \text { R/- } \end{array}$	Modbus 7736 IDN P-0-3030.0.28
_p_dif_load_peak	Maximum value of the load-dependent position deviation. This parameter contains the maximum loaddependent position deviation reached so far. A write access resets this value. The parameter _p_dif_load_peak_usr allows you to enter the value in user-defined units. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 In increments of 0.0001 revolution. Modified settings become effective immediately.	$\begin{aligned} & \text { revolution } \\ & 0.0000 \\ & - \\ & 429496.7295 \end{aligned}$	UINT32 R/W	Modbus 7734 IDN P-0-3030.0.27
_p_dif_load_peak_usr	Maximum value of the load-dependent position deviation. This parameter contains the maximum loaddependent position deviation reached so far. A write access resets this value. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & - \\ & 2147483647 \end{aligned}$	INT32 R/W	Modbus 7722 IDN P-0-3030.0.21
_p_dif_load_usr	Load-dependent position deviation between reference and actual positions. The load-dependent position deviation is the difference between the reference position and the actual position caused by the load. This value is used for following error monitoring. Type: Signed decimal - 4 bytes	$\begin{aligned} & \text { usr_p } \\ & -2147483648 \\ & - \\ & 2147483647 \end{aligned}$	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7724 IDN P-0-3030.0.22
_p_dif_usr	Position deviation including dynamic position deviation. Position deviation is the difference between reference position and actual position. The position deviation consists of the load-dependent position deviation and the dynamic position deviation. Type: Signed decimal - 4 bytes	$\begin{aligned} & \text { usr_p } \\ & -2147483648 \\ & - \\ & 2147483647 \end{aligned}$	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7720 IDN P-0-3030.0.20
_p_DifENC1toENC2	Deviation of encoder positions. Type: Signed decimal - 4 bytes	Inc	$\begin{array}{\|l} \text { INT32 } \\ \text { R/- } \end{array}$	Modbus 7728 IDN P-0-3030.0.24
_P_PTI_act	Actual position at PTI interface. Counted position increments at PTI interface. Type: Signed decimal - 4 bytes Available with firmware version \geq V01.04.	$\begin{aligned} & \text { Inc } \\ & -2147483648 \\ & - \\ & 2147483647 \end{aligned}$	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2058 IDN P-0-3008.0.5

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
_p_ref	Reference position. Value corresponds to the reference position of the position controller. Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7704 IDN P-0-3030.0.12
_p_ref_int	Reference position in internal units. Value corresponds to the reference position of the position controller. Type: Signed decimal - 4 bytes	Inc	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \\ & - \\ & - \end{aligned}$	Modbus 7698 IDN P-0-3030.0.9
_PAR_ScalingError	Additional information on error detected during recalculation. Coding: Bits $0 \ldots 15$: Address of the parameter that caused the error Bits $16 \ldots 31$: Number of the data set in the operating mode Motion Sequence that caused the error Type: Unsigned decimal - 4 bytes Modified settings become effective immediately.	-	UINT32 R/-	Modbus 1068 IDN P-0-3004.0.22
_PAR_ScalingState	Status of recalculation of the parameters with userdefined units. 0 / Recalculation Active: Recalculation active 1 / Reserved (1): Reserved 2 / Recalculation Finished - No Error: Recalculation finished, no error 3 / Error During Recalculation: Error during recalculation 4 / Initialization Successful: Initialization successful 5 / Reserved (5): Reserved 6 / Reserved (6): Reserved 7 / Reserved (7): Reserved Status of recalculation of the parameters with userdefined units which are recalculated with a changed scaling factor. Type: Unsigned decimal - 2 bytes Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 2 \\ & 7 \end{aligned}$	UINT16 R/-	Modbus 1066 IDN P-0-3004.0.21
_Power_act	Output power. Type: Signed decimal - 4 bytes	W	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7194 IDN P-0-3028.0.13
_Power_mean	Mean output power. Type: Unsigned decimal - 2 bytes	W	UINT16 R/-	Modbus 7196 IDN P-0-3028.0.14
_pref_acc	Acceleration of reference value for acceleration feed-forward control. Sign according to the changed velocity value: Increased velocity: Positive sign Reduced velocity: Negative sign Type: Signed decimal - 4 bytes	usr_a	INT32 R/-	Modbus 7954 IDN P-0-3031.0.9
_pref_v	Velocity of reference value for velocity feed-forward control. Type: Signed decimal - 4 bytes	usr_v	INT32 R/-	Modbus 7950 IDN P-0-3031.0.7
$\begin{aligned} & \text { PrgNoDEV } \\ & \overline{E \cap F} \rightarrow \text { inF- } \\ & \operatorname{Prn} \end{aligned}$	Firmware number of device. Example: PR0912.00 The value is provided as a decimal value: 91200 Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 258 IDN P-0-3001.0.1

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
	Firmware revision of device． The version format is $X X . Y Y . Z Z$ ． Part XX．YY is contained in parameter＿prgVerDEV． Part ZZ is used for quality evolution and contained in this parameter． Example：V01．23．45 The value is provided as a decimal value： 45 Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 264 IDN P－0－3001．0．4
	Firmware version of device． The version format is XX．YY．ZZ． Part $X X . Y Y$ is contained in this parameter． Part ZZ is contained in parameter＿prgRevDEV． Example：V01．23．45 The value is provided as a decimal value： 123 Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 260 IDN P－0－3001．0．2
$\begin{aligned} & P_{S} _I _\max \\ & \Gamma \square \cap F \rightarrow \quad \cap F- \\ & P, \Pi A \end{aligned}$	Maximum current of power stage． Type：Unsigned decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R／－ per．	Modbus 4100 IDN P－0－3016．0．2
	Nominal current of power stage． Type：Unsigned decimal－ 2 bytes In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ．	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R／－ per．	Modbus 4098 IDN P－0－3016．0．1
	Load of power stage． Type：Signed decimal－ 2 bytes	\%	INT16 R／－	Modbus 7214 IDN P－0－3028．0．23
－PS＿maxoverload	Maximum value of overload of power stage． Maximum overload of power stage during the last 10 seconds． Type：Signed decimal－ 2 bytes	\%	INT16 R／－	Modbus 7216 IDN P－0－3028．0．24
－PS＿overload	Overload of power stage． Type：Signed decimal－ 2 bytes	\%	INT16 R／－	Modbus 7240 IDN P－0－3028．0．36
－PS＿overload＿cte	Overload of power stage（chip temperature）． Type：Signed decimal－ 2 bytes	$\%$	INT16 R／－	Modbus 7236 IDN P－0－3028．0．34
－PS＿overload＿I2t	Overload of power stage（I2t）． Type：Signed decimal－ 2 bytes	\%	INT16 R／－	Modbus 7212 IDN P－0－3028．0．22
＿PS＿overload＿psq	Overload of power stage（power squared）． Type：Signed decimal－ 2 bytes	$\%$	INT16 R／－	Modbus 7238 IDN P－0－3028．0．35
$\begin{aligned} & \text {-PS_T_current } \\ & \Pi_{a n} \\ & E P S \end{aligned}$	Temperature of power stage． Type：Signed decimal－ 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R／－	Modbus 7200 IDN P－0－3028．0．16
＿PS＿T＿max	Maximum temperature of power stage． Type：Signed decimal－ 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R／－ per．	Modbus 4110 IDN P－0－3016．0．7
－PS＿T＿warn	Advisory temperature limit of power stage（error class 0）． Type：Signed decimal－ 2 bytes	${ }^{\circ} \mathrm{C}$	INT16 R／－ per．	Modbus 4108 IDN P－0－3016．0．6

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
-PS_U_maxDC	Maximum permissible DC bus voltage. Type: Unsigned decimal - 2 bytes In increments of 0.1 V .	V	UINT16 R/per.	Modbus 4102 IDN P-0-3016.0.3
-PS_U_minDC	Minimum permissible DC bus voltage. Type: Unsigned decimal - 2 bytes In increments of 0.1 V .	V	UINT16 R/per.	Modbus 4104 IDN P-0-3016.0.4
-PS_U_minStopDC	DC bus voltage low threshold for Quick Stop. If the threshold is reached, the drive performs a Quick Stop. Type: Unsigned decimal - 2 bytes In increments of 0.1 V .	V	UINT16 R/per.	Modbus 4116 IDN P-0-3016.0.10
_PT_max_val	Maximum possible value for operating mode Profile Torque. 100.0 \% correspond to the continuous stall torque _M_M_0. Type: Signed decimal - 2 bytes In increments of 0.1%.	$\%$	INT16 R/-	Modbus 7228 IDN P-0-3028.0.30
_RAMP_p_act	Actual position of profile generator. Type: Signed decimal - 4 bytes	usr_p	INT32 R/-	Modbus 7940 IDN P-0-3031.0.2
_RAMP_p_target	Target position of profile generator. Absolute position value of the profile generator, calculated on the basis of the relative and absolute position values received. Type: Signed decimal - 4 bytes	usr_p	INT32 R/-	Modbus 7938 IDN P-0-3031.0.1
_RAMP_v_act	Actual velocity of profile generator. Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7948 IDN P-0-3031.0.6
_RAMP_v_target	Target velocity of profile generator. Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7946 IDN P-0-3031.0.5
$\begin{aligned} & \text { _RES_load } \\ & \Pi \text { пп } \\ & \text { L } d F b \end{aligned}$	Load of braking resistor. The braking resistor set via parameter RESint_ext is monitored. Type: Signed decimal - 2 bytes	\%	INT16 R/-	Modbus 7208 IDN P-0-3028.0.20
-RES_maxoverload	Maximum value of overload of braking resistor. Maximum overload of braking resistor during the last 10 seconds. The braking resistor set via parameter RESint_ext is monitored. Type: Signed decimal - 2 bytes	\%	INT16 R/-	Modbus 7210 IDN P-0-3028.0.21
-RES_overload	Overload of braking resistor (I2t). The braking resistor set via parameter RESint_ext is monitored. Type: Signed decimal - 2 bytes	\%	INT16 R/-	Modbus 7206 IDN P-0-3028.0.19
-RESint_P	Nominal power of internal braking resistor. Type: Unsigned decimal - 2 bytes	W	UINT16 R/per.	Modbus 4114 IDN P-0-3016.0.9
-RESint_R	Resistance value of internal braking resistor. Type: Unsigned decimal - 2 bytes In increments of 0.01Ω.	Ω	UINT16 R/per.	Modbus 4112 IDN P-0-3016.0.8

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
_ScalePOSmax	Maximum user-defined value for positions. Type: Signed decimal - 4 bytes	usr_p	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7956 IDN P-0-3031.0.10
_ScaleRAMPmax	Maximum user-defined value for acceleration and deceleration. This value depends on ScaleRAMPdenom and ScaleRAMPnum. Type: Signed decimal - 4 bytes	usr_a	INT32 R/-	Modbus 7960 IDN P-0-3031.0.12
_ScaleVELmax	Maximum user-defined value for velocity. This value depends on ScaleVELdenom and ScaleVELnum. Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \\ & - \end{aligned}$	Modbus 7958 IDN P-0-3031.0.11
_SigActive	Status of monitoring signals. See _SigLatched for more details on the bit codes. Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 7182 IDN P-0-3028.0.7
```_SigLatched \Piロп 5,[5```	Saved status of monitoring signals.   Signal state:   0 : Not activated   1: Activated   Bit assignments:   Bit 0: General error   Bit 1: Hardware limit switches (LIMP/LIMN/REF)   Bit 2: Out of range (software limit switches, tuning)   Bit 3: Quick Stop via fieldbus   Bit 4: Error in active operating mode   Bit 5: Commissioning interface (RS485)   Bit 6: Integrated fieldbus   Bit 7: Reserved   Bit 8: Following error   Bit 9: Reserved   Bit 10: Inputs STO are 0   Bit 11: Inputs STO different   Bit 12: Reserved   Bit 13: DC bus voltage low   Bit 14: DC bus voltage high   Bit 15: Mains phase missing   Bit 16: Integrated encoder interface   Bit 17: Overtemperature motor   Bit 18: Overtemperature power stage   Bit 19: Reserved   Bit 20: Memory card   Bit 21: Fieldbus module   Bit 22: Encoder module   Bit 23: Safety module eSM   Bit 24: Reserved   Bit 25: Reserved   Bit 26: Motor connection   Bit 27: Motor overcurrent/short circuit   Bit 28: Frequency of reference signal too high   Bit 29: Nonvolatile memory error detected   Bit 30: System start-up (hardware or parameter)   Bit 31: System error detected (for example, watchdog, internal hardware interface)   Monitoring functions are product-dependent.   Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 7184   IDN P-0-3028.0.8


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_SPDSercos3Status	SPD Sercos status (CAP1 and CAP2).   Bit $0=0$ : No position captured via input CAP1   Bit $0=1$ : Position captured via input CAP1   Bit $1=0$ : No position captured via input CAP2   Bit $1=1$ : Position captured via input CAP2   Bit $2=0$ : Positive limit switch not active   Bit $2=1$ : Positive limit switch active   Bit $3=0$ : Negative limit switch not active   Bit 3 = 1: Negative limit switch active   Bit $4=0$ : Quick Stop: Standstill not yet reached   Bit $4=1$ : Quick Stop: Standstill reached   Type: Unsigned decimal - 2 bytes   Modified settings become effective immediately.		UINT16 R/-	Modbus 6562   IDN P-0-3025.0.81
_SuppDriveModes	Supported operating modes as per DSP402.   Bit 5: Homing   Bit 7: Cyclic Synchronous Position   Bit 8: Cyclic Synchronous Velocity   Bit 9: Cyclic Synchronous Torque   Bit 16: Jog   Bit 21: Manual Tuning   Type: Unsigned decimal - 4 bytes		UINT32 R/-	Modbus 6952   IDN P-0-3027.0.20
_tq_act	Actual torque.   Positive value: Actual torque in positive direction of movement   Negative value: Actual torque in negative direction of movement 100.0 \% correspond to the continuous stall torque _M_M_0.   Type: Signed decimal - 2 bytes   In increments of 0.1 \%.	$\%$	INT16 R/-	Modbus 7752   IDN P-0-3030.0.36
-Ud_ref	Reference motor voltage d component.   Type: Signed decimal - 2 bytes   In increments of 0.1 V .	V	INT16 R/-	Modbus 7690 IDN P-0-3030.0.5
UDC_act   Пロп udch	Voltage at DC bus.   Type: Unsigned decimal - 2 bytes In increments of 0.1 V .	V	UINT16 R/-	Modbus 7198   IDN P-0-3028.0.15
_Udq_ref	Total motor voltage (vector sum d components and q components).   Square root of ( _Uq_ref ${ }^{2}+$ _Ud_ref ${ }^{2}$ )   Type: Signed decimal - 2 bytes   In increments of 0.1 V .	V	INT16 R/-	Modbus 7692   IDN P-0-3030.0.6
-Uq_ref	Reference motor voltage q component.   Type: Signed decimal - 2 bytes   In increments of 0.1 V .	V	INT16 R/-	Modbus 7688   IDN P-0-3030.0.4
$\begin{aligned} & \text {-v_act } \\ & \text { Van } \\ & \text { VAct } \end{aligned}$	Actual velocity.   Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7744   IDN P-0-3030.0.32
_v_act_ENC1	Actual velocity of encoder 1.   Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7762   IDN P-0-3030.0.41
_v_act_ENC2	Actual velocity of encoder 2 (module).   Type: Signed decimal - 4 bytes	usr_v	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7750   IDN P-0-3030.0.35


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
_v_dif_usr	Load-dependent velocity deviation.   The load-dependent velocity deviation is the difference between reference velocity and actual velocity.   Type: Signed decimal - 4 bytes   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \text { usr_v } \\ & -2147483648 \\ & - \\ & 2147483647 \end{aligned}$	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 7768   IDN P-0-3030.0.44
_v_PTI_act	Actual velocity at PTI interface.   Determined pulse frequency at position interface PTI.   Type: Signed decimal - 4 bytes	$\begin{aligned} & \text { Inc/s } \\ & -2147483648 \\ & - \\ & 2147483647 \end{aligned}$	$\begin{aligned} & \text { INT32 } \\ & \text { R/- } \end{aligned}$	Modbus 2060   IDN P-0-3008.0.6
$\begin{aligned} & \text { "v_ref } \\ & \Pi \text { пп } \\ & \text { VrEF } \end{aligned}$	Reference velocity.   Type: Signed decimal - 4 bytes	usr_v	$\begin{array}{\|l} \text { INT32 } \\ \text { R/- } \end{array}$	Modbus 7742   IDN P-0-3030.0.31
_Vmax_act	Currently effective velocity limitation. Value of the currently effective velocity limitation. This is one of the following values (whichever is lowest):   - CTRL_v_max   - M_n_max (only if motor is connected)   - Velocity limitation via digital input   Type: Unsigned decimal - 4 bytes	usr_v	UINT32 R/-	Modbus 7250   IDN P-0-3028.0.41
Voltutil Пロп uder	Degree of utilization of DC bus voltage. With a value of $100 \%$, the drive operates at the voltage limit.   Type: Signed decimal - 2 bytes	$\%$	INT16 R/-	Modbus 7718   IDN P-0-3030.0.19
-WarnActive	Active errors of error class 0, bit-coded. See parameter _WarnLatched for more details on the bits.   Type: Unsigned decimal - 4 bytes		UINT32   R/-	Modbus 7190   IDN P-0-3028.0.11


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
WarnLatched   Пロп   Wras	Saved errors of error class 0, bit-coded.   The bits are set to 0 in the case of a Fault Reset.   Bits 10 and 13 are set to 0 automatically.   Signal state:   0 : Not activated   1: Activated   Bit assignments:   Bit 0: General   Bit 1: Reserved   Bit 2: Out of range (software limit switches, tuning)   Bit 3: Reserved   Bit 4: Active operating mode   Bit 5: Commissioning interface (RS485)   Bit 6: Integrated fieldbus   Bit 7: Reserved   Bit 8: Following error   Bit 9: Reserved   Bit 10: Inputs STO_A and/or STO_B   Bits 11 ... 12: Reserved   Bit 13: Low voltage DC bus or mains phase missing   Bits 14 ... 15: Reserved   Bit 16: Integrated encoder interface   Bit 17: Temperature of motor high   Bit 18: Temperature of power stage high   Bit 19: Reserved   Bit 20: Memory card   Bit 21: Fieldbus module   Bit 22: Encoder module   Bit 23: Safety module eSM   Bits 24 ... 27: Reserved   Bit 28: Transistor for braking resistor overload $\left(I^{2} t\right)$   Bit 29: Braking resistor overload $\left(1^{2} t\right)$   Bit 30: Power stage overload $\left(I^{2} t\right)$   Bit 31: Motor overload $\left(1^{2} \mathrm{t}\right)$   Monitoring functions are product-dependent.   Type: Unsigned decimal - 4 bytes		UINT32 R/- - -	Modbus 7192   IDN P-0-3028.0.12
AbsHomeRequest	Absolute positioning only after homing.   0 / No: No   1 / Yes: Yes   This parameter has no function if the parameter 'PP_ModeRangeLim' is set to ' 1 ' which allows overtraveling of the movement range (ref_ok is set to 0 when the range is overtraveled).   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1580 IDN P-0-3006.0.22
AccessLock	Locking other access channels.   Value 0: Allow control via other access channels   Value 1: Lock control via other access channels   Example:   The access channel is used by the fieldbus. In this case, control via the commissioning software, for example, is not possible.   The access channel can only be locked after the currently active operating mode has terminated.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 284   IDN P-0-3001.0.14


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & A T \text { dir } \\ & \square \stackrel{P}{P} \rightarrow t+n- \\ & 5 t, \Pi \end{aligned}$	Direction of movement for Autotuning.   1 / Positive Negative Home / Pnh: Positive direction first, then negative direction with return to initial position   2 / Negative Positive Home / $\square P h$ : Negative direction first, then positive direction with return to initial position   3 / Positive Home / P - h: Positive direction only with return to initial position   4 / Positive / P - - : Positive direction only without return to initial position   5 / Negative Home / $n-h$ : Negative direction only with return to initial position   6 / Negative / $n--$ : Negative direction only without return to initial position   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & 1 \\ & 1 \\ & 6 \end{aligned}$	UINT16 R/W	Modbus 12040   IDN P-0-3047.0.4
AT_dis	Movement range for Autotuning.   Movement range within which the control parameters are automatically optimized. The movement range is entered with reference to the actual position.   In the case of "Movement in one direction only" (Parameter AT_dir), the specified movement range is used for each optimization step. The movement typically corresponds to 20 times the value, but it is not limited.   The parameter AT_dis_usr allows you to enter the value in user-defined units.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 revolution.   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { revolution } \\ & 1.0 \\ & 2.0 \\ & 999.9 \end{aligned}$	UINT32 R/W	Modbus 12038   IDN P-0-3047.0.3
AT_dis_usr	Movement range for Autotuning.   Movement range within which the control parameters are automatically optimized. The movement range is entered with reference to the actual position.   In the case of "Movement in one direction only" (Parameter AT_dir), the specified range is used for each optimization step. The movement typically corresponds to 20 times the value, but it is not limited.   The minimum value, the factory setting and the maximum value depend on the scaling factor.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 1 \\ & 262144 \\ & 2147483647 \end{aligned}$	INT32 R/W	Modbus 12068   IDN P-0-3047.0.18
AT_mechanical	Type of coupling of the system.   1 / Direct Coupling: Direct coupling   2 / Belt Axis: Belt axis   3 / Spindle Axis: Spindle axis   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	UINT16 R/W	Modbus 12060   IDN P-0-3047.0.14


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
AT_n_ref	Velocity jump for Autotuning.   The parameter AT_v_ref allows you to enter the value in user-defined units.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { RPM } \\ & 10 \\ & 100 \\ & 1000 \end{aligned}$	UINT32 R/W	Modbus 12044   IDN P-0-3047.0.6
AT_start	Autotuning start.   Value 0: Terminate   Value 1: Activate EasyTuning   Value 2: Activate ComfortTuning   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 12034   IDN P-0-3047.0.1
AT_v_ref	Velocity jump for Autotuning.   The minimum value, the factory setting and the maximum value depend on the scaling factor.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{array}{\|l} \mid \text { usr_v } \\ 1 \\ 100 \\ 2147483647 \end{array}$	INT32 R/W	Modbus 12070   IDN P-0-3047.0.19
AT_wait	Waiting time between Autotuning steps.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{array}{\|l\|} \hline \mathrm{ms} \\ 300 \\ 500 \\ 10000 \end{array}$	UINT16 R/W	Modbus 12050   IDN P-0-3047.0.9
BLSH_Mode	Processing mode of backlash compensation.   0 / Off: Backlash compensation is off   1 / OnAfterPositiveMovement: Backlash compensation is on, last movement was in positive direction   2 / OnAfterNegativeMovement: Backlash compensation is on, last movement was in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1666   IDN P-0-3006.0.65
BLSH_Position	Position value for backlash compensation.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1668   IDN P-0-3006.0.66
BLSH_Time	Processing time for backlash compensation.   Value 0: Immediate backlash compensation   Value >0: Processing time for backlash compensation   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{array}{\|l} \mathrm{ms} \\ 0 \\ 0 \\ 16383 \end{array}$	UINT16 R/W per.	Modbus 1672   IDN P-0-3006.0.68


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
BRK_AddT_apply	Additional time delay for applying the holding brake. The overall time delay for applying the holding brake is the time delay from the electronic nameplate of the motor and the additional time delay in this parameter.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{array}{\|l} \mathrm{ms} \\ 0 \\ 0 \\ 1000 \end{array}$	INT16 R/W per.	Modbus 1296 IDN P-0-3005.0.8
BRK_AddT_release	Additional time delay for releasing the holding brake.   The overall time delay for releasing the holding brake is the time delay from the electronic nameplate of the motor and the additional time delay in this parameter.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{array}{\|l} \mathrm{ms} \\ 0 \\ 0 \\ 400 \end{array}$	INT16 R/W per.	Modbus 1294 IDN P-0-3005.0.7
BRK_release	Manual operation of the holding brake.   0 / Automatic: Automatic processing   1 / Manual Release: Manual release of holding brake   2 / Manual Application: Manual applying of holding brake   You can apply or release the holding brake manually.   The holding brake can only be manually released in the operating states 'Switch On Disabled', 'Ready To Switch On' or 'Fault'.   If you have applied the holding brake manually and then want to release it manually, you must first set this parameter to Automatic and then to Manual Release.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2068   IDN P-0-3008.0.10
Cap1Activate	Capture input 1 start/stop.   0 / Capture Stop: Cancel capture function   1 / Capture Once: Start one-time capture   2 / Capture Continuous: Start continuous capture   3 / Reserved: Reserved   4 / Reserved: Reserved   In the case of one-time capture, the function is terminated when the first value is captured.   In the case of continuous capture, the function continues to run.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|c} - \\ 0 \\ - \\ 4 \end{array}$	UINT16 R/W	Modbus 2568 IDN P-0-3010.0.4
Cap1Config	Capture input 1 configuration.   0 / Falling Edge: Position capture at falling edge   1 / Rising Edge: Position capture at rising edge   2 / Both Edges: Position capture at both edges   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2564   IDN P-0-3010.0.2


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
Cap1Source	Capture input 1 encoder source.   0 / Pact Encoder 1: Source for capture input 1 is   Pact of encoder 1   1 / Pact Encoder 2: Source for capture input 1 is   Pact of encoder 2 (module)   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 0 \\ 1 \end{array}$	UINT16 R/W	Modbus 2580   IDN P-0-3010.0.10
Cap2Activate	Capture input 2 start/stop.   0 / Capture Stop: Cancel capture function   1 / Capture Once: Start one-time capture   2 / Capture Continuous: Start continuous capture   3 / Reserved: Reserved   4 / Reserved: Reserved   In the case of one-time capture, the function is terminated when the first value is captured.   In the case of continuous capture, the function continues to run.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 4 \end{aligned}$	UINT16 R/W	Modbus 2570   IDN P-0-3010.0.5
Cap2Config	Capture input 2 configuration.   0 / Falling Edge: Position capture at falling edge   1 / Rising Edge: Position capture at rising edge   2 / Both Edges: Position capture at both edges   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2566   IDN P-0-3010.0.3
Cap2Source	Capture input 2 encoder source.   0 / Pact Encoder 1: Source for capture input 2 is   Pact of encoder 1   1 / Pact Encoder 2: Source for capture input 2 is   Pact of encoder 2 (module)   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2582   IDN P-0-3010.0.11
Cap3Activate	Capture input 3 start/stop.   0 / Capture Stop: Cancel capture function   1 / Capture Once: Start one-time capture   2 / Capture Continuous: Start continuous capture   In the case of one-time capture, the function is terminated when the first value is captured.   In the case of continuous capture, the function continues to run.   Available with hardware version $\geq R S 03$.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 2596   IDN P-0-3010.0.18
Cap3Config	Capture input 3 configuration.   0 / Falling Edge: Position capture at falling edge   1 / Rising Edge: Position capture at rising edge   Available with hardware version $\geq$ RS03.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2594   IDN P-0-3010.0.17


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
Cap3Source	Capture input 3 encoder source.   0 / Pact Encoder 1: Source for capture input 3 is   Pact of encoder 1   1 / Pact Encoder 2: Source for capture input 3 is   Pact of encoder 2 (module)   Available with hardware version $\geq R S 03$.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 2602   IDN P-0-3010.0.21
CLSET_p_DiffWin	Position deviation for control loop parameter set switching.   If the position deviation of the position controller is less than the value of this parameter, control loop parameter set 2 is used. Otherwise, control loop parameter set 1 is used.   The parameter CLSET_p_DiffWin_usr allows you to enter the value in user-defined units.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.0001 revolution.   Modified settings become effective immediately.	$\begin{aligned} & \text { revolution } \\ & 0.0000 \\ & 0.0100 \\ & 2.0000 \end{aligned}$	UINT16 R/W per.	Modbus 4408 IDN P-0-3017.0.28
CLSET_p_DiffWin_usr	Position deviation for control loop parameter set switching.   If the position deviation of the position controller is less than the value of this parameter, control loop parameter set 2 is used. Otherwise, control loop parameter set 1 is used.   The minimum value, the factory setting and the maximum value depend on the scaling factor.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 1311 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 4426   IDN P-0-3017.0.37


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
CLSET_ParSwiCond	Condition for parameter set switching.   0 / None Or Digital Input: None or digital input function selected   1 / Inside Position Deviation: Inside position deviation (value definition in parameter CLSET_p_DiffWin)   2 / Below Reference Velocity: Below reference velocity (value definition in parameter CLSET_v_Threshol)   3 / Below Actual Velocity: Below actual velocity (value definition in parameter CLSET_v_Threshol)   4 / Reserved: Reserved   In the case of parameter set switching, the values of the following parameters are changed gradually:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   - CTRL_TAUiref   - CTRL_KFPp   The following parameters are changed immediately after the time for parameter set switching   (CTRL_ParChgTime):   - CTRL_Nf1damp   - CTRL_Nf1freq   - CTRL_Nf1bandw   - CTRL_Nf2damp   - CTRL_Nf2freq   - CTRL_Nf2bandw   - CTRL_Osupdamp   - CTRL_Osupdelay   - CTRL_Kfric   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 0 \\ 4 \end{array}$	UINT16 R/W per.	Modbus 4404   IDN P-0-3017.0.26
CLSET_v_Threshol	Velocity threshold for control loop parameter set switching.   If the reference velocity or the actual velocity are less than the value of this parameter, control loop parameter set 2 is used. Otherwise, control loop parameter set 1 is used.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 50 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 4410   IDN P-0-3017.0.29
CLSET_winTime	Time window for parameter set switching.   Value 0 : Window monitoring deactivated.   Value >0: Window time for the parameters CLSET_v_Threshol and CLSET_p_DiffWin.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 1000 \end{aligned}$	UINT16 R/W per.	Modbus 4406   IDN P-0-3017.0.27
CommutCntCred	Value for increased threshold for commutation monitoring.   This parameter contains the value which is added to the threshold value for commutation monitoring.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & 0 \\ & 0 \\ & 1000 \end{aligned}$	INT16   R/W   per.   expert	Modbus 1404 IDN P-0-3005.0.62


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CommutCntMax	Maximum value the commutation monitoring counter has reached.   This parameter contains the maximum value the commutation monitoring counter has reached since power on or reset. The maximum value can be reset by writing the value 0 .   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Available with firmware version $\geq$ V01.06.		INT16   R/W   expert	Modbus 16326   IDN P-0-3063.0.99
	Global gain factor (affects control loop parameter set 1).   The global gain factor affects the following parameters of control loop parameter set 1:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   The global gain factor is set to $100 \%$   - if the control loop parameters are set to default   - at the end of the Autotuning process   - if control loop parameter set 2 is copied to set 1 via the parameter CTRL_ParSetCopy   If a full configuration is transmitted via the fieldbus, the value for CTRL_GlobGain must be transmitted prior to the values of the control loop parameters CTRL_KPn, CTRL_TNn, CTRL_KPp and CTRL_TAUnref. If CTRL_GlobGain is changed during a configuration transmission, CTRL_KPn, CTRL_TNn, CTRL_KPp and CTRL_TAUnref must also be part of the configuration.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 5.0 \\ 100.0 \\ 1000.0 \end{array}$	UINT16 R/W per.	Modbus 4394   IDN P-0-3017.0.21
$\begin{aligned} & \text { CTRL_I_max } \\ & \text { CanF } \rightarrow d r L- \\ & \text { I ПAX } \end{aligned}$	Current limitation.   During operation, the actual current limit is one of the following values (whichever is lowest):   - CTRL_I_max   - _M_I_max   - _PS_I_max   Limitations caused by l2t monitoring are also taken into account.   Default: _PS_I_max at 8 kHz PWM frequency and 230/480 V mains voltage   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\begin{aligned} & A_{\text {rms }} \\ & 0.00 \\ & - \\ & 463.00 \end{aligned}$	UINT16 R/W per.	Modbus 4376   IDN P-0-3017.0.12


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
CTRL_I_max_fw	Maximum current for field weakening ( d component).   This value is only limited by the minimum/maximum parameter range (no limitation of this value by motor/power stage).   The actually effective field weakening current is the minimum of CTRL_I_max_fw and one half of the lower value of the nominal current of the power stage and the motor.   Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \mathrm{A}_{\mathrm{rms}} \\ & 0.00 \\ & 0.00 \\ & 300.00 \end{aligned}$	UINT16   R/W per. expert	Modbus 4382   IDN P-0-3017.0.15
CTRL_KFAcc	Acceleration feed-forward control.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	\%   0.0   0.0   3000.0	UINT16   R/W per. expert	Modbus 4372   IDN P-0-3017.0.10
CTRL_ParChgTime	Period of time for control loop parameter set switching.   In the case of control loop parameter set switching, the values of the following parameters are changed gradually:   - CTRL_KPn   - CTRL_TNn   - CTRL_KPp   - CTRL_TAUnref   - CTRL_TAUiref   - CTRL_KFPp   Such a switching can be caused by   - change of the active control loop parameter set   - change of the global gain   - change of any of the parameters listed above   - deactivating the integral term of the velocity controller   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \mathrm{ms} \\ 0 \\ 0 \\ 2000 \end{array}$	UINT16 R/W per.	Modbus 4392   IDN P-0-3017.0.20
CTRL_ParSetCopy	Control loop parameter set copying.   Value 1: Copy control loop parameter set 1 to set 2   Value 2: Copy control loop parameter set 2 to set 1   If control loop parameter set 2 is copied to control loop parameter set 1 , the parameter   CTRL_GlobGain is set to $100 \%$.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline- \\ 0.0 \\ - \\ 0.2 \end{array}$	UINT16 R/W	Modbus 4396   IDN P-0-3017.0.22
CTRL_PwrUpParSet	Selection of control loop parameter set at power up. 0 / Switching Condition: The switching condition is used for control loop parameter set switching   1/ Parameter Set 1: Control loop parameter set 1 is used   2 / Parameter Set 2: Control loop parameter set 2 is used   The selected value is also written to CTRL_SelParSet (non-persistent).   Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 4400   IDN P-0-3017.0.24


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CTRL_SelParSet	Selection of control loop parameter set (nonpersistent).   Coding see parameter: CTRL_PwrUpParSet   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 4402   IDN P-0-3017.0.25
CTRL_SmoothCurr	Smoothing factor for current controller. This parameter decreases the dynamics of the current control loop.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \% \\ & 50 \\ & 100 \\ & 100 \end{aligned}$	UINT16 R/W per.	Modbus 4428   IDN P-0-3017.0.38
CTRL_SpdFric	Speed of rotation up to which the friction compensation is linear.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l} \hline \text { RPM } \\ 0 \\ 5 \\ 20 \end{array}$	UINT32 R/W per. expert	Modbus 4370   IDN P-0-3017.0.9
CTRL_TAUnact	Filter time constant to smooth velocity of motor. The default value is calculated on the basis of the motor data.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 30.00 \end{aligned}$	UINT16 R/W per. expert	Modbus 4368   IDN P-0-3017.0.8
$\begin{aligned} & \text { CTRL_V_max } \\ & \text { CanF } \rightarrow d r L- \\ & \cap \Pi A X \end{aligned}$	Velocity limitation.   During operation, the velocity limit is one of the following values (whichever is lowest):   - CTRL_v_max   - M_n_max   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 13200 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 4384   IDN P-0-3017.0.16
CTRL_VelobsActiv	Activation of velocity observer.   0 / Velocity Observer Off: Velocity observer is off 1 / Velocity Observer Passive: Velocity observer is on, but not used for motor control   2 / Velocity Observer Active: Velocity observer is on and used for motor control   Velocity observer control reduces velocity ripple and enhances controller bandwidth.   Set the correct dynamics and inertia values before activation.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per. expert	Modbus 4420 IDN P-0-3017.0.34
CTRL_VelobsDyn	Dynamics of velocity observer.   The value of this parameter must be less than (for example, between $5 \%$ and $20 \%$ ) the integral action time of the velocity controller (parameter   CTRL1_TNn und CTRL2_TNn).   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.03 \\ & 0.25 \\ & 200.00 \end{aligned}$	UINT16 R/W per. expert	Modbus 4422   IDN P-0-3017.0.35


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CTRL_VelobsInert	Inertia value for velocity observer.   System inertia that is used for velocity observer calculations.   The default value is the inertia of the mounted motor.   In the case of autotuning, the value of this parameter can be set equal to that of _AT_J.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{g} \mathrm{~cm} \\ & 1 \\ & - \\ & 2147483648 \end{aligned}$	UINT32   R/W   per.   expert	Modbus 4424   IDN P-0-3017.0.36
CTRL_vPIDDPart	PID velocity controller: D gain.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l} \hline \% \\ 0.0 \\ 0.0 \\ 400.0 \end{array}$	UINT16 R/W per. expert	Modbus 4364   IDN P-0-3017.0.6
CTRL_vPIDDTime	PID velocity controller: Time constant of $D$ term smoothing filter.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \mathrm{ms} \\ 0.01 \\ 0.25 \\ 10.00 \end{array}$	UINT16 R/W per. expert	Modbus 4362   IDN P-0-3017.0.5
$\begin{aligned} & \text { CTRL1_KFPp } \\ & \operatorname{LanF\rightarrow drL-} \\ & \text { FPP } / \end{aligned}$	Velocity feed-forward control.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{aligned} & \% \\ & 0.0 \\ & 100.0 \\ & 200.0 \end{aligned}$	UINT16 R/W per.	Modbus 4620 IDN P-0-3018.0.6
CTRL1_Kfric	Friction compensation: Gain.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\begin{aligned} & A_{\text {rms }} \\ & 0.00 \\ & 0.00 \\ & 10.00 \end{aligned}$	UINT16 R/W per. expert	Modbus 4640   IDN P-0-3018.0.16
$\begin{aligned} & \text { CTRL1_KPn } \\ & \begin{array}{l} \text { ■пF } \\ P_{n} l \end{array} \end{aligned}$	Velocity controller $P$ gain.   The default value is calculated on the basis of the motor parameters.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.0001 A/RPM.   Modified settings become effective immediately.	A/RPM   0.0001   2.5400	UINT16 R/W per.	Modbus 4610 IDN P-0-3018.0.1
$\begin{aligned} & \text { CTRL1_KPp } \\ & \begin{array}{l} \operatorname{Con} F \rightarrow d r L- \\ P P I \end{array} \end{aligned}$	Position controller P gain.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \mathrm{1} / \mathrm{s}$.   Modified settings become effective immediately.	$\begin{array}{\|l} \hline 1 / \mathrm{s} \\ 2.0 \\ - \\ 900.0 \end{array}$	UINT16 R/W per.	Modbus 4614   IDN P-0-3018.0.3


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CTRL1_Nf1bandw	Notch filter 1: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 1.0 \\ 70.0 \\ 90.0 \end{array}$	UINT16 R/W per. expert	Modbus 4628   IDN P-0-3018.0.10
CTRL1_Nf1damp	Notch filter 1: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16   R/W   per.   expert	Modbus 4624   IDN P-0-3018.0.8
CTRL1_Nf1freq	Notch filter 1: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	Hz   50.0   1500.0 $1500.0$	UINT16 R/W per. expert	Modbus 4626 IDN P-0-3018.0.9
CTRL1_Nf2bandw	Notch filter 2: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 1.0 \\ 70.0 \\ 90.0 \end{array}$	UINT16 R/W per. expert	Modbus 4634   IDN P-0-3018.0.13
CTRL1_Nf2damp	Notch filter 2: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16 R/W per. expert	Modbus 4630   IDN P-0-3018.0.11
CTRL1_Nf2freq	Notch filter 2: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	Hz   50.0   1500.0 $1500.0$	UINT16 R/W per. expert	Modbus 4632   IDN P-0-3018.0.12
CTRL1_Osupdamp	Overshoot suppression filter: Damping.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 0.0 \\ 0.0 \\ 50.0 \end{array}$	UINT16 R/W per. expert	Modbus 4636   IDN P-0-3018.0.14
CTRL1_Osupdelay	Overshoot suppression filter: Time delay.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l\|} \mathrm{ms} \\ 0.00 \\ 0.00 \\ 75.00 \end{array}$	UINT16 R/W per. expert	Modbus 4638   IDN P-0-3018.0.15
CTRL1_TAUiref	Filter time constant of the reference current value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 0.50 \\ & 4.00 \end{aligned}$	UINT16 R/W per.	Modbus 4618 IDN P-0-3018.0.5


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { CTRL1_TAUnref } \\ & \text { LanF } \rightarrow d r C- \\ & t A_{u} / \end{aligned}$	Filter time constant of the reference velocity value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l} \mathrm{ms} \\ 0.00 \\ 9.00 \\ 327.67 \end{array}$	UINT16 R/W per.	Modbus 4616   IDN P-0-3018.0.4
$\begin{aligned} & \text { CTRL1_TNn } \\ & {[\text { anF } \rightarrow d r L-} \\ & t \text { in } l \end{aligned}$	Velocity controller integral action time.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4612   IDN P-0-3018.0.2
$\begin{aligned} & \text { CTRL2_KFPp } \\ & \text { } \square \square \cap F \rightarrow d r L- \\ & F P P Z \end{aligned}$	Velocity feed-forward control.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{aligned} & \% \\ & 0.0 \\ & 100.0 \\ & 200.0 \end{aligned}$	UINT16 R/W per.	Modbus 4876   IDN P-0-3019.0.6
CTRL2_Kfric	Friction compensation: Gain.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \mathrm{~A}_{\text {rms }}$.   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{A}_{\text {rms }} \\ & 0.00 \\ & 0.00 \\ & 10.00 \end{aligned}$	UINT16 R/W per. expert	Modbus 4896   IDN P-0-3019.0.16
$\begin{aligned} & \text { CTRL2_KPn } \\ & {[\square \cap F \rightarrow d r L-} \\ & P \cap \mathcal{F} \end{aligned}$	Velocity controller P gain.   The default value is calculated on the basis of the motor parameters.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.0001 A/RPM.   Modified settings become effective immediately.	A/RPM   0.0001   2.5400	UINT16 R/W per.	Modbus 4866   IDN P-0-3019.0.1
$\begin{aligned} & \text { CTRL2_KPp } \\ & \begin{array}{r} \operatorname{CnF} F \\ P P 己 \end{array} \end{aligned}$	Position controller P gain.   The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter   CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.11 / \mathrm{s}$.   Modified settings become effective immediately.	$\begin{aligned} & 1 / \mathrm{s} \\ & 2.0 \\ & - \\ & 900.0 \end{aligned}$	UINT16 R/W per.	Modbus 4870 IDN P-0-3019.0.3
CTRL2_Nf1bandw	Notch filter 1: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l} \% \\ 1.0 \\ 70.0 \\ 90.0 \end{array}$	UINT16 R/W per. expert	Modbus 4884   IDN P-0-3019.0.10


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CTRL2_Nf1damp	Notch filter 1: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16 R/W per. expert	Modbus 4880   IDN P-0-3019.0.8
CTRL2_Nf1freq	Notch filter 1: Frequency.   The filter is deactivated at a value of 15000 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	Hz   50.0   1500.0 $1500.0$	UINT16 R/W per. expert	Modbus 4882   IDN P-0-3019.0.9
CTRL2_Nf2bandw	Notch filter 2: Bandwidth.   Definition of bandwidth: 1 - Fb/F0   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.1 \%$.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 1.0 \\ 70.0 \\ 90.0 \end{array}$	UINT16 R/W per. expert	Modbus 4890   IDN P-0-3019.0.13
CTRL2_Nf2damp	Notch filter 2: Damping.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 55.0 \\ 90.0 \\ 99.0 \end{array}$	UINT16 R/W per. expert	Modbus 4886   IDN P-0-3019.0.11
CTRL2_Nf2freq	Notch filter 2: Frequency.   The filter is deactivated at a value of 15000.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 Hz .   Modified settings become effective immediately.	Hz   50.0   1500.0 $1500.0$	UINT16 R/W per. expert	Modbus 4888   IDN P-0-3019.0.12
CTRL2_Osupdamp	Overshoot suppression filter: Damping.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Modified settings become effective immediately.	$\begin{array}{\|l\|} \hline \% \\ 0.0 \\ 0.0 \\ 50.0 \end{array}$	UINT16 R/W per. expert	Modbus 4892   IDN P-0-3019.0.14
CTRL2_Osupdelay	Overshoot suppression filter: Time delay.   The filter is deactivated at a value of 0 .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{array}{\|l\|} \mathrm{ms} \\ 0.00 \\ 0.00 \\ 75.00 \end{array}$	UINT16 R/W per. expert	Modbus 4894   IDN P-0-3019.0.15
CTRL2_TAUiref	Filter time constant of the reference current value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 0.50 \\ & 4.00 \end{aligned}$	UINT16 R/W per.	Modbus 4874   IDN P-0-3019.0.5
CTRL2_TAUnref   $\mathrm{CanF} \rightarrow \operatorname{dr}[$ ヒR 己	Filter time constant of the reference velocity value filter.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & 9.00 \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4872   IDN P-0-3019.0.4


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
CTRL2_TNn   $\operatorname{an} F \rightarrow d r[$ -   $t$ וn己	Velocity controller integral action time. The default value is calculated.   In the case of switching between the two control loop parameter sets, the values are changed linearly over the time defined in the parameter CTRL_ParChgTime.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.01 ms .   Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0.00 \\ & - \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 4868   IDN P-0-3019.0.2
DCbus_compat	DC bus compatibility LXM32 and ATV32.   0 / No DC bus or LXM32 only: DC bus not used or only LXM32 connected via the DC bus   1 / DC bus with LXM32 and ATV32: LXM32 and ATV32 connected via the DC bus   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1356   IDN P-0-3005.0.38
DCOMopmode	Operating mode.   -6 / Manual Tuning / Autotuning: Manual Tuning or   Autotuning   -1 / Jog: Jog   0 / Reserved: Reserved   4 / Profile Torque: Profile Torque   6 / Homing: Homing   8 / Cyclic Synchronous Position: Cyclic   Synchronous Position   9 / Cyclic Synchronous Velocity: Cyclic   Synchronous Velocity   10 / Cyclic Synchronous Torque: Cyclic   Synchronous Torque   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	-6   10	INT16 R/W	Modbus 6918   IDN P-0-3027.0.3
DEVcmdinterf $\begin{aligned} & C \square \cap F \rightarrow B[L- \\ & \cap \square \cap E \\ & D E \vee C \end{aligned}$	Control mode.   2 / Fieldbus Control Mode / Fbu5: Fieldbus control mode   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1282   IDN P-0-3005.0.1
DI_0_Debounce	Debounce time of DIO.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2112   IDN P-0-3008.0.32


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
DI_1_Debounce	Debounce time of DI1.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   4 / 1.00 ms   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2114   IDN P-0-3008.0.33
DI_2_Debounce	Debounce time of DI2.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   $4 / 1.00 \mathrm{~ms}$   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2116   IDN P-0-3008.0.34
DI_3_Debounce	Debounce time of DI3.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   4 / 1.00 ms   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2118   IDN P-0-3008.0.35
DI_4_Debounce	Debounce time of DI4.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   4 / 1.00 ms   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2120   IDN P-0-3008.0.36
DI_5_Debounce	Debounce time of DI5.   $0 /$ No   $1 / 0.25 \mathrm{~ms}$   $2 / 0.50 \mathrm{~ms}$   $3 / 0.75 \mathrm{~ms}$   4 / 1.00 ms   $5 / 1.25 \mathrm{~ms}$   6 / 1.50 ms   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	UINT16 R/W per.	Modbus 2122 IDN P-0-3008.0.37


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
DPL_intLim	Setting for bit 9 of _DPL_motionStat and _actionStatus.   0 / None: Not used (reserved)   1 / Current Below Threshold: Current threshold value   2 / Velocity Below Threshold: Velocity threshold value   3 / In Position Deviation Window: Position deviation window   4 / In Velocity Deviation Window: Velocity deviation window   5 / Position Register Channel 1: Position register channel 1   6 / Position Register Channel 2: Position register channel 2   7 / Position Register Channel 3: Position register channel 3   8 / Position Register Channel 4: Position register channel 4   9 / Hardware Limit Switch: Hardware limit switch   10 / RMAC active or finished: Relative movement   after capture is active or finished   11 / Position Window: Position window   Setting for:   Bit 9 of the parameter _actionStatus   Bit 9 of the parameter _DPL_motionStat   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	0   11   11	UINT16 R/W per.	Modbus 7018   IDN P-0-3027.0.53
DS402intLim	DS402 status word: Setting for bit 11 (internal limit).   0 / None: Not used (reserved)   1 / Current Below Threshold: Current threshold value   2 / Velocity Below Threshold: Velocity threshold value   3 / In Position Deviation Window: Position deviation window   4 / In Velocity Deviation Window: Velocity deviation window   5 / Position Register Channel 1: Position register channel 1   6 / Position Register Channel 2: Position register channel 2   7 / Position Register Channel 3: Position register channel 3   8 / Position Register Channel 4: Position register channel 4   9 / Hardware Limit Switch: Hardware limit switch   10 / RMAC active or finished: Relative movement   after capture is active or finished   11 / Position Window: Position window   Setting for:   Bit 11 of the parameter _DCOMstatus   Bit 10 of the parameter _actionStatus   Bit 10 of the parameter _DPL_motionStat   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 11 \end{aligned}$	UINT16 R/W per.	Modbus 6972   IDN P-0-3027.0.30


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ENC_abs_source	Source for setting absolute encoder position.   0 / Encoder 1: Absolute position determined from encoder 1   1 / Encoder 2 (module): Absolute position determined from encoder 2 (module)   This parameter defines the encoder source which is used to determine the base absolute position after power cycling. If this is set to Encoder 1, the absolute position from encoder 1 is read and copied to the system values of encoder 2.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1354   IDN P-0-3005.0.37
ENC_ModeOfMaEnc	Selection of mode of machine encoder.   0 / None: Machine encoder is not used for motor control   1 / Position Control: Machine encoder is used for position control   2 / Velocity And Position Control: Machine encoder is used for velocity and position control It is not possible to use the machine encoder for velocity control and the motor encoder for position control.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 20484   IDN P-0-3080.0.2
ENC1_adjustment	Adjustment of absolute position of encoder 1.   The value range depends on the encoder type.   Singleturn encoder: $0 \ldots x-1$   Multiturn encoder: $0 \ldots(4096 * x)-1$   Singleturn encoder (shifted with parameter ShiftEncWorkRang): $-(x / 2) \ldots(x / 2)-1$   Multiturn encoder (shifted with parameter   ShiftEncWorkRang): $-\left(2048^{*} x\right) \ldots\left(2048^{*} x\right)-1$   Definition of 'x': Maximum position for one encoder turn in user-defined units. This value is 16384 with the default scaling.   If processing is to be performed with inversion of the direction of movement, this must be set before the encoder position is adjusted.   After the write access, a wait time of at least 1 second is required before the drive can be powered off.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective after the next power cycle.	usr_p	INT32   R/W	Modbus 1324   IDN P-0-3005.0.22


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
ENC2_adjustment	Adjustment of absolute position of encoder 2.   The value range depends on the encoder type at the physical port ENC2.   This parameter can only be changed if the parameter ENC_abs_source is set to 'Encoder 2'.   Singleturn encoder: $0 \ldots x-1$   Multiturn encoder: $0 \text {... (y*x)-1 }$   Singleturn encoder (shifted with parameter ShiftEncWorkRang): $-(x / 2) \ldots(x / 2)-1$   Multiturn encoder (shifted with parameter ShiftEncWorkRang): $-(y / 2)^{*} x \ldots\left((y / 2)^{*} x\right)-1$   Definition of 'x': Maximum position for one encoder turn in user-defined units. This value is 16384 with the default scaling.   Definition of 'y': Revolutions of the multiturn encoder.   If processing is to be performed with inversion of the direction of movement, this must be set before the encoder position is adjusted.   After the write access, the parameter values have to be saved to the nonvolatile memory and the drive has to be power cycled, before the change becomes effective.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective after the next power cycle.	usr_p	INT32 R/W	Modbus 1352   IDN P-0-3005.0.36
ENC2_pos_offset	Offset for actual position value 2.   This offset is used in the calculation of the value of IDN53.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.		INT32 R/W per.	Modbus 1386   IDN P-0-3005.0.53


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ENC2_type	Type of encoder at encoder 2 (module).   0 / None: Undefined   1 / SinCos Hiperface (rotary): SinCos Hiperface (rotary)   2 / SinCos 1Vpp (rotary): SinCos 1Vpp (rotary)   3 / Sincos 1Vpp Hall (rotary): SinCos 1Vpp Hall (rotary)   5 / EnDat 2.2 (rotary): EnDat 2.2 (rotary)   6 / Resolver: Resolver   8 / BISS: BISS   $9 / A / B / I$ (rotary): A/B/I (rotary)   10 / SSI (rotary): SSI (rotary)   257 / SinCos Hiperface (linear): SinCos Hiperface (linear)   258 / SinCos 1Vpp (linear): SinCos 1Vpp (linear)   259 / SinCos 1Vpp Hall (linear): SinCos 1Vpp Hall (linear)   261 / EnDat 2.2 (linear): EnDat 2.2 (linear)   265 / A/B/I (linear): A/B/I (linear)   266 / SSI (linear): SSI (linear)   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	0   0 $266$	UINT16 R/W per.	Modbus 20486   IDN P-0-3080.0.3
ENC2_usage	Type of usage of encoder 2 (module).   0 / None: Undefined   1 / Motor: Configured as motor encoder   2 / Machine: Configured as machine encoder   If the parameter is set to "Motor", encoder 1 has no functionality.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 20482   IDN P-0-3080.0.1
ENCAnaPowSupply	Power supply encoder module ANA (analog interface).   $5 / 5 \mathrm{~V}$ : 5 V supply voltage   12 / 12V: 12 V supply voltage   Power supply of the analog encoder only if the encoder is used as a machine encoder supplying   1Vpp encoder signals.   This parameter is not used for Hiperface encoders. Hiperface encoders are supplied with 12 V .   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & 5 \\ & 5 \\ & 12 \end{aligned}$	UINT16 R/W per.	Modbus 20740   IDN P-0-3081.0.2


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ENCDigABIMaxFreq	ABI maximum frequency.   The maximum possible $A B I$ frequency is encoderspecific (specified by the encoder manufacturer). The encoder module DIG supports a maximum ABI frequency of 1 MHz (this is the default and maximum value of ENCDigABIMaxFreq). An ABI frequency of 1 MHz means that there are 4000000 encoder increments in 1 second.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & \mathrm{kHz} \\ & 1 \\ & 1000 \\ & 1000 \end{aligned}$	UINT16 R/W per.	Modbus 21004   IDN P-0-3082.0.6
ENCDigABImaxIx	ABI maximum distance for index pulse search. In the case of a reference movement to the index pulse, ENCDigABImaxIx contains the maximum distance within which the index pulse must be found. If no physical index pulse is found over this range, an error message is generated.   Example: A rotary ABI encoder with one index pulse per revolution is connected. The resolution of the encoder is 8000 encoder increments per revolution (this value can be determined using parameter _Inc_Enc2Raw. _Inc_Enc2Raw and ENCDigABImaxlx have the same scaling). The maximum distance necessary for a reference movement to the index pulse is one revolution. This means that ENCDigABImaxlx should be set to 8000. Internally, a tolerance of $10 \%$ is added. This means that during a reference movement to the index pulse, an index pulse must be found within 8800 encoder increments.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	EncInc 1 10000 2147483647	INT32 R/W per.	Modbus 21006 IDN P-0-3082.0.7
ENCDigBISSCoding	Position coding of BISS encoder.   0 / binary: Binary coding   1 / gray: Gray coding   This parameter defines the type of position coding of the BISS encoder.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 21012   IDN P-0-3082.0.10


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ENCDigBISSResMul	BISS multiturn resolution.   This parameter is only relevant for BISS encoders (singleturn and multiturn). If a singleturn BISS encoder is used, ENCDigBISSResMult must be set to 0 .   Example: If ENCDigBISSResMult is set to 12, the number of turns of the encoder used must be $2^{\wedge} 12=4096$.   The sum of ENCDigBISSResMult + ENCDigBISSResSgl must be less than or equal to 46 bits.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{array}{\|l} \hline \text { bit } \\ 0 \\ 0 \\ 24 \end{array}$	UINT16 R/W per.	Modbus 21010   IDN P-0-3082.0.9
ENCDigBISSResSgl	BISS singleturn resolution.   This parameter is only relevant for BISS encoders (singleturn and multiturn).   Example: If ENCDigBISSResSgl is set to 13, an BISS encoder with a singleturn resolution of $2^{\wedge} 13=$ 8192 increments must be used.   If a multiturn encoder is used, the sum of ENCDigBISSResMult + ENCDigBISSResSgl must be less than or equal to 46 bits.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{array}{\|l} \hline \text { bit } \\ 8 \\ 13 \\ 25 \end{array}$	UINT16 R/W per.	Modbus 21008   IDN P-0-3082.0.8
ENCDigLinBitsUsed	Linear encoder: Number of bits of the position resolution used.   Specifies the number of bits of the position resolution used for position evaluation.   If ENCDigLinBitsUsed $=0$, all position bits of the position resolution of the encoder are used.   Example:   If ENCDigLinBitsUsed = 22, only 22 bits of the position resolution of the encoder are used.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \text { bit } \\ & 0 \\ & 0 \\ & 31 \end{aligned}$	UINT16 R/W per.	Modbus 21020   IDN P-0-3082.0.14
ENCDigPowSupply	Power supply encoder module DIG (digital interface).   $5 / 5 \mathrm{~V}$ : 5 V supply voltage   12 / 12V: 12 V supply voltage   Power supply of the digital encoder.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & 5 \\ & 5 \\ & 12 \end{aligned}$	UINT16 R/W per.	Modbus 21000   IDN P-0-3082.0.4


Parameter name   HMI menu   HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	R/W   Persistent   Expert	via fieldbus


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ENCDigSSIMaxFreq	SSI maximum transfer frequency.   This parameter is used to set the SSI transfer frequency for SSI encoders (singleturn and multiturn).   The SSI transfer frequency depends on the encoder (maximum frequency specified by the encoder manufacturer) and on the length of the encoder cable.   The encoder module supports SSI transfer frequencies of 200 kHz and 1000 kHz . If your SSI encoder supports a maximum frequency of 1000 kHz , set the value of this parameter to 1000.   If the length of the encoder cable in your system exceeds 50 m , set the value of this parameter to 200, regardless of the maximum possible frequency specified by the encoder manufacturer.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & \mathrm{kHz} \\ & 200 \\ & 200 \\ & 1000 \end{aligned}$	UINT16 R/W per.	Modbus 21002   IDN P-0-3082.0.5
ENCDigSSIResMult	SSI multiturn resolution (rotary).   This parameter is only relevant for SSI encoders (singleturn and multiturn). If a singleturn SSI encoder is used, ENCDigSSIResMult must be set to 0.   Example: If ENCDigSSIResMult is set to 12, the number of turns of the encoder used must be $\mathbf{2}^{\wedge} 12$ $=4096$.   The sum of ENCDigSSIResMult +   ENCDigSSIResSgl must be less than or equal to 32 bits.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{array}{\|l} \text { bit } \\ 0 \\ 0 \\ 24 \end{array}$	UINT16 R/W per.	Modbus 20996 IDN P-0-3082.0.2
ENCDigSSIResSgl	SSI singleturn resolution (rotary).   This parameter is only relevant for SSI encoders   (singleturn and multiturn).   Example: If ENCDigSSIResSgl is set to 13, an SSI encoder with a singleturn resolution of $2^{\wedge 13}=8192$ increments must be used.   If a multiturn encoder is used, the sum of ENCDigSSIResMult + ENCDigSSIResSgl must be less than or equal to 32 bits.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{array}{\|l} \hline \text { bit } \\ 8 \\ 13 \\ 25 \end{array}$	UINT16 R/W per.	Modbus 20994   IDN P-0-3082.0.1


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ENCSinCosMaxIx	Maximum distance for search for index pulse for SinCos encoder.   The parameter specifies the maximum number of periods during which the index pulse must be found (search range).   A tolerance of $10 \%$ is added to this value. If no index pulse is found within this range (including the $10 \%$ tolerance), an error message is generated.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately. Available with firmware version $\geq \mathrm{V} 01.06$.	$\begin{aligned} & 1 \\ & 1024 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 20744   IDN P-0-3081.0.4
ERR_clear	Clear error memory.   Value 1: Delete entries in the error memory   The clearing process is completed if a 0 is returned after a read access.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{gathered} - \\ 0 \\ - \\ 1 \end{gathered}$	UINT16 R/W	Modbus 15112   IDN P-0-3059.0.4
ERR_reset	Reset error memory read pointer.   Value 1: Set error memory read pointer to oldest error entry.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{gathered} - \\ 0 \\ - \\ 1 \end{gathered}$	UINT16 R/W	Modbus 15114   IDN P-0-3059.0.5
ErrorResp_Flt_AC	Error response to missing mains phase.   0 / Error Class 0: Error class 0   1 / Error Class 1: Error class 1   2 / Error Class 2: Error class 2   3 / Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 2 \\ & 3 \end{aligned}$	UINT16 R/W per.	Modbus 1300   IDN P-0-3005.0.10
ErrorResp_I2tRES	Error response to $100 \%$ I2t braking resistor.   0 / Error Class 0: Error class 0   1 / Error Class 1: Error class 1   2 / Error Class 2: Error class 2   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1348   IDN P-0-3005.0.34
ErrorResp_p_dif	Error response to excessively high load-dependent position deviation.   1 / Error Class 1: Error class 1   2 / Error Class 2: Error class 2   3 / Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	UINT16 R/W per.	Modbus 1302   IDN P-0-3005.0.11


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ErrorResp_PDiffencM	Error response to position deviation motor encoder and machine encoder exceeded.   1 / Error Class 1: Error class 1   2 / Error Class 2: Error class 2   3 / Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & - \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	UINT16 R/W per.	Modbus 1398   IDN P-0-3005.0.59
ErrorResp_QuasiAbs	Error response to detected error with quasi absolute position.   3 / Error Class 3: Error class 3   4 / Error Class 4: Error class 4   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & 3 \\ & 3 \\ & 4 \end{aligned}$	UINT16 R/W per.	Modbus 1396   IDN P-0-3005.0.58
ErrorResp_v_dif	Error response to excessively high load-dependent velocity deviation.   1 / Error Class 1: Error class 1   2 / Error Class 2: Error class 2   3 / Error Class 3: Error class 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & - \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	UINT16 R/W per.	Modbus 1400   IDN P-0-3005.0.60
ESIM_HighResolution	Encoder simulation: High resolution.   Specifies the number of increments per revolution with 12 bit decimal places. If the parameter is set to a multiple of 4096 , the index pulse will be generated exactly at the same position within one revolution.   The setting of parameter ESIM_scale is only used if parameter ESIM_HighResolution is set to 0 . Otherwise, the setting of ESIM_HighResolution is used.   Example: 1417.322835 encoder simulation pulses per revolution are required.   Set the parameter to 1417.322835 * $4096=$ 5805354.   In this example, the index pulse will be generated exactly after every 1417 pulses. This means that the index pulse shifts with each revolution.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.   Available with firmware version $\geq$ V01.04.	Enclnc 0 0 268431360	UINT32 R/W per. expert	Modbus 1380   IDN P-0-3005.0.50


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ESIM_PhaseShift	Encoder simulation: Phase shift for pulse output. The generated encoder simulation pulses can be shifted in units of $1 / 4096$ encoder pulses. The shift results in a position offset at PTO. The index pulse is shifted as well.   Type: Signed decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.   Available with firmware version $\geq$ V01.04.	$\begin{aligned} & -32768 \\ & 0 \\ & 32767 \end{aligned}$	INT16 R/W expert	Modbus 1382   IDN P-0-3005.0.51
$\begin{aligned} & \text { ESIM_scale } \\ & \text { CanF } \rightarrow \text { - - } \\ & \text { ESSL } \end{aligned}$	Resolution of encoder simulation.   Resolution defines the number of increments per revolution (AB signal with quadruple evaluation).   The index pulse is created once per revolution at an interval where signal $A$ and signal $B$ are high.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.   Available with firmware version $\geq \mathrm{V} 01.04$.	$\begin{aligned} & \text { EncInc } \\ & 8 \\ & 4096 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 1322   IDN P-0-3005.0.21
eSM_BaseSetting	eSM basic settings.   None: No function   Auto Start: Automatic start (ESMSTART)   Ignore GUARD_ACK: GUARD_ACK inactive Ignore INTERLOCK_IN: INTERLOCK chain inactive   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.		UINT16 R/W per.	-
eSM_dec_NC	eSM deceleration ramp.   Deceleration ramp for monitored deceleration   Value 0: Disabled, no monitoring of deceleration ramp   Value >0: Deceleration ramp in RPM/s   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { RPM/s } \\ & 0 \\ & 0 \\ & 32786009 \end{aligned}$	UINT32 R/W per.	-
eSM_dec_Qstop	eSM deceleration ramp for Quick Stop.   Deceleration ramp for monitored Quick Stop. This value must be greater than 0 .   Value 0: eSM module is not configured   Value >0: Deceleration ramp in RPM/s   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { RPM/s } \\ & 0 \\ & 0 \\ & 32786009 \end{aligned}$	UINT32 R/W per.	-
eSM_disable	eSM disable.   Value 0: No action   Value 1: Force a change of eSM state 6 to eSM   state 3   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4		UINT16 R/W	Modbus 19508 IDN P-0-3076.0.26


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type RW   Persistent Expert	Parameter address via fieldbus
eSM_FuncAUXOUT1	eSM function of status output AUXOUT1.   None: No function   /ESTOP: Signal state /ESTOP   GUARD: Signal state GUARD   SETUPMODE: Signal state SETUPMODE   SETUPENABLE: Signal state SETUPENABLE   GUARD_ACK: Signal state GUARD_ACK   /INTERLOCK_IN: Signal state /INTERLOCK_IN   STO by eSM: Signal state of internal STO   RELAY: Signal state RELAY   /INTERLOCK_OUT: Signal state   /INTERLOCK_OUT   Standstill: Standstill $(v=0)$   SLS: SLS   Error class 4: Error of error class 4 detected   Error class 1 ... 4: Error of error classes 1 ... 4   detected   /ESTOP inv.: Signal state /ESTOP, inverted   GUARD inv.: Signal state GUARD, inverted   SETUPMODE inv.: Signal state SETUPMODE,   inverted   SETUPENABLE inv.: Signal state SETUPENABLE,   inverted   GUARD_ACK inv.: Signal state GUARD_ACK, inverted   /INTERLOCK_IN inv.: Signal state   /INTERLOCK_IN, inverted   STO by eSM inv.: Signal state of internal STO, inverted   RELAY inv.: Signal state RELAY, inverted   /INTERLOCK_OUT inv.: Signal state   /INTERLOCK_OUT, inverted   Standstill inv.: Standstill, inverted   SLS inv.: SLS, inverted   Error class 4 inv.: Error of error class 4 detected   (inverted)   Error class 1 ... 4 inv.: Error of error classes $1 \ldots 4$   detected (inverted)   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.		UINT32 R/W per.	-


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
eSM_FuncAuxout2	eSM function of status output AUXOUT2.   None: No function   /ESTOP: Signal state /ESTOP   GUARD: Signal state GUARD   SETUPMODE: Signal state SETUPMODE   SETUPENABLE: Signal state SETUPENABLE   GUARD_ACK: Signal state GUARD_ACK   /INTERLOCK_IN: Signal state /INTERLOCK_IN   STO by eSM: Signal state of internal STO   RELAY: Signal state RELAY   /INTERLOCK_OUT: Signal state   /INTERLOCK_OUT   Standstill: Standstill (v=0)   SLS: SLS   Error class 4: Error of error class 4 detected   Error class 1 ... 4: Error of error classes 1 ... 4   occurred   /ESTOP inv.: Signal state /ESTOP, inverted   GUARD inv.: Signal state GUARD, inverted   SETUPMODE inv.: Signal state SETUPMODE, inverted   SETUPENABLE inv.: Signal state SETUPENABLE, inverted   GUARD_ACK inv.: Signal state GUARD_ACK, inverted   /INTERLOCK_IN inv.: Signal state   /INTERLOCK_IN, inverted   STO by eSM inv.: Signal state of internal STO, inverted   RELAY inv.: Signal state RELAY, inverted   INTERLOCK_OUT inv.: Signal state   /INTERLOCK_OUT, inverted   Standstill inv.: Standstill, inverted   SLS inv.: SLS, inverted   Error class 4 inv.: Error of error class 4 detected (inverted)   Error class 1 ... 4 inv.: Error of error classes $1 . . .4$ detected (inverted)   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	-	UINT32   R/W per.	
eSM_FuncSwitches	eSM switches for functions.   None: No function   DirectionDependentSLS: SLS dependent on direction of movement   Reserved (Bit 1): Reserved (bit 1)   Reserved (Bit 2): Reserved (bit 2)   Reserved (Bit 3): Reserved (bit 3)   Reserved (Bit 4): Reserved (bit 4)   Reserved (Bit 5): Reserved (bit 5)   Available as of firmware version safety module eSM   $\geq$ V01.01.   Bit $0=0$ : SLS independent of direction of movement   Bit $0=1$ : SLS dependent on direction of movement   Bits 1 ... 15: Reserved (must be set to 0 )   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\left\lvert\, \begin{aligned} & - \\ & 0 \\ & 0 \\ & 63 \end{aligned}\right.$	UINT16 R/W per.	-


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
eSM_LO_mask	eSM digital outputs channel B mask.   Mask of active digital outputs   0 : Digital output is not active   1: Digital output is active   Bit assignments:   See digital outputs channel.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4		UINT16 R/W	Modbus 19498   IDN P-0-3076.0.21
eSM_SLSnegDirs	eSM speed limit negative direction machine operating mode Setup Mode.   Firmware version safety module eSM $\geq$ V01.01.   Parameter eSM_FuncSwitches Bit $0=1$ : Value = Monitored speed limit for negative direction of movement.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { RPM } \\ & 0 \\ & 0 \\ & 8000 \end{aligned}$	UINT16 R/W per.	-
eSM_t_NCDel	eSM time delay until start of monitored deceleration. This time can be adjusted to meet the requirements of a PLC.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 10000 \end{aligned}$	UINT16 R/W per.	-
eSM_t_Relay	eSM deactivation of output RELAY.   Deactivation of the digital output RELAY:   Value 0: Immediate, no time delay   Value 1: At motor standstill $(v=0)$   Value 2: At motor standstill $(v=0)$ and   INTERLOCK_OUT = 1   Value >2: Time delay in ms, deactivation of output   after this time has passed   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 10000 \end{aligned}$	UINT16 R/W per.	-
eSM_v_maxAuto	eSM speed limit for machine operating mode Automatic Mode.   This value sets the speed limit for monitoring in machine operating mode Automatic Mode.   Value 0 : The speed limit is not monitored   Value >0: Monitored speed limit   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{array}{\|l\|} \hline \text { RPM } \\ 0 \\ 0 \\ 8000 \end{array}$	UINT16 R/W per.	-


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
eSM_v_maxSetup	eSM speed limit for machine operating mode Setup Mode.   This value sets the speed limit for monitoring in machine operating mode Setup Mode.   Firmware version safety module eSM $\geq$ V01.01:   Parameter eSM_FuncSwitches Bit $0=0$ : Value = Monitored speed limit for positive and negative directions of movement.   Parameter eSM_FuncSwitches Bit $0=1$ : Value = Monitored speed limit for positive direction of movement.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{array}{\|l\|} \hline R P M \\ 0 \\ 0 \\ 8000 \end{array}$	UINT16 R/W per.	-
HMdis	Distance from switching point.   The distance from the switching point is defined as the reference point.   The parameter is only effective during a reference movement without index pulse.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 1 \\ & 200 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 10254   IDN P-0-3040.0.7
HMIDispPara Пロп SuPV	HMI display when motor moves.   0 / OperatingState / $5 \in A E$ : Operating state   $1 / \mathrm{v}$ _act / V $\mathrm{Ac}_{\mathrm{c}} \mathrm{E}$ : Actual motor velocity   $2 / I _$act / , $\boldsymbol{A} \subset E$ : Actual motor current   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 14852   IDN P-0-3058.0.2
HMIlocked	Lock HMI.   0 / Not Locked / ח L ac: HMI not locked   1/Locked/ Laг:HMl locked   The following functions can no longer be started when the HMI is locked:   - Parameter change   - Jog   - Autotuning   - Fault Reset   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{array}{\|l} - \\ 0 \\ 0 \\ 1 \end{array}$	UINT16 R/W per.	Modbus 14850   IDN P-0-3058.0.1


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
HMmethod	Homing method．   1：LIMN with index pulse   2：LIMP with index pulse   7：REF＋with index pulse，inv．，outside   8：REF＋with index pulse，inv．，inside   9：REF＋with index pulse，not inv．，inside   10：REF＋with index pulse，not inv．，outside   11：REF－with index pulse，inv．，outside   12：REF－with index pulse，inv．，inside   13：REF－with index pulse，not inv．，inside   14：REF－with index pulse，not inv．，outside   17：LIMN   18：LIMP   23：REF＋，inv．，outside   24：REF＋，inv．，inside   25：REF＋，not inv．，inside   26：REF＋，not inv．，outside   27：REF－，inv．，outside   28：REF－，inv．，inside   29：REF－，not inv．，inside   30：REF－，not inv．，outside   33：Index pulse neg．direction   34：Index pulse pos．direction   35：Position setting   Abbreviations：   REF＋：Search movement in pos．direction   REF－：Search movement in neg．direction inv．：Invert direction in switch not inv．：Direction not inverted in switch outside：Index pulse／distance outside switch inside：Index pulse／distance inside switch Type：Signed decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	1   18   35	INT16 R／W	Modbus 6936   IDN P－0－3027．0．12
HMoutdis	Maximum distance for search for switching point．   0 ：Monitoring of distance inactive   $>0$ ：Maximum distance   After detection of the switch，the drive starts to search for the defined switching point．If the defined switching point is not found within the distance defined here，the reference movement is canceled and an error is detected．   Type：Signed decimal－ 4 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective the next time the motor moves．	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	INT32 R／W per．	Modbus 10252   IDN P－0－3040．0．6
HMp＿home	Position at reference point．   After a successful reference movement，this position is automatically set at the reference point．   Type：Signed decimal－ 4 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective the next time the motor moves．	$\begin{array}{\|l} \text { usr_p } \\ -2147483648 \\ 0 \\ 2147483647 \end{array}$	INT32   R／W per． －	Modbus 10262   IDN P－0－3040．0．11
HMprefmethod   －P $\rightarrow$ ҺロП－   ПЕヒん	Preferred homing method．   Type：Signed decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & 1 \\ & 18 \\ & 35 \end{aligned}$	INT16 R／W per．	Modbus 10260   IDN P－0－3040．0．10


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
HMsrchdis	Maximum search distance after overtravel of switch.   0 : Search distance monitoring disabled   $>0$ : Search distance   The switch must be activated again within this search distance, otherwise the reference movement is canceled.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	INT32 R/W per. -	Modbus 10266   IDN P-0-3040.0.13
$\begin{aligned} & \mathrm{HMv} \\ & \square P \rightarrow h a \Pi- \\ & h \Pi \pi \end{aligned}$	Target velocity for searching the switch.   The adjustable value is internally limited to the parameter setting in RAMP_v_max.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_v } \\ & - \\ & 60 \end{aligned}$	UINT32 R/W per.	Modbus 10248 IDN P-0-3040.0.4
HMv_out	Target velocity for moving away from switch. The adjustable value is internally limited to the parameter setting in RAMP_v_max.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 6 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 10250 IDN P-0-3040.0.5
InvertDirOfCount	Inversion of direction of counting at PTI interface. 0 / Inversion Off: Inversion of direction of counting is off   1 / Inversion On: Inversion of direction of counting is on   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 2062 IDN P-0-3008.0.7
InvertDirOfMaEnc	Inversion of direction of machine encoder.   0 / Inversion Off: Inversion of direction is off   1 / Inversion On: Inversion of direction is on   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 20496   IDN P-0-3080.0.8
InvertDirOfMove	Inversion of direction of movement.   0 / Inversion Off / a F F: Inversion of direction of movement is off   1 / Inversion On / an: Inversion of direction of movement is on   The limit switch which is reached with a movement in positive direction must be connected to the positive limit switch input and vice versa.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1560   IDN P-0-3006.0.12


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
IO＿DQ＿set	Setting the digital outputs directly．   Digital outputs can only be set directly if the signal output function has been set to＇Freely Available＇．   Bit assignments：   Bit 0：DQ0   Bit 1：DQ1   Bit 2：DQ2   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4		UINT16 R／W	Modbus 2082   IDN P－0－3008．0．17
```IO_I_limit LanF-> ,-a- , L \|```	Current limitation via input．   A current limit can be activated via a digital input．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   In increments of $0.01 \mathrm{~A}_{\mathrm{rms}}$ ．   Modified settings become effective immediately．	$\begin{aligned} & A_{r m s} \\ & 0.00 \\ & 0.20 \\ & 300.00 \end{aligned}$	UINT16 R／W per．	Modbus 1614   IDN P－0－3006．0．39
IO＿v＿limit	Velocity limitation via input． A velocity limitation can be activated via a digital input． In operating mode Profile Torque，the minimum velocity is internally limited to 100 RPM． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective immediately．	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 10 \\ & 2147483647 \end{aligned}$	UINT32 R／W per．	Modbus 1596 IDN P－0－3006．0．30
$\begin{aligned} & \text { IOfunct_DI0 } \\ & \begin{array}{c} \operatorname{CaF} \rightarrow 1-a- \\ d, \square \end{array} \end{aligned}$	Function Input DIO． 1 ／Freely Available／п ロ $\cap E$ ：Available as required 21 ／Reference Switch（REF）／r E F：Reference switch 22 ／Positive Limit Switch（LIMP）／L ，П P：Positive limit switch 23 ／Negative Limit Switch（LIMN）／L ，Пn： Negative limit switch 24 ／Switch Controller Parameter Set／L P F r ： Switches control loop parameter set 28 ／Velocity Controller Integral Off／ $\operatorname{ta口}$ a ： Switches off velocity controller integral term 40 ／Release Holding Brake／r E ヶb：Releases the holding brake Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Setting can only be modified if power stage is disabled． Modified settings become effective after the next power cycle．		UINT16 R／W per．	Modbus 1794 IDN P－0－3007．0．1

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { IOfunct_DI1 } \\ & {[\text { anF } \rightarrow \text { - }-\mathrm{a}} \\ & d, l \end{aligned}$	Function Input DI1. 1 / Freely Available / n a $\cap E$: Available as required 21 / Reference Switch (REF) / r E F: Reference switch 22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch 23 / Negative Limit Switch (LIMN) / L , Пn: Negative limit switch 24 / Switch Controller Parameter Set / L PAr: Switches control loop parameter set 28 / Velocity Controller Integral Off / EnaF: Switches off velocity controller integral term 40 / Release Holding Brake / r E hb: Releases the holding brake Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1796 IDN P-0-3007.0.2
$\begin{aligned} & \text { IOfunct_DI2 } \\ & \text { ᄃanF } \rightarrow \text { - }-2 \\ & d, 己 \end{aligned}$	Function Input DI2. 1 / Freely Available / $n \square \cap E$: Available as required 21 / Reference Switch (REF) / r E F: Reference switch 22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch 23 / Negative Limit Switch (LIMN) / L , Π n : Negative limit switch 24 / Switch Controller Parameter Set / L PAr: Switches control loop parameter set 28 / Velocity Controller Integral Off / E п $\quad F$: Switches off velocity controller integral term 40 / Release Holding Brake / r E hb: Releases the holding brake Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1798 IDN P-0-3007.0.3
$\begin{aligned} & \text { IOfunct_DI3 } \\ & \begin{array}{c} \square \square F \rightarrow 1-a- \\ d, \exists \end{array} \end{aligned}$	Function Input DI3. 1 / Freely Available / n ם $\cap E$: Available as required 21 / Reference Switch (REF) / r E F: Reference switch 22 / Positive Limit Switch (LIMP) / L , ПP: Positive limit switch 23 / Negative Limit Switch (LIMN) / L , Пn: Negative limit switch 24 / Switch Controller Parameter Set / LPAr: Switches control loop parameter set 28 / Velocity Controller Integral Off / $E \cap \square F$: Switches off velocity controller integral term 40 / Release Holding Brake / r E hb: Releases the holding brake Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1800 IDN P-0-3007.0.4

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
```IOfunct_DI4 LanF-> ,-a- d,4```	Function Input DI4.   1 / Freely Available / $\cap \square \cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L , Пп:   Negative limit switch   24 / Switch Controller Parameter Set / LPAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п $F$ F:   Switches off velocity controller integral term   40 / Release Holding Brake / r E hb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1802   IDN P-0-3007.0.5
$\begin{aligned} & \text { IOfunct_DI5 } \\ & \begin{array}{c} \text { anF } \\ d, 5 \end{array} \end{aligned}$	Function Input DI5.   1 / Freely Available / $\cap \square \cap E$ : Available as required   21 / Reference Switch (REF) / r E F: Reference switch   22 / Positive Limit Switch (LIMP) / L , П P: Positive limit switch   23 / Negative Limit Switch (LIMN) / L 1 Пn:   Negative limit switch   24 / Switch Controller Parameter Set / L PAr:   Switches control loop parameter set   28 / Velocity Controller Integral Off / $E$ п F :   Switches off velocity controller integral term   40 / Release Holding Brake / r E Һb: Releases the holding brake   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1804   IDN P-0-3007.0.6


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { IOfunct_DQ0 } \\ & \begin{array}{c} \square \square F \rightarrow---- \\ \operatorname{taD} \end{array} \end{aligned}$	Function Output DQ0.   1 / Freely Available / $n$ ם $\cap E$ : Available as required   2 / No Fault / $n F L E$ : Signals operating states   Ready To Switch On, Switched On and Operation   Enabled   3 / Active / $A \subset E$ : : Signals operating state   Operation Enabled   5 / In Position Deviation Window / in-P: Position deviation is within window   6 / In Velocity Deviation Window / in-V : Velocity deviation is within window   7 / Velocity Below Threshold / V E hr: Motor velocity below threshold   8 / Current Below Threshold / , thr: Motor current below threshold   9 / Halt Acknowledge / h R L $t$ : Halt   acknowledgement   13 / Motor Standstill / $\Pi 5$ t d: Motor at a standstill   14 / Selected Error / 5 Err: One of the specified   errors of error classes $1 \ldots 4$ is active   15/Valid Reference (ref_ok) / r E Fa:Zero point is valid (ref_ok)   16 / Selected Warning / $5 \mathrm{~W} r n$ : One of the specified errors of error class 0 is active   22 / Motor Moves Positive / ח $\mathrm{P}_{\mathrm{a}} 5$ : Motor moves in positive direction   23 / Motor Moves Negative / $\Pi$ п $E$ L: Motor moves in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1810   IDN P-0-3007.0.9


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
$\begin{aligned} & \text { IOfunct_DQ1 } \\ & \text { CanF } \rightarrow \text { - - } \\ & \text { dal } \end{aligned}$	Function Output DQ1.   1 / Freely Available / $\cap$ a $\cap E$ : Available as required   2 / No Fault / $n F L E$ : Signals operating states   Ready To Switch On, Switched On and Operation Enabled   3 / Active / $R \subset E$ ı: Signals operating state   Operation Enabled   5 / In Position Deviation Window / in-P: Position deviation is within window   6 / In Velocity Deviation Window / , n-V : Velocity deviation is within window   7 / Velocity Below Threshold / V E hr: Motor   velocity below threshold   8 / Current Below Threshold / , thr: Motor   current below threshold   9 / Halt Acknowledge / h R L $E$ : Halt   acknowledgement   13 / Motor Standstill / П 5 t d: Motor at a standstill   14 / Selected Error / 5 Err: One of the specified   errors of error classes $1 \ldots 4$ is active   15/Valid Reference (ref_ok) / r E F a: Zero point is valid (ref_ok)   16 / Selected Warning / $5 \mathrm{~W} / \mathrm{r}$ : One of the specified errors of error class 0 is active   22 / Motor Moves Positive / $\Pi$ Pa5: Motor moves in positive direction   23 / Motor Moves Negative / $\Pi \cap E L$ : Motor moves in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1812   IDN P-0-3007.0.10


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
```IOfunct_DQ2 LanF-> 1-a- dロ己```	Function Output DQ2.   1 / Freely Available / $n$ ם $\cap E$ : Available as required   2 / No Fault / $n F L E$ : Signals operating states   Ready To Switch On, Switched On and Operation Enabled   3 / Active / $R \subset E$ : : Signals operating state   Operation Enabled   5/In Position Deviation Window / in-P: Position   deviation is within window   6 / In Velocity Deviation Window / וn - V : Velocity   deviation is within window   7 / Velocity Below Threshold / V E h r : Motor   velocity below threshold   8 / Current Below Threshold / , thr:Motor   current below threshold   9 / Halt Acknowledge / h R L $t$ : Halt   acknowledgement   13 / Motor Standstill / П 5t d: Motor at a standstill   14 / Selected Error / 5 Err: One of the specified   errors of error classes $1 \ldots 4$ is active   15/Valid Reference (ref_ok) / rEFa:Zero point is valid (ref_ok)   16 / Selected Warning / $5 \mathrm{~W} / \mathrm{r}$ : One of the   specified errors of error class 0 is active   22 / Motor Moves Positive / ח $\mathrm{P}_{\mathrm{a}} 5$ : Motor moves in positive direction   23 / Motor Moves Negative / $\Pi$ п $E[$ : Motor moves   in negative direction   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective after the next power cycle.		UINT16 R/W per.	Modbus 1814   IDN P-0-3007.0.11
IOsigLIMN	Signal evaluation for negative limit switch. 0 / Inactive: Inactive 1 / Normally Closed: Normally closed NC 2 / Normally Open: Normally open NO Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{array}{\|l} - \\ 0 \\ 1 \\ 2 \end{array}$	UINT16 R/W per.	Modbus 1566 IDN P-0-3006.0.15
IOsigLIMP	Signal evaluation for positive limit switch. 0 / Inactive: Inactive 1 / Normally Closed: Normally closed NC 2 / Normally Open: Normally open NO Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1568 IDN P-0-3006.0.16

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
IOsigREF	Signal evaluation for reference switch. 1 / Normally Closed: Normally closed NC 2 / Normally Open: Normally open NO The reference switch is only active while a reference movement to the reference switch is processed. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1564 IDN P-0-3006.0.14
IOsigRespOfPS	Response to active limit switch during enabling of power stage. 0 / Error: Active limit switch triggers an error. 1 / No Error: Active limit switch does not trigger an error. Defines the response when the power stage is enabled while a hardware limit switch is active. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1548 IDN P-0-3006.0.6
IP_IntTimInd	Interpolation time index. Type: Signed decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4	$\begin{aligned} & -128 \\ & -3 \\ & 63 \end{aligned}$	INT16 R/W	Modbus 7002 IDN P-0-3027.0.45
IP_IntTimPerVal	Interpolation time period value. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4	$\begin{aligned} & \mathrm{s} \\ & 0 \\ & 1 \\ & 255 \end{aligned}$	UINT16 R/W	Modbus 7000 IDN P-0-3027.0.44
Iref_PTIFreqMax	Reference current for operating mode Profile Torque via PTI interface. Reference current corresponding to 1.6 million increments per second at the PTI interface for operating mode Profile Torque. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$. Modified settings become effective immediately. Available with firmware version \geq V01.06.	$\begin{aligned} & A_{\text {rms }} \\ & 0.00 \\ & - \\ & 463.00 \end{aligned}$	UINT16 R/W per.	Modbus 8200 IDN P-0-3032.0.4
JoGactivate	Activation of operating mode Jog. Bit 0: Positive direction of movement Bit 1: Negative direction of movement Bit 2: 0=slow 1=fast Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 7 \end{aligned}$	UINT16 R/W	Modbus 6930 IDN P-0-3027.0.9
JoGmethod	Selection of jog method. 0 / Continuous Movement/ ᄃ continuous movement 1/Step Movement/5ヒח口: Jog with step movement Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 10502 IDN P-0-3041.0.3
JOGstep	Distance for step movement. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 1 \\ & 20 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 10510 IDN P-0-3041.0.7

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
JoGtime	Wait time for step movement． Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective the next time the motor moves．	$\begin{array}{\|l} \mathrm{ms} \\ 1 \\ 500 \\ 32767 \end{array}$	UINT16 R／W per．	Modbus 10512 IDN P－0－3041．0．8
	Velocity for fast movement． The adjustable value is internally limited to the parameter setting in RAMP＿v＿max． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective immediately．	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 180 \\ & 2147483647 \end{aligned}$	UINT32 R／W per．	Modbus 10506 IDN P－0－3041．0．5
	Velocity for slow movement． The adjustable value is internally limited to the parameter setting in RAMP＿v＿max． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective immediately．	```usr_v 1 60 2147483647```	UINT32 R／W per．	Modbus 10504 IDN P－0－3041．0．4
$\begin{aligned} & \text { LIM_HaltReaction } \\ & \text { CanF } \rightarrow \text { CL- } \\ & \text { ht } Y P \end{aligned}$	Halt option code． 1 ／Deceleration Ramp／d $E \subset E$ 3 ／Torque Ramp／ヒロr 9 Set the deceleration ramp with parameter RAMP＿v＿dec． Set the torque ramp with parameter LIM＿I＿maxHalt． If a deceleration ramp is already active，the parameter cannot be written． Type：Signed decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective immediately．	$\begin{aligned} & 1 \\ & 3 \\ & 3 \end{aligned}$	INT16 R／W per．	Modbus 1582 IDN P－0－3006．0．23
$\begin{aligned} & \text { LIM_I_maxHalt } \\ & \text { LonF } \rightarrow \text { RLL- } \\ & \text { høur } \end{aligned}$	Current for Halt． This value is only limited by the minimum／maximum value range（no limitation of this value by motor／power stage）． In the case of a Halt，the current limit（＿Imax＿act）is one of the following values（whichever is lowest）： －LIM＿I＿maxHalt －＿M＿I＿max －＿PS＿I＿max Further current limitations caused by I2t monitoring are also taken into account during a Halt． Default：＿PS＿I＿max at 8 kHz PWM frequency and 230／480 V mains voltage Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ． Modified settings become effective immediately．	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R／W per．	Modbus 4380 IDN P－0－3017．0．14

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { LIM_I_maxQSTP } \\ & \text { ᄃםпF } \rightarrow F L t- \\ & \text { qெur } \end{aligned}$	Current for Quick Stop． This value is only limited by the minimum／maximum value range（no limitation of this value by motor／power stage）． In the case of a Quick Stop，the current limit （＿Imax＿act）is one of the following values （whichever is lowest）： －LIM＿I＿maxQSTP －＿M＿I＿max －＿PS＿I＿max Further current limitations caused by $12 t$ monitoring are also taken into account during a Quick Stop． Default：＿PS＿I＿max at 8 kHz PWM frequency and 230／480 V mains voltage Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$ ． Modified settings become effective immediately．	$\mathrm{A}_{\mathrm{rms}}$	UINT16 R／W per．	Modbus 4378 IDN P－0－3017．0．13
LIM＿QStopReact	Quick Stop option code． －2／Torque ramp（Fault）：Use torque ramp and transit to operating state 9 Fault －1／Deceleration Ramp（Fault）：Use deceleration ramp and transit to operating state 9 Fault 6 ／Deceleration ramp（Quick Stop）：Use deceleration ramp and remain in operating state 7 Quick Stop 7 ／Torque ramp（Quick Stop）：Use torque ramp and remain in operating state 7 Quick Stop Type of deceleration for Quick Stop． Setting of deceleration ramp with parameter RAMPquickstop． Setting of torque ramp with parameter LIM＿I＿maxQSTP． If a deceleration ramp is already active，the parameter cannot be written． Type：Signed decimal－2 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective immediately．	$\begin{aligned} & -2 \\ & 6 \\ & 7 \end{aligned}$	INT16 R／W per．	Modbus 1584 IDN P－0－3006．0．24
Mains＿reactor	Mains reactor． 0 ／No：No 1 ／Yes：Yes Value 0：No mains reactor connected．The nominal power of the power stage is reduced． Value 1：A mains reactor is connected． Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Setting can only be modified if power stage is disabled． Modified settings become effective immediately．	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R／W per．	Modbus 1344 IDN P－0－3005．0．32
MBaddress CロロF \rightarrow［ם П－ Пь月女	Modbus address． Valid addresses： 1 to 247 Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective after the next power cycle．	1 1 247	UINT16 R／W per．	Modbus 5640 IDN P－0－3022．0．4

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
MBbaud $\Gamma \square \cap F \rightarrow[\square \Pi-$ пььd	Modbus baud rate. 9600 / 9600 Baud / 9.6: 9600 Baud 19200 / 19200 Baud / / 9.ᄅ: 19200 Baud 38400 / 38400 Baud / ヨВ.Ч: 38400 Baud Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective after the next power cycle.	$\begin{aligned} & 9600 \\ & 19200 \\ & 38400 \end{aligned}$	UINT32 R/W per.	Modbus 5638 IDN P-0-3022.0.3
$\begin{aligned} & \text { MON_ChkTime } \\ & \text { LanF } \rightarrow \text {-a- } \\ & \text { tEhr } \end{aligned}$	Monitoring of time window. Adjustment of a time for monitoring of position deviation, velocity deviation, velocity value and current value. If the monitored value is in the permissible range during the adjusted time, the monitoring function delivers a positive result. The status can be output via a parameterizable output. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 9999 \end{aligned}$	UINT16 R/W per.	Modbus 1594 IDN P-0-3006.0.29
MON_commutat	Commutation monitoring. 0 / Off: Commutation monitoring off 1 / On: Commutation monitoring on in operating states 6,7 and 8 2 / On (OpState6+7): Commutation monitoring on in operating states 6 and 7 Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1290 IDN P-0-3005.0.5
MON_ConfModification	Configuration modification monitoring. Value 0: Modification detected for each write access. Value 1: Modification detected for each write access which modifies a value. Value 2: Identical to value 0 if commissioning software is not connected. Identical to value 1 if commissioning software is connected. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately. Available with firmware version \geq V01.06.	$\begin{aligned} & - \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1082 IDN P-0-3004.0.29

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
MON_DCbusVdcThresh	DC bus overvoltage monitoring threshold. 0 / Reduction Off: Reduction is off 1 / Reduction On: Reduction is on This parameter is used to reduce the threshold for DC bus overvoltage monitoring. The parameter only affects single-phase devices supplied with 115 V and three-phase devices supplied with 208 V . Value 0 : Single-phase: 450 Vdc Three-phase: 820 Vdc Value 1: Single-phase: 260 Vdc Three-phase: 450 Vdc Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled. Available with firmware version \geq V01.06.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1402 IDN P-0-3005.0.61
MON_ENC_Ampl	Activation of monitoring of SinCos amplitude. Value 0: Deactivate monitoring Value 1: Activate monitoring Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately. Available with firmware version \geq V01.06.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 16322 IDN P-0-3063.0.97
MON_GroundFault	Ground monitoring. 0 / Off: Ground monitoring off 1 / On: Ground monitoring on Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective after the next power cycle.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R/W per. expert	Modbus 1312 IDN P-0-3005.0.16
MON_HW_Limits	Temporary deactivation of hardware limit switches. 0 / None: No limit switch deactivated 1 / Positive Limit Switch: Deactivate positive limit switch 2 / Negative Limit Switch: Deactivate negative limit switch 3 / Both Limit Switches: Deactivate both limit switches With this parameter, a PLC can temporarily deactivate hardware limit switches. This is useful if a homing procedure controlled by a PLC is to use a limit switch as a reference switch without an error response of the drive. The parameter is only available with the EtherCAT module. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	UINT16 R/W	Modbus 1570 IDN P-0-3006.0.17

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
	Monitoring of current threshold. The system monitors whether the drive is below the defined value during the period set with MON_ChkTime. The status can be output via a parameterizable output. The parameter _Iq_act_rms is used as comparison value. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of $0.01 \mathrm{~A}_{\text {rms }}$. Modified settings become effective immediately.	$\begin{aligned} & A_{\text {rms }} \\ & 0.00 \\ & 0.20 \\ & 300.00 \end{aligned}$	UINT16 R/W per.	Modbus 1592 IDN P-0-3006.0.28
MON_IO_SelErr1	Signal output function Selected Error (error classes 1 to 4): First error code. This parameter specifies the error code of an error of error classes $1 . . .4$ which is to activate the signal output function. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15116 IDN P-0-3059.0.6
MON_IO_SelErr2	Signal output function Selected Error (error classes 1 to 4): Second error code. This parameter specifies the error code of an error of error classes $1 . . .4$ which is to activate the signal output function. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15118 IDN P-0-3059.0.7
MON_IO_SelWar1	Signal output function Selected Warning (error class 0): First error code. This parameter specifies the error code of an error of error class 0 which is to activate the signal output function. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15120 IDN P-0-3059.0.8
MON_IO_SelWar2	Signal output function Selected Warning (error class 0): Second error code. This parameter specifies the error code of an error of error class 0 which is to activate the signal output function. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & 0 \\ & 0 \\ & 65535 \end{aligned}$	UINT16 R/W per.	Modbus 15122 IDN P-0-3059.0.9

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
MON_MainsVolt	Detection and monitoring of mains phases. 0 / Automatic Mains Detection: Automatic detection and monitoring of mains voltage 1 / DC-Bus Only (Mains 1~230 V / 3~480 V): DC bus supply only, corresponding to mains voltage 230 V (single-phase) or 480 V (three phases) 2 / DC-Bus Only (Mains 1~115 V / 3~208 V): DC bus supply only, corresponding to mains voltage 115 V (single-phase) or 208 V (three phases) 3 / Mains 1~230 V / 3~480 V: Mains voltage 230 V (single-phase) or 480 V (three phases) 4 / Mains 1~115 V / 3~208 V: Mains voltage 115 V (single-phase) or 208 V (three phases) 5 / Reserved: Reserved Value 0: As soon as mains voltage detected, the device automatically verifies whether the mains voltage is 115 V or 230 V in the case of single-phase devices or 208 V or $400 / 480 \mathrm{~V}$ in the case of threephase devices. Values $1 \ldots 2$: If the device is supplied only via the DC bus, the parameter has to be set to the voltage value corresponding to the mains voltage of the supplying device. There is no mains voltage monitoring. Values $3 \ldots$. 4: If the mains voltage is not detected properly during start-up, the mains voltage to be used can be selected manually. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 5 \end{aligned}$	UINT16 R/W per. expert	Modbus 1310 IDN P-0-3005.0.15
MON_p_dif_load	Maximum load-dependent position deviation. The load-dependent position deviation is the difference between the reference position and the actual position caused by the load. The parameter MON_p_dif_load_usr allows you to enter the value in user-defined units. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 In increments of 0.0001 revolution. Modified settings become effective immediately.	$\begin{aligned} & \text { revolution } \\ & 0.0001 \\ & 1.0000 \\ & 200.0000 \end{aligned}$	UINT32 R/W per.	Modbus 1606 IDN P-0-3006.0.35
MON_p_dif_load_usr	Maximum load-dependent position deviation. The load-dependent position deviation is the difference between the reference position and the actual position caused by the load. The minimum value, the factory setting and the maximum value depend on the scaling factor. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_p } \\ & 1 \\ & 131072 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1660 IDN P-0-3006.0.62
MON_p_dif_warn	Advisory limit of the load-dependent position deviation (error class 0). 100.0 \% correspond to the maximum position deviation (following error) as specified by means of parameter MON_p_dif_load. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \% \\ & 0 \\ & 75 \\ & 100 \end{aligned}$	UINT16 R/W per.	Modbus 1618 IDN P-0-3006.0.41

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
MON_p_DiffWin	Monitoring of position deviation. The system verifies whether the drive is within the defined deviation during the period set with MON_ChkTime. The status can be output via a parameterizable output. The parameter MON_p_DiffWin_usr allows you to enter the value in user-defined units. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of 0.0001 revolution. Modified settings become effective immediately.	$\begin{aligned} & \text { revolution } \\ & 0.0000 \\ & 0.0010 \\ & 0.9999 \end{aligned}$	UINT16 R/W per.	Modbus 1586 IDN P-0-3006.0.25
MON_p_DiffWin_usr	Monitoring of position deviation. The system verifies whether the drive is within the defined deviation during the period set with MON_ChkTime. The status can be output via a parameterizable output. The minimum value, the factory setting and the maximum value depend on the scaling factor. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 131 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1662 IDN P-0-3006.0.63
MON_SW_Limits	Activation of software limit switches. 0 / None: Deactivated 1 / SWLIMP: Activation of software limit switches positive direction 2 / SWLIMN: Activation of software limit switches negative direction 3 / SWLIMP+SWLIMN: Activation of software limit switches both directions Software limit switches can only be activated if the zero point is valid. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	UINT16 R/W per.	Modbus 1542 IDN P-0-3006.0.3
MON_SWLimMode	Behavior when position limit is reached. 0 / Standstill Behind Position Limit: Quick Stop is triggered at position limit and standstill is reached behind position limit 1 / Standstill At Position Limit: Quick Stop is triggered in front of position limit and standstill is reached at position limit Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1678 IDN P-0-3006.0.71
MON_swLimN	Negative position limit for software limit switch. See description 'MON_swLimP'. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_p } \\ & - \\ & -2147483648 \end{aligned}$	INT32 R/W per.	Modbus 1546 IDN P-0-3006.0.5

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
MON_SWLimP	Positive position limit for software limit switch. If a user-defined value entered is outside of the permissible range, the limit switch limits are automatically set to the maximum user-defined value. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_p } \\ & - \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1544 IDN P-0-3006.0.4
MON_v_DiffWin	Monitoring of velocity deviation. The system monitors whether the drive is within the defined deviation during the period set with MON_ChkTime. The status can be output via a parameterizable output. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 10 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1588 IDN P-0-3006.0.26
MON_v_Threshold	Monitoring of velocity threshold. The system monitors whether the drive is below the defined value during the period set with MON_ChkTime. The status can be output via a parameterizable output. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 10 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1590 IDN P-0-3006.0.27
MON_v_zeroclamp	Velocity limit for Zero Clamp. A Zero Clamp operation is only possible if the reference velocity is below the Zero Clamp velocity limit. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 10 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1616 IDN P-0-3006.0.40
MON_VelDiff	Maximum load-dependent velocity deviation. Value 0: Monitoring deactivated. Value >0: Maximum value Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately. Available with firmware version \geq V01.06.	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1686 IDN P-0-3006.0.75
MON_Veldiff_Time	Time window for maximum load-dependent velocity deviation. Value 0: Monitoring deactivated. Value >0: Time window for maximum value Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately. Available with firmware version \geq V01.06.	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 10 \end{aligned}$	UINT16 R/W per.	Modbus 1688 IDN P-0-3006.0.76

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
MON_Veldiffopst578	Maximum load-dependent velocity deviation for operating states 5,7 and 8 . Maximum load-dependent velocity deviation for operating states 5 Switch On, 7 Quick Stop Active and 8 Fault Reaction Active. Value 0: Monitoring deactivated. Value >0: Maximum value. Monitoring is active if parameter LIM_QStopReact is set to "Deceleration Ramp (Fault)" or to "Deceleration ramp (Quick Stop)". Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { usr_v } \\ & 0 \\ & 0 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1680 IDN P-0-3006.0.72
MT_dismax	Maximum permissible distance. If the reference value is active and the maximum permissible distance is exceeded, an error of error class 1 is detected. The value 0 switches off monitoring. The parameter MT_dismax_usr allows you to enter the value in user-defined units. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of 0.1 revolution. Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { revolution } \\ & 0.0 \\ & 1.0 \\ & 999.9 \end{aligned}$	UINT16 R/W	Modbus 11782 IDN P-0-3046.0.3
MT_dismax_usr	Maximum permissible distance. If the reference value is active and the maximum permissible distance is exceeded, an error of error class 1 is detected. The value 0 switches off monitoring. The minimum value, the factory setting and the maximum value depend on the scaling factor. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_p } \\ & 0 \\ & 131072 \\ & 2147483647 \end{aligned}$	INT32 R/W	Modbus 11796 IDN P-0-3046.0.10
p_MaxDiftoEnc2	Maximum permissible deviation of encoder positions. The maximum permissible position deviation between the encoder positions is cyclically monitored. If the limit is exceeded, an error is detected. The position deviation is available via the parameter '_p_DifEnc1ToEnc2'. The default value corresponds to $1 / 2$ motor revolution. The maximum value corresponds to 100 motor revolutions. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { Inc } \\ & 1 \\ & 65536 \\ & 13107200 \end{aligned}$	INT32 R/W per.	Modbus 20494 IDN P-0-3080.0.7

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
P_PTI_act_set	Position value at PTI interface. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Available with firmware version $\geq \mathrm{V} 01.06$.	$\begin{aligned} & \text { Inc } \\ & -2147483648 \\ & - \\ & 2147483647 \end{aligned}$	INT32 R/W	Modbus 2130 IDN P-0-3008.0.41
PAR_CTRLreset $\mathrm{Con} F \rightarrow F[5$ - rESL	Reset control loop parameters. O/Nol na: No 1/Yes/ YE5:Yes Reset of the control loop parameters. The control loop parameters are recalculated on the basis of the motor data of the connected motor. Current and velocity limitations are not reset. Therefore, a user parameter reset is required. The new settings are not saved to the nonvolatile memory. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 1038 IDN P-0-3004.0.7
PAR_ScalingStart	Recalculation of parameters with user-defined units. The parameters with user-defined units can be recalculated with a changed scaling factor. Value 0: Inactive Value 1: Initialize recalculation Value 2: Start recalculation Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 1064 IDN P-0-3004.0.20
PAReeprSave	Save parameter values to the nonvolatile memory. Value 1: Save persistent parameters The currently set parameters are saved to the nonvolatile memory. The saving process is complete when the parameter is read and 0 is returned. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$-$	UINT16 R/W	Modbus 1026 IDN P-0-3004.0.1

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
PARuserReset CanF \rightarrow FLS - resur	Reset user parameters. O/Nol пи:No 65535/Yes/ YE5:Yes Bit 0: Reset persistent user parameters and control loop parameters to default values Bits $1 \ldots 15$: For future use The parameters are reset with the exception of: - Communication parameters - Inversion of direction of movement - Type of reference value signal for PTI interface - Settings of encoder simulation - Functions of digital inputs and outputs - Safety module eSM The new settings are not saved to the nonvolatile memory. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & - \\ & 65535 \end{aligned}$	UINT16 R/W	Modbus 1040 IDN P-0-3004.0.8
PDOmask	Deactivate receive PDO. Value 0: Activate receive PDO Value 1: Deactivate receive PDO Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W	Modbus 16516 IDN P-0-3064.0.66
PP_ModeRangeLim	Absolute movement beyond movement range. 0 / NoAbsMoveAllowed: Absolute movement beyond movement range is not possible 1 / AbsMoveAllowed: Absolute movement beyond movement range is possible Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 8974 IDN P-0-3035.0.7
PPoption	Options for operating mode Profile Position. Determines the reference position for relative positioning: 0 : Relative with reference to the previous target position of the profile generator 1: Not supported 2: Relative with reference to the actual position of the motor Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective the next time the motor moves.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 6960 IDN P-0-3027.0.24
PPp_target	Target position for operating mode Profile Position. Minimum/maximum values depend on: - Scaling factor - Software limit switches (if they are activated) Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	usr_p	INT32 R/W	Modbus 6940 IDN P-0-3027.0.14

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
PPv＿target	Target velocity for operating mode Profile Position． The target velocity is limited to the setting in CTRL＿v＿max and RAMP＿v＿max． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective the next time the motor moves．	$\begin{array}{\|l} \hline \text { usr_v } \\ 1 \\ 60 \\ 4294967295 \end{array}$	UINT32 R／W	Modbus 6942 IDN P－0－3027．0．15
PTI＿pulse＿filter	Filter time for input signals at the PTI interface． A signal at the PTI interface is only evaluated if it is available for a time that is longer than the set filter time． For example，if an interference pulse is available for a period shorter than the set filter time，the interference pulse is not evaluated． The interval between 2 signals must also be greater than the set filter time． Available with hardware version $\geq R S 03$ ． Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 In increments of $0.01 \mu \mathrm{~s}$ ． Setting can only be modified if power stage is disabled． Modified settings become effective the next time the power stage is enabled．	$\begin{array}{\|l} \mu \mathrm{s} \\ 0.00 \\ 0.25 \\ 13.00 \end{array}$	UINT16 R／W per． expert	Modbus 1374 IDN P－0－3005．0．47
$\begin{aligned} & \text { PTI_signal_type } \\ & \operatorname{Con} \rightarrow \text { - - }- \\ & \operatorname{I口P}, \end{aligned}$	Type of reference value signal for PTI interface． O／A／B Signals／\quad b ：Signals ENC＿A and ENC＿B （quadruple evaluation） $1 /$ P／D Signals／Pd：Signals PULSE and DIR 2 ／CW／CCW Signals／$_W __$：Signals clockwise and counterclockwise Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Setting can only be modified if power stage is disabled． Modified settings become effective after the next power cycle．	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R／W per．	Modbus 1284 IDN P－0－3005．0．2
$\begin{aligned} & \text { PTO_mode } \\ & \Gamma ם \cap F \rightarrow A[L- \\ & P E \square \Pi \end{aligned}$	Type of usage of PTO interface． 0／Off／aFF：PTO interface disabled 1 ／Esim pAct Enc 1 ／$P E \cap$ I：Encoder simulation based on actual position of encoder 1 2 ／Esim pRef／Pr E F：Encoder simulation based on reference position（＿p＿ref） 3 ／PTI Signal／PE ：Directly the signal from PTI interface 4 ／Esim pAct Enc 2 ／PE \cap 己：Encoder simulation based on actual position of encoder 2 （module） 5 ／Esim iqRef／ir E F：Encoder simulation based on reference current 6 ／Esim pActRaw Enc2／E п с 己：Encoder simulation based on raw position value of encoder 2 （module） Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Setting can only be modified if power stage is disabled． Modified settings become effective the next time the power stage is enabled． Available with firmware version \geq V01．04．	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 6 \end{aligned}$	UINT16 R／W per．	Modbus 1342 IDN P－0－3005．0．31

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
PTtq_reference	Reference value source for operating mode Profile Torque. 0 / None: None 1 / Parameter 'PTtq_target': Reference value via parameter PTtq_target 3 / PTI Interface: Reference value via PTI interface Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately. Available with firmware version \geq V01.08.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 3 \end{aligned}$	UINT16 R/W	Modbus 7024 IDN P-0-3027.0.56
PTtq_target	Target torque. 100.0 \% correspond to the continuous stall torque _M_M_0. Type: Signed decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 In increments of 0.1%. Modified settings become effective immediately.	$\begin{array}{\|l} \hline \% \\ -3000.0 \\ 0.0 \\ 3000.0 \end{array}$	INT16 R/W	Modbus 6944 IDN P-0-3027.0.16
PVv_reference	Reference value source for operating mode Profile Velocity. 0 / None: None 1 / Parameter 'PVv_target': Reference value via parameter PVv_target 2 / Analog Input: Reference value via analog input Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	UINT16 R/W	Modbus 7026 IDN P-0-3027.0.57
PVv_target	Target velocity. The target velocity is limited to the setting in CTRL_v_max and RAMP_v_max. Type: Signed decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective immediately.	usr_v	INT32 R/W	Modbus 6938 IDN P-0-3027.0.13
PWM_fChop	PWM frequency of power stage. 4 / $4 \mathrm{kHz}: 4 \mathrm{kHz}$ $8 / 8 \mathrm{kHz}: 8 \mathrm{kHz}$ 16 / 16 kHz: 16 kHz Factory setting: Peak output current ≤ 72 Arms: 8 kHz Peak output current >72 Arms: 4 kHz Changing this setting is only possible in the case of devices with a peak output current > 72 Arms. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & 4 \\ & - \\ & 16 \end{aligned}$	UINT16 R/W per. expert	Modbus 1308 IDN P-0-3005.0.14
RAMP_tq_enable	Activation of the motion profile for torque. 0 / Profile Off: Profile off 1 / Profile On: Profile on In the operating mode Profile Torque, the motion profile for torque can be activated or deactivated. In the other operating modes, the motion profile for torque is inactive. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective immediately.	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1624 IDN P-0-3006.0.44

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R／W Persistent Expert	Parameter address via fieldbus
RAMP＿tq＿slope	Slope setting of the motion profile for torque． 100.00 \％of the torque setting correspond to the continuous stall torque＿M＿M＿0． Example： A ramp setting of $10000.00 \% / \mathrm{s}$ results in a torque change of 100.0% of＿M＿M＿0 in 0．01s． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 In increments of $0.1 \% / \mathrm{s}$ ． Modified settings become effective immediately．	$\begin{aligned} & \hline \% / \mathrm{s} \\ & 0.1 \\ & 10000.0 \\ & 3000000.0 \end{aligned}$	UINT32 R／W per．	Modbus 1620 IDN P－0－3006．0．42
RAMP＿v＿acc	Acceleration of the motion profile for velocity． Writing the value 0 has no effect on the parameter． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective the next time the motor moves．	$\begin{aligned} & \text { usr_a } \\ & 1 \\ & 600 \\ & 2147483647 \end{aligned}$	UINT32 R／W per．	Modbus 1556 IDN P－0－3006．0．10
RAMP＿v＿dec	Deceleration of the motion profile for velocity． The minimum value depends on the operating mode： Operating modes with minimum value 120 ： Jog Homing Writing the value 0 has no effect on the parameter． Type：Unsigned decimal－ 4 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective the next time the motor moves．	$\begin{aligned} & \text { usr_a } \\ & 1 \\ & 600 \\ & 2147483647 \end{aligned}$	UINT32 R／W per．	Modbus 1558 IDN P－0－3006．0．11
RAMP＿v＿enable	Activation of the motion profile for velocity． 0 ／Profile Off：Profile off 1 ／Profile On：Profile on Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Setting can only be modified if power stage is disabled． Modified settings become effective immediately．	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	UINT16 R／W per．	Modbus 1622 IDN P－0－3006．0．43
$\begin{aligned} & \text { RAMP_v_jerk } \\ & \text { LanF } \rightarrow d r[- \\ & \text { JEr } \end{aligned}$	Jerk limitation of the motion profile for velocity． 0／Off／aFF：Off 1／1／I：1 ms 2／2／2：2ms 4／4／4：4ms 8／8／日： 8 ms 16／16／IG：16 ms 32／32／ヨこ：32 ms 64／64／Б $4: 64 \mathrm{~ms}$ 128／128／Iट日： 128 ms Adjustments can only be made if the operating mode is inactive（x＿end＝1）． Type：Unsigned decimal－ 2 bytes Write access via Sercos：CP2，CP3，CP4 Modified settings become effective the next time the motor moves．	$\begin{aligned} & \mathrm{ms} \\ & 0 \\ & 0 \\ & 128 \end{aligned}$	UINT16 R／W per．	Modbus 1562 IDN P－0－3006．0．13

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
$\begin{aligned} & \text { RAMP_V_max } \\ & \text { CanF } \rightarrow \text { R } L- \\ & \text { nr } \square P \end{aligned}$	Maximum velocity of the motion profile for velocity. If a greater reference velocity is set in one of these operating modes, it is automatically limited to RAMP_v_max. This way, commissioning at limited velocity is easier to perform. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the motor moves.	$\begin{aligned} & \mid \text { usr_v } \\ & 1 \\ & 13200 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1554 IDN P-0-3006.0.9
RAMP_v_sym	Acceleration and deceleration of the motion profile for velocity. The values are internally multiplied by 10 (example: 1 = $10 \mathrm{RPM} / \mathrm{s}$). Write access changes the values of RAMP_v_acc and RAMP_v_dec. The limit values are verified on the basis of the values indicated for these parameters. Read access returns the greater value from RAMP_v_acc/RAMP_v_dec. If the value cannot be represented as a 16 bit value, the value is set to 65535 (maximum UINT16 value) Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective the next time the motor moves.		UINT16 R/W	Modbus 1538 IDN P-0-3006.0.1
RAMPaccdec	Acceleration and deceleration for the Drive Profile Lexium. High word: Acceleration Low word: Deceleration The values are internally multiplied by 10 (example: 1 = $10 \mathrm{RPM} / \mathrm{s}$). Write access changes the values of RAMP_v_acc and RAMP_v_dec. The limit values are verified on the basis of the values indicated for these parameters. If the value cannot be represented as a 16 bit value, the value is set to 65535 (maximum UINT16 value). Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective the next time the motor moves.		UINT32 R/W	Modbus 1540 IDN P-0-3006.0.2
RAMPquickstop	Deceleration ramp for Quick Stop. Deceleration ramp for a software stop or an error with error class 1 or 2. Type: Unsigned decimal - 4 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective the next time the motor moves.	$\begin{aligned} & \text { usr_a } \\ & 1 \\ & 6000 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 1572 IDN P-0-3006.0.18
$\begin{aligned} & \text { RESext_P } \\ & \text { ConF } \rightarrow \text { RLG- } \\ & \text { Pabr } \end{aligned}$	Nominal power of external braking resistor. The maximum value depends on the power stage. Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Setting can only be modified if power stage is disabled. Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \mathrm{W} \\ & 1 \\ & 10 \\ & - \end{aligned}$	UINT16 R/W per.	Modbus 1316 IDN P-0-3005.0.18

Parameter name HMI menu HMI name	Description	Unit Minimum value Factory setting Maximum value	Data type R/W Persistent Expert	Parameter address via fieldbus
```RESext_R Lם\capF->A[L- rbr```	Resistance value of external braking resistor.   The minimum value depends on the power stage.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of $0.01 \Omega$.   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \Omega \\ & - \\ & 100.00 \\ & 327.67 \end{aligned}$	UINT16 R/W per.	Modbus 1318   IDN P-0-3005.0.19
$\begin{aligned} & \text { RESext_ton } \\ & \text { CanF } \rightarrow \text { R } L- \\ & \text { Ebr } \end{aligned}$	Maximum permissible switch-on time of external braking resistor.   Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \mathrm{ms} \\ & 1 \\ & 1 \\ & 30000 \end{aligned}$	UINT16 R/W per.	Modbus 1314   IDN P-0-3005.0.17
$\begin{aligned} & \text { RESint_ext } \\ & \text { CanF } \rightarrow \text { R } C- \\ & E \text { br } \end{aligned}$	Selection of type of braking resistor.   0 / Internal Braking Resistor / int: Internal braking resistor   1 / External Braking Resistor / E ヶヒ: External braking resistor   2 / Reserved / r 5 V d: Reserved   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R/W per.	Modbus 1298   IDN P-0-3005.0.9
Resolenc2	Raw resolution of encoder 2.   Digital encoders:   Number of encoder increments per encoder revolution.   Analog encoders:   Number of analog periods per encoder revolution.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.   Available with firmware version $\geq$ V01.06.	$\begin{aligned} & \text { EncInc } \\ & 1 \\ & 10000 \\ & 2147483647 \end{aligned}$	UINT32 R/W per.	Modbus 20510   IDN P-0-3080.0.15
ResolENC2 Denom	Resolution of encoder 2, denominator.   See numerator (ResolEnc2Num) for a description.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	$\begin{aligned} & \text { revolution } \\ & 1 \\ & 1 \\ & 16383 \end{aligned}$	INT32 R/W per.	Modbus 20490   IDN P-0-3080.0.5


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
Resolenc2Num	Resolution of encoder 2, numerator.   Digital encoders:   Specification of the encoder increments the external encoder returns for one or several revolutions of the motor shaft.   The value is indicated with a numerator and a denominator so that it is possible, for example, to take into account the gear ratio of a mechanical gearing.   The value must not be set to 0 .   The resolution factor is not applied until this numerator value is specified.   Example: One motor revolution causes $1 / 3$ encoder revolution at an encoder resolution of 16384 Enclnc/revolution.   ResolENC2Num = 16384 EncInc   ResolENC2Denom $=3$ revolutions   Analog encoders:   Num/Denom must be set equivalent to the number of analog periods per 1 motor revolution.   Example: One motor revolution causes $1 / 3$ encoder revolution at an encoder resolution of 16 analog periods per revolution.   ResolENC2Num = 16 periods   ResolENC2Denom = 3 revolutions   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective the next time the power stage is enabled.	```EncInc 1 10000 2147483647```	INT32 R/W per.	Modbus 20492   IDN P-0-3080.0.6
ScaleRAMPdenom	Ramp scaling: Denominator.   See numerator (ScaleRAMPnum) for a description.   A new scaling is activated when the numerator value is supplied.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { usr_a } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1632   IDN P-0-3006.0.48
ScaleRAMPnum	Ramp scaling: Numerator.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & \text { RPM/s } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1634   IDN P-0-3006.0.49
ScaleVELdenom	Velocity scaling: Denominator.   See numerator (ScaleVELnum) for a description.   A new scaling is activated when the numerator value is supplied.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.	$\begin{aligned} & \text { usr_v } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1602   IDN P-0-3006.0.33


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R/W   Persistent Expert	Parameter address via fieldbus
ScaleVELnum	Velocity scaling: Numerator. Specification of the scaling factor:   Speed of rotation of motor [RPM]   User-defined units [usr_v]   A new scaling is activated when the numerator value is supplied.   Type: Signed decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{aligned} & \text { RPM } \\ & 1 \\ & 1 \\ & 2147483647 \end{aligned}$	INT32 R/W per.	Modbus 1604   IDN P-0-3006.0.34
SercosAddress   $\operatorname{C口\cap } F \rightarrow$ [ם $\Pi$ Addr	Sercos device address.   This parameter assigns a Sercos address to the drive.   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	0   0 $255$	UINT16 R/W per.	-
SercosPhaseStatus   Пロп   $5 \exists \subset P$	Sercos communication phase.   This parameter contains the current Sercos communication phase.   Type: Signed decimal - 2 bytes Modified settings become effective immediately.	$\begin{aligned} & -1 \\ & 0 \\ & 7 \end{aligned}$	INT16 R/-	Modbus 18180   IDN P-0-3071.0.2
ShiftEncWorkRang	Shifting of the encoder working range.   0 / Off: Shifting off   1 / On: Shifting on   After activating the shifting function, the position range of a multiturn encoder is shifted by one half of the range.   Example for the position range of a multiturn encoder with 4096 revolutions:   Value 0: Position values are between 0 ... 4096 revolutions.   Value 1: Position values are between -2048 ... 2048 revolutions.   Type: Unsigned decimal - 2 bytes Write access via Sercos: CP2, CP3, CP4 Modified settings become effective after the next power cycle.	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	UINT16 R/W per.	Modbus 1346   IDN P-0-3005.0.33


Parameter name HMI menu HMI name	Description	Unit   Minimum value   Factory setting   Maximum value	Data type R／W   Persistent Expert	Parameter address via fieldbus
SimAbsolutePos   CanF $\rightarrow$ R［L－ タート 5	Simulation of absolute position at power cycling． 0 ／Simulation Off／aF F：Do not use the last mechanical position after power cycling   1／Simulation On／an：Use last mechanical position after power cycling   This parameter specifies the way position values are handled over a power cycle and allows for the simulation of an absolute position encoder using singleturn encoders．   If this function is activated，the drive saves the pertinent position data prior to a power removal so that the drive can restore the mechanical position the next time it is powered on．   In the case of singleturn encoders，the position can be restored if the motor shaft has not been moved by more than 0.25 revolutions while the drive was powered off．   In the case of multiturn encoders，the permissible shaft movement while the drive is off can be much greater，depending on the type of multiturn encoder．   For this function to work，the drive may only be powered off while the motor is at a standstill and the motor shaft must not be moved outside of the permissible range（for example，use a holding brake）．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{array}{\|l} - \\ 0 \\ 0 \\ 1 \end{array}$	UINT16 R／W per．	Modbus 1350   IDN P－0－3005．0．35
SPDSercos3Control	SPD Sercos control（CAP1 and CAP2）．   Bit $0=0$ ：Cancel capture function   Bit $0=1$ ：Start one－time capture via input CAP1   Bit $1=0$ ：Cancel capture function   Bit 1 ＝1：Start one－time capture via input CAP2   Bits 2 ．．15：Reserved   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．		UINT16 R／W	Modbus 6560   IDN P－0－3025．0．80
SyncMechStart	Activation of synchronization mechanism．   Value 0：Deactivate synchronization mechanism   Value 1：Activate synchronization mechanism （CANmotion）．   Value 2：Activate synchronization mechanism， standard CANopen mechanism．   The cycle time of the synchronization signal is derived from the parameters intTimPerVal and intTimInd．   Type：Unsigned decimal－ 2 bytes   Write access via Sercos：CP2，CP3，CP4   Modified settings become effective immediately．	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	UINT16 R／W	Modbus 8714   IDN P－0－3034．0．5
SyncMechStatus	Status of synchronization mechanism．   Status of synchronization mechanism：   Value 1：Synchronization mechanism of drive is inactive．   Value 32：Drive is synchronizing with external sync signal．   Value 64：Drive is synchronized with external sync signal．   Type：Unsigned decimal－ 2 bytes		UINT16 R／－	Modbus 8716   IDN P－0－3034．0．6


Parameter name HMI menu HMI name	Description	Unit   Minimum value Factory setting Maximum value	Data type   R/W   Persistent   Expert	Parameter address via fieldbus
SyncMechTol	Synchronization tolerance.   The value is applied when the synchronization mechanism is activated via the parameter SyncMechStart.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & 1 \\ & 1 \\ & 20 \end{aligned}$	UINT16 R/W	Modbus 8712   IDN P-0-3034.0.4
UsrAppDataMem1	User-specific data 1.   This parameter can be used to store user-specific data.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.		UINT32 R/W per.	Modbus 390 IDN P-0-3001.0.67
UsrAppDataMem2	User-specific data 2.   This parameter can be used to store user-specific data.   Type: Unsigned decimal - 4 bytes   Write access via Sercos: CP2, CP3, CP4   Modified settings become effective immediately.	$\begin{aligned} & - \\ & - \\ & 0 \\ & \hline \end{aligned}$	UINT32 R/W per.	Modbus 392   IDN P-0-3001.0.68
WakesAndShakeGain	Gain for wake and shake.   If wake and shake did not work properly, this parameter can be used to adapt the dynamics of the wake and shake procedure.   Value >100 \%: Increased dynamics which leads to less motor movement.   Value <100 \%: Reduced dynamics which leads to more motor movement.   Type: Unsigned decimal - 2 bytes   Write access via Sercos: CP2, CP3, CP4   In increments of 0.1 \%.   Setting can only be modified if power stage is disabled.   Modified settings become effective immediately.	$\begin{array}{\|l} \hline \% \\ 1.0 \\ 100.0 \\ 400.0 \end{array}$	UINT16 R/W per.	Modbus 20508   IDN P-0-3080.0.14

## List of Mappable Parameters

## Overview

Parameter name	Description	Data type	Parameter address
S-0-0047.0.0	Position Command Value	INT32	S-0-0047.0.0
S-0-0051.0.0	Position Feedback Value	INT32	S-0-0051.0.0
S-0-0134.0.0	Drive Control Word	UINT16	S-0-0134.0.0
S-0-0135.0.0	Drive Status Word	UINT16	S-0-0135.0.0
S-0-0390.0.0	Diagnostic Number	UINT32	S-0-0390.0.0
S-0-1045.0.0	Device Status	UINT16	S-0-1045.0.0
S-0-1050.0.8	Connection Control	UINT16	S-0-1050.0.8
S-0-1050.1.8	Connection Control	UINT16	S-0-1050.1.8
S-0-1050.2.8	Connection Control	UINT16	S-0-1050.2.8
S-0-1050.3.8	Connection Control	UINT16	S-0-1050.3.8
_actionStatus	Action word	UINT16	P-0-3028.0. 4
_Cap1Count	Capture input 1 event counter (one-time)	UINT16	P-0-3010.0. 8
_Cap1CountCons	Capture input 1 event counter (continuous)	UINT16	P-0-3010.0. 23
_Cap1Pos	Capture input 1 captured position (one-time)	INT32	P-0-3010.0. 6
_Cap1PosCons	Capture input 1 captured position (continuous)	INT32	P-0-3010.0. 24
_Cap2Count	Capture input 2 event counter (one-time)	UINT16	P-0-3010.0. 9
_Cap2CountCons	Capture input 2 event counter (continuous)	UINT16	P-0-3010.0. 25
_Cap2Pos	Capture input 2 captured position (one-time)	INT32	P-0-3010.0. 7
_Cap2PosCons	Capture input 2 captured position (continuous)	INT32	P-0-3010.0. 26
_Cap3Count	Capture input 3 event counter (one-time)	UINT16	P-0-3010.0. 20
_Cap3CountCons	Capture input 3 event counter (continuous)	UINT16	P-0-3010.0. 27
_Cap3Pos	Capture input 3 captured position (one-time)	INT32	P-0-3010.0. 19
_Cap3PosCons	Capture input 3 captured position (continuous)	INT32	P-0-3010.0. 28
_CapStatus	Status of the capture inputs	UINT16	P-0-3010.0. 1
_DCOMopmd_act	Active operating mode	INT16	P-0-3027.0. 4
_DCOMstatus	DriveCom status word	UINT16	P-0-3027.0. 2
_eSM_funct	eSM function	UINT16	P-0-3076.0. 23
_eSM_LI_act	eSM digital inputs channel B	UINT16	P-0-3076.0. 18
_eSM_LO_act	eSM digital outputs channel B	UINT16	P-0-3076.0. 20
_eSM_state	eSM operating state	UINT16	P-0-3076.0. 22
_I_act	Total motor current	INT16	P-0-3030.0. 3
_IO_act	Physical status of the digital inputs and outputs	UINT16	P-0-3008.0. 1
_IO_DI_act	Status of digital inputs	UINT16	P-0-3008.0. 15
_IO_DQ_act	Status of digital outputs	UINT16	P-0-3008.0. 16
_LastError	Detected error causing a stop (error classes 1 to 4)	UINT16	P-0-3028.0. 5
_LastWarning	Code of most recent error of error class 0	UINT16	P-0-3028.0. 9
_p_act_ENC1	Actual position of encoder 1	INT32	P-0-3030.0. 39
_p_act_ENC1_int	Actual position of encoder 1 in internal units	INT32	P-0-3030.0. 38
_p_act_ENC2	Actual position of encoder 2 (module)	INT32	P-0-3030.0. 26
_p_act_ENC2_int	Actual position of encoder 2 (module) in internal units	INT32	P-0-3030.0. 25
_p_act_pure_ENC2	Actual position of encoder 2 without internal offset	INT32	P-0-3030.0. 29
_p_dif	Position deviation including dynamic position deviation	INT32	P-0-3030.0. 18
_p_dif_load_usr	Load-dependent position deviation between reference and actual positions	INT32	P-0-3030.0. 22
_P_PTI_act	Actual position at PTI interface	INT32	P-0-3008.0. 5


Parameter name	Description	Data type	Parameter address
_SPDSercos3Status	SPD Sercos status (CAP1 and CAP2)	UINT16	P-0-3025.0. 81
_tq_act	Actual torque	INT16	P-0-3030.0. 36
_v_act	Actual velocity	INT32	P-0-3030.0. 32
_v_PTI_act	Actual velocity at PTI interface	INT32	P-0-3008.0. 6
CTRL_I_max	Current limitation	UINT16	P-0-3017.0. 12
CTRL_v_max	Velocity limitation	UINT32	P-0-3017.0. 16
HMp_home	Position at reference point	INT32	P-0-3040.0. 11
IO_DQ_set	Setting the digital outputs directly	UINT16	P-0-3008.0. 17
MON_I_Threshold	Monitoring of current threshold	UINT16	P-0-3006.0. 28
MON_p_dif_load	Maximum load-dependent position deviation	UINT32	P-0-3006.0. 35
MON_v_Threshold	Monitoring of velocity threshold	UINT32	P-0-3006.0. 27
PTtq_target	Target torque	INT16	P-0-3027.0. 16
PVv_target	Target velocity	INT32	P-0-3027.0. 13
SPDSercos3Control	SPD Sercos control (CAP1 and CAP2)	UINT16	P-0-3025.0. 80

## Chapter 12

## Accessories and Spare Parts

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Commissioning Tools	456
Memory Cards	457
Additional Modules	458
Safety Module eSM	459
Application Nameplate	460
SERCOS III Cables with Connectors	461
Cables for PTO and PTI	462
Motor Cables	463
Encoder Cables	466
Connectors	467
External Braking Resistors	468
DC Bus Accessories	469
Mains Reactors	470
External Mains Filters	471
Spare Parts Connectors, Fans, Cover Plates	472

## Commissioning Tools

Description	Reference
PC connection kit, serial connection between drive and PC, USB-A to RJ45	TCSMCNAM3M002P
Multi-Loader, device for copying the parameter settings to a PC or to another drive	VW3A8121
Modbus cable, $1 \mathrm{~m}(3.28 \mathrm{ft}), 2 \times$ RJ45	VW3A8306R10
Modbus-Bluetooth adapter	VW3A8114
External graphic display terminal	VW3A1101

## Memory Cards

Description	Reference
Memory card for copying parameter settings	VW3M8705
25 memory cards for copying parameter settings	VW3M8704

## Additional Modules

Description	Reference
Encoder module RSR (resolver interface) with DE9 D-SUB connection (female)	VW3M3401
Encoder module DIG (digital interface) with HD15 D-SUB connection (female)	VW3M3402
Encoder module ANA (analog interface) with HD15 D-SUB connection (female)	VW3M3403

## Safety Module eSM

Description	Reference
Safety module eSM with safety functions SOS, SLS, SS1, SS2 as per IEC/EN 61800-5-2	VW3M3501
Cable for safety module eSM, $3 \mathrm{~m}(9.84 \mathrm{ft}) ; 24$-pin connector, other cable end open	VW3M8801R30
Cable for safety module eSM, $1.5 \mathrm{~m}(4.92 \mathrm{ft}) ; 2 \times 24$-pin connector	VW3M8802R15
Cable for safety module eSM, $3 \mathrm{~m}(9.84 \mathrm{ft}) ; 2 \times 24$-pin connector	VW3M8802R30
Connection terminal adapter for eSM safety module, for easy wiring of several safety modules   in the control cabinet	VW3M8810
Connector with wire jumper (for INTERLOCK signal) for eSM terminal adapter; 4 pieces	VW3M8820

## Application Nameplate

Description	Reference
Application nameplate to be clipped onto the top of the drive, size $38.5 \times 13 \mathrm{~mm}(1.51 \times 0.51 \mathrm{in})$,   50 pieces	VW3M2501

## SERCOS III Cables with Connectors

Description	Reference
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $0.5 \mathrm{~m}(1.64 \mathrm{ft})$	VW3E5001R005
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $1 \mathrm{~m}(3.28 \mathrm{ft})$	VW3E5001R010
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $1.5 \mathrm{~m} \mathrm{(4.92} \mathrm{ft)}$	VW3E5001R015
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $2 \mathrm{~m}(6.56 \mathrm{ft})$	VW3E5001R020
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $3 \mathrm{~m} \mathrm{(9.84} \mathrm{ft)}$	VW3E5001R030
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $5 \mathrm{~m} \mathrm{(16.4} \mathrm{ft)}$	VW3E5001R050
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $10 \mathrm{~m} \mathrm{(32.8} \mathrm{ft)}$	VW3E5001R100
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $15 \mathrm{~m} \mathrm{(49.2} \mathrm{ft)}$	VW3E5001R150
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $20 \mathrm{~m} \mathrm{(65.6} \mathrm{ft)}$	VW3E5001R200
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $25 \mathrm{~m} \mathrm{(82} \mathrm{ft)}$	VW3E5001R250
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $30 \mathrm{~m} \mathrm{(98.4} \mathrm{ft)}$	VW3E5001R300
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $40 \mathrm{~m} \mathrm{(131} \mathrm{ft)}$	VW3E5001R400
SERCOS III cable, $2 \times$ RJ45, shielded cable, Twisted Pair, $50 \mathrm{~m} \mathrm{(164} \mathrm{ft)}$	VW3E5001R500

Cables for PTO and PTI

Description	Reference
Signal cable $2 \times$ RJ45, PTO to PTI, $0.3 \mathrm{~m}(0.98 \mathrm{ft})$	VW3M8502R03
Signal cable $2 \times$ RJ45, PTO to PTI, $1.5 \mathrm{~m}(4.92 \mathrm{ft})$	VW3M8502R15
Signal cable $1 \times$ RJ45, other cable end open, for connecting PTI in the control cabinet, 3 m   $(9.84 \mathrm{ft})$	VW3M8223R30

## Motor Cables

Motor cables $1.0 \mathrm{~mm}^{2}$

Description	Reference
Motor cable $3 \mathrm{~m}(9.84 \mathrm{ft}),\left(4 \times 1.0 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin   circular connector Y-TEC, other cable end open	VW3M5100R30
Motor cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(4 \times 1.0 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin   circular connector Y-TEC, other cable end open	VW3M5100R50
Motor cable $10 \mathrm{~m}(32.8 \mathrm{ft}),\left(4 \times 1.0 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin   circular connector Y-TEC, other cable end open	VW3M5100R100
Motor cable $15 \mathrm{~m}(49.2 \mathrm{ft}),\left(4 \times 1.0 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin   circular connector Y-TEC, other cable end open	VW3M5100R150
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 1.0 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular   connector Y-TEC, other cable end open	VW3M5100R250
Motor cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(4 \times 1.0 \mathrm{~mm}^{2}+2 \times\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends   open	VW3M5300R1000

Motor cables $1.5 \mathrm{~mm}^{2}$

Description	Reference
Motor cable $1.5 \mathrm{~m}(4.92 \mathrm{ft})$, $\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R15
Motor cable $3 \mathrm{~m}(9.84 \mathrm{ft})$, $\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R30
Motor cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R50
Motor cable $10 \mathrm{~m}(32.8 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M23, other cable end open	VW3M5101R100
Motor cable $15 \mathrm{~m}(49.2 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R150
Motor cable $20 \mathrm{~m}(65.6 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R200
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R500
Motor cable $75 \mathrm{~m}(246 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5101R750
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5301R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends open	VW3M5301R500
Motor cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(4 \times 1.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5301R1000

Motor cables $2.5 \mathrm{~mm}^{2}$

Description	Reference
Motor cable $3 \mathrm{~m}(9.84 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R30
Motor cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R50
Motor cable $10 \mathrm{~m}(32.8 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R100
Motor cable $15 \mathrm{~m}(49.2 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R150
Motor cable $20 \mathrm{~m}(65.6 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R200
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R500
Motor cable $75 \mathrm{~m}(246 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M23, other cable end open	VW3M5102R750
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5302R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends open	VW3M5302R500
Motor cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(4 \times 2.5 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends open	VW3M5302R1000

Motor cables $4 \mathrm{~mm}^{2}$

Description	Reference
Motor cable $3 \mathrm{~m}(9.84 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R30
Motor cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R50
Motor cable $10 \mathrm{~m}(32.8 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R100
Motor cable $15 \mathrm{~m}(49.2 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R150
Motor cable $20 \mathrm{~m}(65.6 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R200
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5103R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R500
Motor cable $75 \mathrm{~m}(246 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5103R750
Motor cable $25 \mathrm{~m}(82 \mathrm{ft})$, $\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5303R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5303R500
Motor cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(4 \times 4 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5303R1000

Motor cables $6 \mathrm{~mm}^{2}$

Description	Reference
Motor cable $3 \mathrm{~m}(9.84 \mathrm{ft})$, $\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R30
Motor cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R50
Motor cable $10 \mathrm{~m}(32.8 \mathrm{ft})$, $\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R100
Motor cable $15 \mathrm{~m}(49.2 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R150
Motor cable $20 \mathrm{~m}(65.6 \mathrm{ft})$, $\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R200
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R500
Motor cable $75 \mathrm{~m}(246 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5105R750
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5305R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5305R500
Motor cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(4 \times 6 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends open	VW3M5305R1000

Motor cables $10 \mathrm{~mm}^{2}$

Description	Reference
Motor cable $3 \mathrm{~m}(9.84 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R30
Motor cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R50
Motor cable $10 \mathrm{~m}(32.8 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R100
Motor cable $15 \mathrm{~m}(49.2 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R150
Motor cable $20 \mathrm{~m}(65.6 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R200
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8 -pin circular connector M40, other cable end open	VW3M5104R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R500
Motor cable $75 \mathrm{~m}(246 \mathrm{ft})$, $\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; motor end 8-pin circular connector M40, other cable end open	VW3M5104R750
Motor cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends open	VW3M5304R250
Motor cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right.$ ) shielded; both cable ends open	VW3M5304R500
Motor cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(4 \times 10 \mathrm{~mm}^{2}+\left(2 \times 1 \mathrm{~mm}^{2}\right)\right)$ shielded; both cable ends open	VW3M5304R1000


Description	Reference
Encoder cable $3 \mathrm{~m}(9.84 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector Y-TEC, device end 10-pin connector RJ45	VW3M8100R30
Encoder cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector Y-TEC, device end 10-pin connector RJ45	VW3M8100R50
Encoder cable $10 \mathrm{~m}(32.8 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector Y-TEC, device end 10-pin connector RJ45	VW3M8100R100
Encoder cable $15 \mathrm{~m}(49.2 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector Y-TEC, device end 10-pin connector RJ45	VW3M8100R150
Encoder cable $25 \mathrm{~m}(82 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector Y-TEC, device end 10-pin connector RJ45	VW3M8100R250
Encoder cable $1.5 \mathrm{~m}(4.92 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R15
Encoder cable $3 \mathrm{~m}(9.84 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R30
Encoder cable $5 \mathrm{~m}(16.4 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R50
Encoder cable $10 \mathrm{~m}(32.8 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R100
Encoder cable $15 \mathrm{~m}(49.2 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R150
Encoder cable $20 \mathrm{~m}(65.6 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R200
Encoder cable $25 \mathrm{~m}(82 \mathrm{ft})$, $\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R250
Encoder cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R500
Encoder cable $75 \mathrm{~m}(246 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3M8102R750
Encoder cable $25 \mathrm{~m}(82 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; both cable ends open	VW3M8222R250
Encoder cable $50 \mathrm{~m}(164 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; both cable ends open	VW3M8222R500
Encoder cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(3 \times 2 \times 0.14 \mathrm{~mm}^{2}+2 \times 0.34 \mathrm{~mm}^{2}\right)$ shielded; both cable ends open	VW3M8222R1000
Encoder cable $100 \mathrm{~m}(328 \mathrm{ft}),\left(5 \times 2 \times 0.25 \mathrm{~mm}^{2}+2 \times 0.5 \mathrm{~mm}^{2}\right)$ shielded; both cable ends open	VW3M8221R1000
Encoder cable $1 \mathrm{~m}(3.28 \mathrm{ft})$, shielded; HD15 D-SUB (male); other cable end open	VW3M4701


Description	Reference
Connector for motor cable, motor end Y-TEC, $1 \mathrm{~mm}^{2}, 5$ pieces	VW3M8219
Connector for motor cable, motor end M23, $1.5 \ldots 2.5 \mathrm{~mm}^{2}, 5$ pieces	VW3M8215
Connector for motor cable, motor end M40, $4 \mathrm{~mm}^{2}, 5$ pieces	VW3M8217
Connector for motor cable, motor end M40, $6 \ldots .10 \mathrm{~mm}^{2}, 5$ pieces	VW3M8218
Connector for encoder cable, motor end Y-TEC, 5 pieces	VW3M8220
Connector for encoder cable, motor end M23, 5 pieces	VW3M8214
Connector for encoder cable, drive end RJ45 $(10$ pins $), 5$ pieces	VW3M2208

The tools required for cable assembly can be ordered directly from the manufacturer.

- Crimping tool for power connector Y-TEC:

Intercontec C0.201.00 or C0.235.00
www.intercontec.com

- Crimping tool for power connector M23/M40:

Coninvers SF-Z0025, SF-Z0026
www.coninvers.com

- Crimping tool for encoder connector Y-TEC: Intercontec C0.201.00 or C0.235.00 www.intercontec.com
- Crimping tool for encoder connector M23:

Coninvers RC-Z2514
www.coninvers.com

- Crimping tools for encoder connector RJ45 10 pins:

Yamaichi Y-ConTool-11, Y-ConTool-20, Y-ConTool-30
www.yamaichi.com

## External Braking Resistors

Description	Reference
Braking resistor IP65; $10 \Omega$; maximum continuous power $400 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7601R07
Braking resistor IP65; $10 \Omega$; maximum continuous power $400 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7601R20
Braking resistor IP65; $10 \Omega$; maximum continuous power $400 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7601R30
Braking resistor IP65; $27 \Omega$; maximum continuous power $100 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7602R07
Braking resistor IP65; $27 \Omega$; maximum continuous power $100 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7602R20
Braking resistor IP65; $27 \Omega$; maximum continuous power $100 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, 2.1 mm² (AWG 14), UL	VW3A7602R30
Braking resistor IP65; $27 \Omega$; maximum continuous power $200 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7603R07
Braking resistor IP65; $27 \Omega$; maximum continuous power $200 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7603R20
Braking resistor IP65; $27 \Omega$; maximum continuous power $200 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7603R30
Braking resistor IP65; $27 \Omega$; maximum continuous power $400 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7604R07
Braking resistor IP65; $27 \Omega$; maximum continuous power $400 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7604R20
Braking resistor IP65; $27 \Omega$; maximum continuous power $400 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7604R30
Braking resistor IP65; $72 \Omega$; maximum continuous power $100 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7605R07
Braking resistor IP65; $72 \Omega$; maximum continuous power $100 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7605R20
Braking resistor IP65; $72 \Omega$; maximum continuous power $100 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7605R30
Braking resistor IP65; $72 \Omega$; maximum continuous power $200 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7606R07
Braking resistor IP65; $72 \Omega$; maximum continuous power $200 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7606R20
Braking resistor IP65; $72 \Omega$; maximum continuous power $200 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7606R30
Braking resistor IP65; $72 \Omega$; maximum continuous power $400 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7607R07
Braking resistor IP65; $72 \Omega$; maximum continuous power $400 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7607R20
Braking resistor IP65; $72 \Omega$; maximum continuous power $400 \mathrm{~W} ; 3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14)	VW3A7607R30
Braking resistor IP65; $100 \Omega$; maximum continuous power $100 \mathrm{~W} ; 0.75 \mathrm{~m}(2.46 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7608R07
Braking resistor IP65; $100 \Omega$; maximum continuous power $100 \mathrm{~W} ; 2 \mathrm{~m}(6.56 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7608R20
Braking resistor IP65; $100 \Omega$; maximum continuous power 100 W ; $3 \mathrm{~m}(9.84 \mathrm{ft})$ connection cable, $2.1 \mathrm{~mm}^{2}$ (AWG 14), UL	VW3A7608R30
Braking resistor IP20; $16 \Omega$; maximum continuous power 960 W ; M6 terminals, UL	VW3A7704
Braking resistor IP20; $10 \Omega$; maximum continuous power 960 W ; M6 terminals, UL	VW3A7705

## DC Bus Accessories

Description	Reference
DC bus connection cable, $0.1 \mathrm{~m}(0.33 \mathrm{ft}), 2 * 6 \mathrm{~mm}^{2}(2$ * AWG 10), pre-assembled, 5 pieces	VW3M7101R01
DC bus connection cable, $15 \mathrm{~m}(49.2 \mathrm{ft}), 2$ * $6 \mathrm{~mm}^{2}(2$ * AWG 10), Twisted Pair, shielded	VW3M7102R150
DC bus connector kit, connector housing and crimp contacts for $3 \ldots 6 \mathrm{~mm}^{2}$ (AWG $\left.12 \ldots 10\right)$,   10 pieces	VW3M2207

A crimping tool is required for the crimp contacts of the connector kit. Manufacturer:
Tyco Electronics, Heavy Head Hand Tool, Tool Pt. No 180250

Mains Reactors

Description	Reference
Mains reactor single-phase; $50-60 \mathrm{~Hz} ; 7$ A; $5 \mathrm{mH} ; \mathrm{IP} 00$	VZ1L007UM50
Mains reactor single-phase; $50-60 \mathrm{~Hz} ; 18$ A; $2 \mathrm{mH} ;$ IP00	VZ1L018UM20
Mains reactor three-phase; $50-60 \mathrm{~Hz} ; 16 \mathrm{~A} ; 2 \mathrm{mH} ;$ IP00	VW3A4553
Mains reactor three-phase; $50-60 \mathrm{~Hz} ; 30 \mathrm{~A} ; 1 \mathrm{mH} ;$ IP00	VW3A4554
Mains reactor three-phase; $50-60 \mathrm{~Hz} ; 60 \mathrm{~A} ; 0.5 \mathrm{mH} ;$ IP00	VW3A4555

## External Mains Filters

Description	Reference
Mains filter single-phase; $9 \mathrm{~A} ; 115 / 230 \mathrm{Vac}$	VW3A4420
Mains filter single-phase; $16 \mathrm{~A} ; 115 / 230 \mathrm{Vac}$	VW3A4421
Mains filter three-phase; 15 A; 208/400/480 Vac	VW3A4422
Mains filter three-phase; $25 \mathrm{~A} ; 208 / 400 / 480$ Vac	VW3A4423
Mains filter three-phase; 47 A; 208/400/480 Vac	VW3A4424

Spare Parts Connectors, Fans, Cover Plates

Description	Reference
Connector kit LXM32M: $3 \times$ AC power stage supply $(230 / 400 \mathrm{Vac}), 1 \times$ control supply,   $2 \times$ digital inputs/outputs $(6-$ pin $), 2 \times$ motor $(10 \mathrm{~A} / 24 \mathrm{~A}), 1 \times$ holding brake	VW3M2203
Cover plate for module slot, spare part to replace damaged/lost cover plates, 10 pieces	VW3M2405
Cooling fan kit $40 \times 40 \mathrm{~mm}(1.57 \times 1.57$ in), plastic housing, with connection cable	VW3M2401
Cooling fan kit $60 \times 60 \mathrm{~mm}(2.36 \times 2.36$ in), plastic housing, with connection cable	VW3M2402
Cooling fan kit $80 \times 80 \mathrm{~mm}(3.15 \times 3.15 \mathrm{in})$, plastic housing, with connection cable	VW3M2403

## Chapter 13

Service, Maintenance, and Disposal

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Service Addresses	474
Maintenance	475
Replacing the Product	476
Replacement of the Motor	477
Shipping, Storage, Disposal	478

Service Addresses
Schneider Electric Automation GmbH
Schneiderplatz 1
97828 Marktheidenfeld, Germany
Phone: +49 (0) 9391 / 606-0
Fax: +49 (0) 9391 / 606-4000
Email: info-marktheidenfeld@schneider-electric.com
Internet: http://www.schneider-electric.com
Additional Contact Addresses
See the homepage for additional contact addresses:
http://www.schneider-electric.com

## Maintenance

Maintenance Plan
Inspect the product for pollution or damage at regular intervals.
Repairs may only be made by the manufacturer. No warranty or liability is accepted for repairs made by unauthorized persons.

Prior to any type of work on the drive system, consult the chapters on Installation and Commissioning for information on the precautions and processes to be observed.

Include the following points in the maintenance plan of your machine.

## Connections and Fastening

- Inspect all connection cables and connectors regularly for damage. Replace damaged cables immediately.
- Verify that all output elements are firmly seated.
- Tighten all mechanical and electrical threaded connections to the specified torque.

Lifetime Safety Function STO
The STO safety function is designed for a lifetime of 20 years. After this period, the data of the safety function are no longer valid. The expiry date is determined by adding 20 years to the DOM shown on the nameplate of the product.

- This date must be included in the maintenance plan of the system.

Do not use the safety function after this date.
Example:
The DOM on the nameplate of the product is shown in the format DD.MM.YY, for example 31.12.16. (31 December 2016). This means: Do not use the safety function after December 31, 2036.

## Replacing the Product

Unsuitable parameter values or unsuitable data may trigger unintended movements, trigger signals, damage parts and disable monitoring functions. Some parameter values or data do not become active until after a restart.

UNINTENDED EQUIPMENT OPERATION
- Only start the system if there are no persons or obstructions in the zone of operation.
- Do not operate the drive system with undetermined parameter values or data.
- Never modify a parameter value unless you fully understand the parameter and all effects of the
modification.
- Restart the drive and verify the saved operational data and/or parameter values after modifications.
- Carefully run tests for all operating states and potential error situations when commissioning,
- upgrading or otherwise modifying the operation of the drive.
values and/or other operational data.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Follow the procedure below for replacing devices.

- Save all parameter settings. To do so, use a memory card or save the data to a PC using the commissioning software, see chapter Parameter Management (see page 176).
- Power off all supply voltages. Verify that no voltages are present (safety instructions).
- Label all connections and remove all connection cables (unlock connector locks).
- Uninstall the product.
- Note the identification number and the serial number shown on the product nameplate for later identification.
- Install the new product as per chapter Installation (see page 89).
- If the product to be installed has previously been used in a different system or application, you must restore the factory settings before commissioning the product.
- Commission the product as per chapter Commissioning (see page 123).


## Replacement of the Motor

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Though the connectors for motor connection and encoder connection may match mechanically, this does not imply that the motor is approved for use.

UNARNING
UNINTENDED MOVEMENT
Only use approved combinations of drive and motor.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

- Power off all supply voltages. Verify that no voltages are present (safety instructions).
- Label all connections and uninstall the product.
- Note the identification number and the serial number shown on the product nameplate for later identification.
- Install the new product as per chapter Installation (see page 89).

If the connected motor is replaced by another motor, the motor data set is read again. If the device detects a different motor type, the control loop parameters are recalculated and the HMI displays $\Pi_{a}$. See chapter Acknowledging a Motor Change (see page 310) for additional information.
If the motor is replaced, the encoder parameters must also be re-adjusted, see chapter Setting Parameters for Encoder (see page 155).
If a motor encoder is connected via encoder 2 (module), a motor replacement is not detected. Observe the information provided in the encoder manual.

## Changing the Motor Type Temporarily

If you want to operate the new motor type only temporarily via the device, press ESC at the HMI.
The newly calculated control loop parameters are not saved to the nonvolatile memory. This way, you can resume operation with the original motor using the saved control loop parameters.

## Changing the Motor Type Permanently

If you want to operate the new motor type permanently via this device, press the navigation button at the HMI.

The newly calculated control loop parameters are saved to the nonvolatile memory.
See also chapter Acknowledging a Motor Change (see page 310).

Shipping, Storage, Disposal

Shipping
The product must be protected against shocks during transportation. If possible, use the original packaging for shipping.

Storage
The product may only be stored in spaces where the specified permissible ambient conditions are met. Protect the product from dust and dirt.

Disposal
The product consists of various materials that can be recycled. Dispose of the product in accordance with local regulations.
Visit http://www.schneider-electric.com/green-premium for information and documents on environmental protection as per ISO 14025 such as:

- EoLi (Product End-of-Life Instructions)
- PEP (Product Environmental Profile)


## A

Actual value
In control engineering, the actual value is the value of the controlled variable at a given instant (for example, actual velocity, actual torque, actual position). The actual value is an input value (measured value) used by the control loops to reach the reference value.

## C

CCW
Counter Clockwise.
CW
Clockwise.

## D

DC bus
Circuit that supplies the power stage with energy (direct voltage).

## Degree of protection

The degree of protection is a standardized specification for electrical equipment that describes the protection against the ingress of foreign objects and water (for example: IP 20).

## Direction of movement

In the case of a rotary motors, direction of movement is defined in accordance with IEC 61800-7-204: Positive direction is when the motor shaft rotates clockwise as you look at the end of the protruding motor shaft.

## DOM

Date of manufacturing: The nameplate of the product shows the date of manufacture in the format DD.MM.YY or in the format DD.MM. YYYY. For example:
31.12.11 corresponds to December 31, 2011
31.12.2011 corresponds to December 31, 2011

## Drive system

System consisting of controller, drive and motor.

## E

EMC
Electromagnetic compatibility
Encoder

Error

## Error class

Classification of errors into groups. The different error classes allow for specific responses to errors, for example by severity.

## F

Factory settings
Sensor that converts a measured distance or angle into an electrical signal. This signal is evaluated by the drive to determine the actual position of a shaft (rotor) or a driving unit.

Discrepancy between a detected (computed, measured or signaled) value or condition and the specified or theoretically correct value or condition.

Settings when the product is shipped.

## Fault

Fault is an operating state. If the monitoring functions detect an error, a transition to this operating state is triggered, depending on the error class. A "Fault Reset" or a power cycle are required to exit this operating state. Prior to this, the cause of the detected error must be removed. Further information can be found in the pertinent standards such as IEC 61800-7, ODVA Common Industrial Protocol (CIP).

## Fault Reset

I/O
$12 t$ monitoring

Inc

Index pulse

Internal units
Resolution of the power stage at which the motor can be positioned. Internal units are specified in increments.

L

Limit switch
Switches that signal overtravel of the permissible range of travel.

## M

## Monitoring function

Monitoring functions acquire a value continuously or cyclically (for example, by measuring) in order to check whether it is within permissible limits. Monitoring functions are used for error detection. Monitoring functions are not safety functions.

## $P$

Parameter

PELV
Device data and values that can be read and set (to a certain extent) by the user.

Protective Extra Low Voltage, low voltage with isolation. For more information: IEC 60364-4-41

## Persistent

Power stage
Indicates whether the value of the parameter remains in the memory after the device is switched off.

The power stage controls the motor. The power stage generates current for controlling the motor on the basis of the motion signals from the controller.

## Pulse/direction signals

Digital signals with variable pulse frequencies which signal changes in position and direction of movement via separate signal wires.

## Q

## Quick Stop

The function can be used for fast deceleration of a movement as a response to a detected error or via a command.

	R
RCD	
	RCD residual current device.
rms	
	"Root Mean Square" value of a voltage ( $\mathrm{V}_{\text {rms }}$ ) or a current ( $\mathrm{A}_{\text {rms }}$ )
RS485	
	Fieldbus interface as per EIA-485 which enables serial data transmission with multiple devices.
	S
Safety function	
	Safety functions are defined in the standard IEC 61800-5-2 (for example, Safe Torque Off (STO), Safe Operating Stop (SOS) or Safe Stop 1 (SS1)). If the safety functions are wired properly, they meet the requirements specified in IEC 61800-5-2.
Scaling factor This factor is the ratio between an internal unit and a user-defined unit.	
	U
User-defined unit Unit whose reference to motor movement can be determined by the user via parameters.	

## Index

## 0-9

24 Vdc control supply, 35

## A

access channels, 184
approved motors, 27
automatic reading of the motor data record, 141

## B

before you begin
safety information, 9
Braking resistor:Selection, 75

## C

cable specifications, 64
capacitor and braking resistor, 44
certifications, 52
components and interfaces, 17
controller structure, 166

## D

device overview, 16
disposal, 478, 478

## E

emission, 48
equipotential bonding conductors, 61
error class, 226
error class of error messages, 326
error memory, 323
error messages, 325
error response, 226
external braking resistors (accessories), 47

## F

function $A / B$ signals, 41
function CW/CCW signals, 43
function P/D signals, 42

## |

input circuit, 39
installation site and connection, 22
intended use, 10

## M

Monitoring:Braking resistor, 75

## N

nameplate, 18

## 0

operating states, 224

## P

parameter _AccessInfo, 369
parameter_actionStatus, 369
parameter_AT_J, 164, 370
parameter_AT_M_friction, 163, 370
parameter _AT_M_load, 164, 370
parameter _AT_progress, 163, 370
parameter _AT_state, 163, 370
parameter _Cap1CountCons, 275, 370
parameter_Cap1Pos, 274, 370
parameter_Cap1PosCons, 275, 370
parameter _Cap2CountCons, 275, 370
parameter_Cap2Pos, 274, 370
parameter_Cap2PosCons, 275, 371
parameter_Cap3CountCons, 275, 371
parameter_Cap3Pos, 274, 371
parameter_Cap3PosCons, 275, 371
parameter _CapStatus, 274, 371
parameter _CommutCntAct, 371
parameter _Cond_State4, 371
parameter_CTRL_ActParSet, 167, 213, 372
parameter_CTRL_KPid, 372
parameter_CTRL_KPiq, 372
parameter_CTRL_TNid, 372
parameter_CTRL_TNiq, 372
parameter_DCOMopmd_act, 372
parameter _DCOMstatus, 373
parameter _DEV_T_current, 373
parameter _ENC_AmpIMax, 373
parameter _ENC_AmpIMean, 373
parameter_ENC_AmpIMin, 373
parameter_ENC_AmplVal, 373
parameter _Enc2Cos, 373
parameter _Enc2Sin, 373
parameter_ENCAnaHallStatu, 373
parameter _ERR_class, 323, 374
parameter _ERR_DCbus, 324, 374
parameter_ERR_enable_cycl, 324, 374
parameter_ERR_enable_time, 324, 374
parameter _ERR_motor_I, 324, 374
parameter_ERR_motor_v, 324, 374
parameter_ERR_number, 323, 374
parameter_ERR_powerOn, 324, 374
parameter _ERR_qual, 324, 374
parameter_ERR_temp_dev, 324, 374
parameter _ERR_temp_ps, 324, 374
parameter _ERR_time, 324, 374
parameter _ErrNumFbParSvc, 375
parameter _eSM_funct, 375
parameter_eSM_LI_act, 375
parameter_eSM_LI_mask, 375
parameter _eSM_LO_act, 375
parameter _eSM_state, 376
parameter _eSMVer, 376
parameter _fwNoSlot1, 376
parameter _fwNoSlot2, 376
parameter _fwNoSlot3, 376
parameter _fwNoSlot3Boot, 376
parameter_fwNoSlot3FPGA, 376
parameter _fwNoSlot3PRU, 376
parameter _fwRevSlot1, 377
parameter _fwRevSlot2, 377
parameter _fwRevSlot3, 377
parameter _fwRevSlot3Boot, 377
parameter_fwRevSlot3FPGA, 377
parameter _fwRevSlot3PRU, 377
parameter _fwVersSlot1, 378
parameter _fwVersSlot2, 378
parameter _fwVersSlot3, 378
parameter _fwVersSlot3Boot, 378
parameter _fwVersSlot3FPGA, 378
parameter _fwVersSlot3PRU, 378
parameter _HMdisREFtoIDX, 379
parameter_HMdisREFtoIDX_usr, 251, 379
parameter _hwVersCPU, 379
parameter _hwVersPS, 379
parameter _hwVersSlot1, 379
parameter _hwVersSlot2, 379
parameter _hwVersSlot3, 379
parameter _I_act, 379
parameter _Id_act_rms, 379
parameter _Id_ref_rms, 379
parameter _Imax_act, 379
parameter _Imax_system, 380
parameter _Inc_ENC2Raw, 380
parameter _InvalidParam, 380
parameter_IO_act, 146, 380
parameter _IO_DI_act, 146, 380
parameter _IO_DQ_act, 146, 380
parameter _IO_STO_act, 146, 380
parameter_IOdataMtoS01, 381
parameter _IOdataStoM01, 381
parameter _IOmappingMtoS01, 381
parameter _IOmappingStoM01, 381
parameter _lq_act_rms, 381
parameter _lq_ref_rms, 381
parameter _LastError, 322, 381
parameter _LastError_Qual, 381
parameter _LastWarning, 322, 382
parameter_M_BRK_T_apply, 382
parameter _M_BRK_T_release, 382
parameter_M_Enc_Cosine, 382
parameter _M_Enc_Sine, 382
parameter _M_Encoder, 382
parameter _M_HoldingBrake, 382
parameter_M_I_0, 382
parameter _M_I_max, 382
parameter _M_I_nom, 382
parameter _M_I2t, 382
parameter_M_Jrot, 383
parameter _M_kE, 383
parameter_M_L_d, 383
parameter_M_L_q, 383
parameter _M_load, 297, 383
parameter _M_M_0, 383
parameter _M_M_max, 383
parameter _M_M_nom, 383
parameter _M_maxoverload, 298, 383
parameter _M_n_max, 383
parameter _M_n_nom, 383
parameter _M_overload, 298, 383
parameter _M_Polepair, 384
parameter_M_PolePairPitch, 384
parameter_M_R_UV, 384
parameter _M_T_current, 296, 384
parameter _M_T_max, 296, 384
parameter _M_Type, 384
parameter_M_U_max, 384
parameter _M_U_nom, 384
parameter_ModuleSlot1, 384
parameter _ModuleSlot2, 384
parameter _ModuleSlot3, 384
parameter _n_act, 384
parameter _n_act_ENC1, 385
parameter _n_act_ENC2, 385
parameter _n_ref, 385
parameter _OpHours, 385
parameter_p_absENC, 155, 385
parameter _p_absmodulo, 385
parameter _p_act, 385
parameter _p_act_ENC1, 385
parameter _p_act_ENC1_int, 385
parameter _p_act_ENC2, 385
parameter _p_act_ENC2_int, 385
parameter_p_act_int, 385
parameter _p_dif, 386
parameter _p_dif_load, 386
parameter _p_dif_load_peak, 386
parameter _p_dif_load_peak_usr, 283, 386
parameter_p_dif_load_usr, 283, 386
parameter_p_dif_usr, 386
parameter _p_DifENC1toENC2, 386
parameter _p_PTI_act, 386
parameter _p_ref, 387
parameter _p_ref_int, 387
parameter _PAR_ScalingError, 387
parameter_PAR_ScalingState, 387
parameter _Power_act, 387
parameter _Power_mean, 387
parameter_pref_acc, 387
parameter _pref_v, 387
parameter _prgNoDEV, 387
parameter_prgRevDEV, 388
parameter _prgVerDEV, 388
parameter _PS_I_max, 388
parameter _PS_I_nom, 388
parameter_PS_load, 297, 388
parameter_PS_maxoverload, 298, 388
parameter _PS_overload, 298, 388
parameter _PS_overload_cte, 388
parameter_PS_overload_12t, 388
parameter _PS_overload_psq, 388
parameter _PS_T_current, 296, 388
parameter _PS_T_max, 296, 388
parameter _PS_T_warn, 296, 388
parameter_PS_U_maxDC, 389
parameter_PS_U_minDC, 389
parameter _PS_U_minStopDC, 389
parameter _PT_max_val, 389
parameter _RAMP_p_act, 389
parameter _RAMP_p_target, 389
parameter _RAMP_v_act, 389
parameter _RAMP_v_target, 389
parameter _RES_load, 297, 389
parameter _RES_maxoverload, 298, 389
parameter _RES_overload, 298, 389
parameter _RESint_P, 389
parameter_RESint_R, 389
parameter_ScalePOSmax, 390
parameter_ScaleRAMPmax, 390
parameter_ScaleVELmax, 390
parameter_SigActive, 390
parameter _SigLatched, 321, 390
parameter _SPDSercos3Status, 274, 391
parameter_SuppDriveModes, 391
parameter_tq_act, 391
parameter_Ud_ref, 391
parameter_UDC_act, 391
parameter _Udq_ref, 391
parameter _Uq_ref, 391
parameter _v_act, 391
parameter _v_act_ENC1, 391
parameter _v_act_ENC2, 391
parameter_v_dif_usr, 285, 392
parameter _v_PTI_act, 392
parameter _v_ref, 392
parameter _Vmax_act, 392
parameter _VoltUtil, 392
parameter _WarnActive, 392
parameter_WarnLatched, 320, 393
parameter AbsHomeRequest, 393
parameter AccessLock, 184, 393
parameter AT_dir, 162, 394
parameter AT_dis, 394
parameter AT_dis_usr, 162, 394
parameter AT_mechanical, 162, 394
parameter AT_n_ref, 395
parameter AT_start, 162, 395
parameter AT_v_ref, 395
parameter AT_wait, 164, 395
parameter BLSH_Mode, 277, 395
parameter BLSH_Position, 276, 395
parameter BLSH_Time, 276, 395 parameter BRK_AddT_apply, 151, 396
parameter BRK_AddT_release, 150, 396
parameter BRK_release, 153, 396
parameter Cap1Activate, 273, 396
parameter Cap1Config, 272, 396
parameter Cap1Source, 272, 397
parameter Cap2Activate, 273, 397
parameter Cap2Config, 272, 397
parameter Cap2Source, 272, 397
parameter Cap3Activate, 273, 397
parameter Cap3Config, 272, 397
parameter Cap3Source, 272, 398
parameter CLSET_p_DiffWin, 398
parameter CLSET_p_DiffWin_usr, 215, 398
parameter CLSET_ParSwiCond, 215, 399
parameter CLSET_v_Threshol, 215, 399
parameter CLSET_winTime, 215, 399
parameter CommutCntCred, 399
parameter CommutCntMax, 400
parameter CTRL_GlobGain, 163, 400
parameter CTRL_I_max, 143, 400
parameter CTRL_I_max_fw, 401
parameter CTRL_KFAcc, 401
parameter CTRL_ParChgTime, 167, 216, 401
parameter CTRL_ParSetCopy, 217, 401
parameter CTRL_PwrUpParSet, 213, 401
parameter CTRL_SelParSet, 167, 213, 402
parameter CTRL_SmoothCurr, 402
parameter CTRL_SpdFric, 402
parameter CTRL_TAUnact, 402
parameter CTRL_v_max, 144, 402
parameter CTRL_VelObsActiv, 402
parameter CTRL_VelObsDyn, 402
parameter CTRL_VelObsInert, 403
parameter CTRL_vPIDDPart, 403
parameter CTRL_vPIDDTime, 403
parameter CTRL1_KFPp, 220, 403
parameter CTRL1_Kfric, 220, 403
parameter CTRL1_KPn, 169, 219, 403
parameter CTRL1_KPp, 174, 219, 403
parameter CTRL1_Nf1bandw, 220, 404
parameter CTRL1_Nf1damp, 220, 404
parameter CTRL1_Nf1freq, 220, 404
parameter CTRL1_Nf2bandw, 220, 404
parameter CTRL1_Nf2damp, 220, 404
parameter CTRL1_Nf2freq, 220, 404
parameter CTRL1_Osupdamp, 220, 404
parameter CTRL1_Osupdelay, 220, 404
parameter CTRL1_TAUiref, 219, 404
parameter CTRL1_TAUnref, 170, 219, 405
parameter CTRL1_TNn, 169, 172, 219, 405
parameter CTRL2_KFPp, 222, 405
parameter CTRL2_Kfric, 222, 405
parameter CTRL2_KPn, 169, 221, 405
parameter CTRL2_KPp, 174, 221, 405
parameter CTRL2_Nf1bandw, 222, 405
parameter CTRL2_Nf1damp, 222, 406
parameter CTRL2_Nf1freq, 222, 406
parameter CTRL2_Nf2bandw, 222, 406
parameter CTRL2_Nf2damp, 222, 406
parameter CTRL2_Nf2freq, 222, 406
parameter CTRL2_Osupdamp, 222, 406
parameter CTRL2_Osupdelay, 222, 406
parameter CTRL2_TAUiref, 221, 406
parameter CTRL2_TAUnref, 170, 221, 406
parameter CTRL2_TNn, 169, 172, 221, 407
parameter DCbus_compat, 407
parameter DCOMopmode, 407
parameter DEVcmdinterf, 407
parameter DI_0_Debounce, 200, 407
parameter DI_1_Debounce, 200, 408
parameter DI_2_Debounce, 200, 408
parameter DI_3_Debounce, 200, 408
parameter DI_4_Debounce, 201, 408
parameter DI_5_Debounce, 201, 408
parameter DPL_intLim, 409
parameter DS402intLim, 409
parameter ENC_abs_source, 410
parameter ENC_ModeOfMaEnc, 410
parameter ENC1_adjustment, 156, 410
parameter ENC2_adjustment, 157, 411
parameter ENC2_pos_offset, 411
parameter ENC2_type, 412
parameter ENC2_usage, 412
parameter ENCAnaPowSupply, 412
parameter ENCDigABIMaxFreq, 413
parameter ENCDigABImaxIx, 413
parameter ENCDigBISSCoding, 413
parameter ENCDigBISSResMul, 414
parameter ENCDigBISSResSgl, 414
parameter ENCDigLinBitsUsed, 414
parameter ENCDigPowSupply, 414
parameter ENCDigResMulUsed, 415
parameter ENCDigSSICoding, 415
parameter ENCDigSSILinAdd, 415
parameter ENCDigSSILinRes, 415
parameter ENCDigSSIMaxFreq, 416
parameter ENCDigSSIResMult, 416
parameter ENCDigSSIResSgl, 416
parameter ENCSinCosMaxIx, 417
parameter ERR_clear, 324, 417
parameter ERR_reset, 324, 417
parameter ErrorResp_FIt_AC, 300, 417
parameter ErrorResp_I2tRES, 417
parameter ErrorResp_p_dif, 284, 417
parameter ErrorResp_PDiffEncM, 418
parameter ErrorResp_QuasiAbs, 418
parameter ErrorResp_v_dif, 286, 418
parameter ESIM_HighResolution, 205, 418
parameter ESIM_PhaseShift, 206, 419
parameter ESIM_scale, 205, 419
parameter eSM_BaseSetting, 419
parameter eSM_dec_NC, 419
parameter eSM_dec_Qstop, 419
parameter eSM_disable, 419
parameter eSM_FuncAUXOUT1, 420
parameter eSM_FuncAUXOUT2, 421
parameter eSM_FuncSwitches, 421
parameter eSM_LO_mask, 422
parameter eSM_SLSnegDirS, 422
parameter eSM_t_NCDel, 422
parameter eSM_t_Relay, 422
parameter eSM_v_maxAuto, 422
parameter eSM_v_maxSetup, 423
parameter HMdis, 250, 423
parameter HMIDispPara, 423
parameter HMllocked, 185, 423
parameter HMmethod, 249, 424
parameter HMoutdis, 251, 424
parameter HMp_home, 250, 257, 424
parameter HMprefmethod, 249, 424
parameter HMsrchdis, 251, 425
parameter HMv, 252, 425
parameter HMv_out, 252, 425
parameter InvertDirOfCount, 203, 425
parameter InvertDirOfMaEnc, 425
parameter InvertDirOfMove, 154, 425
parameter IO_DQ_set, 270, 426
parameter IO_I_limit, 426
parameter IO_v_limit, 426
parameter IOfunct_DIO, 194, 426
parameter IOfunct_DI1, 194, 427
parameter IOfunct_DI2, 194, 427
parameter IOfunct_DI3, 195, 427
parameter IOfunct_DI4, 195, 428
parameter IOfunct_DI5, 195, 428
parameter IOfunct_DQ0, 197, 429
parameter IOfunct_DQ1, 198, 430
parameter IOfunct_DQ2, 199, 431
parameter IOsigLIMN, 279, 431
parameter IOsigLIMP, 279, 431
parameter IOsigREF, 280, 432
parameter IOsigRespOfPS, 432
parameter IP_IntTimInd, 432
parameter IP_IntTimPerVal, 432
parameter Iref_PTIFreqMax, 243, 432
parameter JOGactivate, 432
parameter JOGmethod, 237, 432
parameter JOGstep, 238, 432
parameter JOGtime, 238, 433
parameter JOGv_fast, 237, 433
parameter JOGv_slow, 237, 433
parameter LIM_HaltReaction, 266, 433
parameter LIM_I_maxHalt, 144, 267, 433
parameter LIM_I_maxQSTP, 143, 269, 434
parameter LIM_QStopReact, 268, 434
parameter Mains_reactor, 434
parameter MBaddress, 434
parameter MBbaud, 435
parameter MON_ChkTime, 289, 291, 292, 294, 435
parameter MON_commutat, 299, 435
parameter MON_ConfModification, 435
parameter MON_DCbusVdcThresh, 436
parameter MON_ENC_Ampl, 436
parameter MON_GroundFault, 302, 436
parameter MON_HW_Limits, 436
parameter MON_I_Threshold, 294, 437
parameter MON_IO_SelErr1, 316, 437
parameter MON_IO_SelErr2, 316, 437
parameter MON_IO_SelWar1, 316, 437
parameter MON_IO_SelWar2, 316, 437
parameter MON_MainsVolt, 301, 438
parameter MON_p_dif_load, 438
parameter MON_p_dif_load_usr, 284, 438
parameter MON_p_dif_warn, 284, 438
parameter MON_p_DiffWin, 439
parameter MON_p_DiffWin_usr, 289, 439
parameter MON_SW_Limits, 282, 439
parameter MON_SWLimMode, 281, 439
parameter MON_swLimN, 282, 439
parameter MON_swLimP, 282, 440
parameter MON_v_DiffWin, 291, 440
parameter MON_v_Threshold, 292, 440
parameter MON_v_zeroclamp, 440
parameter MON_VelDiff, 285, 440
parameter MON_VeIDiff_Time, 285, 440
parameter MON_VelDiffOpSt578, 441
parameter MT_dismax, 441
parameter MT_dismax_usr, 441
parameter p_MaxDifToENC2, 441
parameter p_PTI_act_set, 203, 442
parameter PAR_CTRLreset, 442
parameter PAR_ScalingStart, 442
parameter PAReeprSave, 442
parameter PARuserReset, 181, 443
parameter PDOmask, 443
parameter PP_ModeRangeLim, 443
parameter PPoption, 443
parameter PPp_target, 443
parameter PPv_target, 444
parameter PTI_pulse_filter, 444
parameter PTI_signal_type, 203, 444
parameter PTO_mode, 204, 444
parameter PTtq_reference, 242, 445
parameter PTtq_target, 445
parameter PVv_reference, 445
parameter PVv_target, 445
parameter PWM_fChop, 445
parameter RAMP_tq_enable, 445
parameter RAMP_tq_slope, 446
parameter RAMP_v_acc, 263, 446
parameter RAMP_v_dec, 264, 446
parameter RAMP_v_enable, 263, 446
parameter RAMP_v_jerk, 265, 446
parameter RAMP_v_max, 263, 447
parameter RAMP_v_sym, 447
parameter RAMPaccdec, 447
parameter RAMPquickstop, 268, 447
parameter RESext_P, 159, 447
parameter RESext_R, 160, 448
parameter RESext_ton, 160, 448
parameter RESint_ext, 159, 448
parameter ResolENC2, 448
parameter ResolENC2Denom, 448
parameter ResoIENC2Num, 449
parameter ScaleRAMPdenom, 191, 449
parameter ScaleRAMPnum, 191, 449
parameter ScaleVELdenom, 190, 449
parameter ScaleVELnum, 190, 450
parameter SercosAddress, 141, 450
parameter SercosPhaseStatus, 450
parameter ShiftEncWorkRang, 158, 450
parameter SimAbsolutePos, 451 parameter SPDSercos3Control, 273, 451
parameter SyncMechStart, 451
parameter SyncMechStatus, 451
parameter SyncMechTol, 452
parameter UsrAppDataMem1, 452
parameter UsrAppDataMem2, 452
parameter WakesAndShakeGain, 452
pollution degree and degree of protection, 22
powering on the device, 141
PWM frequency power stage, 26

## Q

qualification of personnel, 9

## R

replacing the product, 476
representation of the parameters, 358
restoring factory settings, 182

## S

sampling period, 209, 210, 211
scaling factor, 188
service addresses, 474
setting limit values, 143
shipping, 478
state transitions, 227
storage, 478

## T

type code, 19

## U

user-defined units, 188
usr_a, 188
usr_p, 188
usr_v, 188


[^0]:    ${ }^{1)}$ Multipoint grounding is permissible if connections are made to an equipotential ground plane dimensioned to help avoid cable shield damage in the event of power system short-circuit currents.

