
# TeSys<sup>™</sup> island

# **Third Party Function Block Guide**

# **Instruction Bulletin**

This instruction bulletin describes the third party function blocks of TeSys island.

8536IB1905EN Release date 06/2019





## Legal Information

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this guide are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and furnished for informational use only. No part of this guide may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric products and equipment should be installed, operated, serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this material or consequences arising out of or resulting from the use of the information contained herein.

Schneider Electric, Modbus, SoMove, and TeSys are trademarks and the property of Schneider Electric SE, its subsidiaries, and affiliated companies. All other trademarks are the property of their respective owners.

# **Table of Contents**

| About the Book                                          | 5  |
|---------------------------------------------------------|----|
| Document Scope                                          | 5  |
| Validity Note                                           | 5  |
| Related Documentation                                   | 6  |
| Precautions                                             | 7  |
| Qualified Personnel                                     | 8  |
| Intended Use                                            | 8  |
| Island Concept                                          | 9  |
| Avatar Definition                                       | 10 |
| List of TeSys™ Avatars                                  | 10 |
| Modbus TCP Addressing                                   | 13 |
| EtherNet/IP™ Addressing                                 | 14 |
| TeSys island Function Block Diagrams                    |    |
| System Avatar                                           |    |
| Device Function Blocks                                  |    |
| Switch                                                  | 16 |
| Switch - Safe Stop, W. Cat 1/2                          | 17 |
| Digital I/O                                             |    |
| Analog I/O                                              | 19 |
| Load Function Blocks                                    | 20 |
| Power Interface Module without I/O (Measure)            | 20 |
| Power Interface Module with I/O (Control)               | 21 |
| Motor One Direction                                     | 23 |
| Motor One Direction - Safe Stop, W. Cat 1/2             | 24 |
| Motor Two Directions                                    | 26 |
| Motor Two Directions - Safe Stop, W. Cat 1/2            | 27 |
| Motor Y/D One Direction                                 | 29 |
| Motor Y/D Two Directions                                | 31 |
| Motor Two Speeds                                        |    |
| Motor Two Speeds - Safe Stop, W. Cat 1/2                | 34 |
| Motor Two Speeds Two Directions                         |    |
| Motor Two Speeds Two Directions - Safe Stop, W. Cat 1/2 |    |
| Resistor                                                |    |
| Power Supply                                            |    |
| Transformer                                             |    |
| System Energy                                           |    |
| System Diagnostics                                      |    |
| System Asset Management                                 |    |
| Energy                                                  |    |
|                                                         |    |
| Asset Management                                        |    |
| Third Party Function Block Programming                  |    |
| TeSys island I/O Data                                   |    |
| System I/O                                              |    |
| Avatar I/O                                              |    |
| Data Definitions                                        | 69 |

# **About the Book**

## **Document Scope**

Use this document to do the following:

- Create Function Blocks, save them, and use them to program your PLC
- Directly program the PLC from the register map

## 

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Read and understand this instruction bulletin and all related documents before installing, operating, or maintaining your TeSys island. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.

Failure to follow these instructions will result in death or serious injury.

## **Validity Note**

This instruction bulletin is valid for all TeSys<sup>™</sup> island configurations. The availability of some functions described in this bulletin depends on the communication protocol used and the physical modules installed on the island.

For product compliance with environmental directives such as RoHS, REACH, PEP, and EOLI, go to *www.se.com/green-premium*.

For technical characteristics of the physical modules described in this bulletin, go to *www.se.com*.

The technical characteristics presented in this bulletin should be the same as those that appear online. We may revise content over time to improve clarity and accuracy. If you see a difference between the information contained in this bulletin and online information, use the online information.

## **Related Documentation**

| Table 1 - Related | Documentation |
|-------------------|---------------|
|-------------------|---------------|

| Document Title                                                                             | Description                                                                                                                                                          | Document<br>Number |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| TeSys™ island System Guide                                                                 | Introduces and describes the main<br>functions of TeSys island                                                                                                       | 8536IB1901         |
| TeSys™ island Installation Guide                                                           | Describes the mechanical<br>installation, wiring, and<br>commissioning of TeSys island                                                                               | 8536IB1902         |
| TeSys™ island Operating Guide                                                              | Describes how to operate and maintain TeSys island                                                                                                                   | 8536IB1903         |
| TeSys™ island Functional Safety Guide                                                      | Describes the Functional Safety<br>features of TeSys island                                                                                                          | 8536IB1904         |
| TeSys™ island Third Party Function<br>Block Guide                                          | Contains the information needed to create function blocks for third party hardware                                                                                   | 8536IB1905         |
| TeSys™ island EtherNet/IP™ Function<br>Block Library Guide                                 | Describes the TeSys island library<br>used in the Rockwell Software®<br>Studio 5000® environment                                                                     | 8536IB1914         |
| TeSys™ island EtherNet/IP™ Quick<br>Start Guide                                            | Describes how to quickly integrate<br>TeSys island into the Rockwell<br>Software Studio 5000 environment                                                             | 8536IB1906         |
| TeSys™ island DTM Online Help Guide                                                        | Describes how to install and use<br>various functions of TeSys island<br>configuration software and how to<br>configure the parameters of TeSys<br>island            | 8536IB1907         |
| TeSys™ island Product Environmental<br>Profile, Bus Coupler                                | Describes constituent materials,<br>recyclability potential, and<br>environmental impact information<br>for the TeSys island bus coupler                             | 8536IB1908         |
| TeSys™ island Product Environmental<br>Profile, Starters and Power Interface<br>Modules    | Describes constituent materials,<br>recyclability potential, and<br>environmental impact information<br>for the TeSys island starters and<br>power interface modules | 8536IB1909         |
| TeSys™ island Product Environmental<br>Profile, Accessories                                | Describes constituent materials,<br>recyclability potential, and<br>environmental impact information<br>for the TeSys island accessories                             | 8536IB1910         |
| TeSys™ island Product End of Life<br>Instructions, Bus Coupler                             | Contains end of life instructions for the TeSys island bus coupler                                                                                                   | 8536IB1911         |
| TeSys™ island Product End of Life<br>Instructions, Starters and Power<br>Interface Modules | Contains end of life instructions for<br>TeSys island starters and power<br>interface modules                                                                        | 8536IB1912         |
| TeSys™ island Product End of Life<br>Instructions, Accessories                             | Contains end of life instructions for TeSys island accessories                                                                                                       | 8536IB1913         |
| TeSys™ island Instruction Sheet, Bus<br>Coupler                                            | Describes how to install the TeSys island bus coupler                                                                                                                | MFR44097           |
| TeSys™ island Instruction Sheet,<br>Starters and Power Interface Modules,<br>Size 1 and 2  | Describes how to install size 1 and 2<br>TeSys island starters and power<br>interface modules                                                                        | MFR77070           |
| TeSys™ island Instruction Sheet,<br>Starters and Power Interface Modules,<br>Size 3        | Describes how to install size 3<br>TeSys island starters and power<br>interface modules                                                                              | MFR77085           |
| TeSys™ island Instruction Sheet: Input/<br>Output Modules                                  | Describes how to install the TeSys island analog and digital I/O modules                                                                                             | MFR44099           |
| TeSys™ island Instruction Sheet: SIL<br>Interface and Voltage Interface Modules            | Describes how to install the TeSys<br>island voltage interface modules<br>and SIL interface modules                                                                  | MFR44100           |

# **Precautions**

Read and understand the following precautions before performing any procedures in this guide.

## 

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside this equipment.
- Use only the specified voltage when operating this equipment and any associated products.
- Always use a properly rated voltage sensing device to confirm power is off.
- · Use appropriate interlocks where personnel and/or equipment hazards exist.
- Power line circuits must be wired and protected in compliance with local and national regulatory requirements.
- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices per NFPA 70E, NOM-029-STPS, or CSA Z462 or local equivalent.

Failure to follow these instructions will result in death or serious injury.

## 

#### UNINTENDED EQUIPMENT OPERATION

- For complete instructions about functional safety, refer to the *TeSys™ island Functional Safety Guide*, 8536IB1904.
- Do not disassemble, repair, or modify this equipment. There are no user serviceable parts.
- Install and operate this equipment in an enclosure appropriately rated for its intended application environment.
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.



**WARNING:** This product can expose you to chemicals including Antimony oxide (Antimony trioxide), which is known to the State of California to cause cancer. For more information go to <u>www.P65Warnings.ca.gov</u>.

## **Qualified Personnel**

Only appropriately trained persons who are familiar with and understand the content of this guide and all other related product documentation are authorized to work on and with this product.

The qualified person must be able to detect possible hazards that may arise from modifying parameter values and generally from mechanical, electrical, or electronic equipment. The qualified person must be familiar with the standards, provisions, and regulations for the prevention of industrial accidents, which they must observe when designing and implementing the system.

The use and application of the information contained in this guide requires expertise in the design and programming of automated control systems. Only you, the user, machine builder, or integrator, can be aware of all the conditions and factors present during installation, setup, operation, and maintenance of the machine or process, and can therefore determine the automation and associated equipment and the related safeties and interlocks which can be effectively and properly used.

When selecting automation and control equipment, and any other related equipment or software, for a particular application, you must also consider applicable local, regional, or national standards and/or regulations.

Pay particular attention to conform to any safety information, electrical requirements, and normative standards that apply to your machine or process in the use of this equipment.

## **Intended Use**

The products described in this instruction bulletin, together with software, accessories, and options, are starters for low-voltage electrical loads, intended for industrial use according to the instructions, directions, examples, and safety information contained in this document and other supporting documentation.

The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements, and the technical data.

Before using the product, you must perform a hazard analysis and risk assessment of the planned application. Based on the results, appropriate safety-related measures must be implemented.

Since the product is used as a component of a machine or process, you must ensure the safety of persons by means of the overall system design.

Operate the product only with the specified cables and accessories. Use only genuine accessories and spare parts.

Any use other than the use explicitly permitted is prohibited and can result in unanticipated hazards.

# **Island Concept**

TeSys<sup>™</sup> island is an innovative digital load management solution—providing data for higher machine efficiency and ease of servicing, and allowing faster time to market.

TeSys island is a modular, multifunctional system providing integrated functions inside an automation architecture, primarily for the direct control and management of low-voltage loads. TeSys island can switch, help protect, and manage motors and other electrical loads up to 80 A (AC3) installed in an electrical control panel.

This system is designed around the concept of TeSys Avatars. These Avatars

- Represent both the logical and physical aspects of the automation functions
- · Determine the configuration of the island

The logical aspects of the island are managed with software tools, covering all phases of product and application lifecycle: design, engineering, commissioning, operation, and maintenance.

The physical island consists of a set of devices installed on a single DIN rail, and connected together with flat cables providing the internal communication between modules. The external communication with the automation environment is made through a single bus coupler module, and the island is seen as a single node on the network. The other modules include starters, power interface modules, analog and digital I/O modules, voltage interface modules, and SIL (Safety Integrity Level according to standard IEC 61508) interface modules, covering a wide range of operational functions.

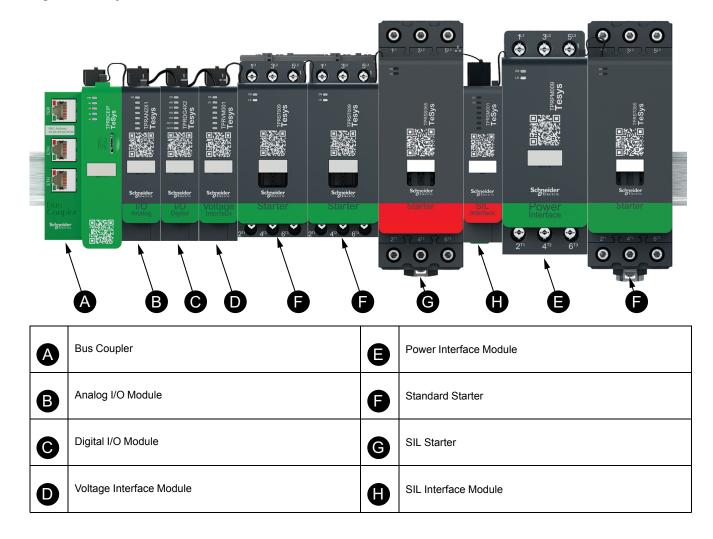



Figure 1 - TeSys island Overview

## **Avatar Definition**

TeSys<sup>™</sup> Avatars bring ready-to-use functions through their predefined logic and associated physical devices. The Avatar logic is executed in the bus coupler. The bus coupler manages data exchanges internally within the island, and also externally with the PLC.

The TeSys Avatars include three types:

#### **System Avatar**

Represents the whole island as a system. The system avatar allows setting the network configuration and computes island level data.

#### **Device Avatars**

Represent functions performed by switches and I/O modules.

#### Load Avatars

Represent functions related to specific loads, such as a forward-reverse motor. Load Avatars include the appropriate modules and operating characteristics to serve the load type. For example, a Motor Two Directions Avatar includes two starter modules, accessories, pre-programmed control logic, and a preconfiguration of the available protection functions.

The Avatars installed on the TeSys island are controlled by the island's bus coupler. Each Avatar includes predefined logic for managing its physical modules, while also providing easy data exchange with PLCs through function blocks. Avatars include preconfiguration of the available protection functions. Data exchanges between PLCs and all the Avatars on the island are managed through the bus coupler.

Information accessible through the Avatar includes:

- Control data
- Advanced diagnostics data
- Asset management data
- Energy data

## List of TeSys<sup>™</sup> Avatars

| Name                            | lcon | Description                                                                                                                                         |
|---------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| System Avatar                   |      | A required Avatar that enables a single point of communication to the island.                                                                       |
| Switch                          | d    | To make or break a power line in an electrical circuit                                                                                              |
| Switch - Safe Stop, W. Cat 1/21 |      | To make or break a power line in an electrical circuit with Safe<br>Stop, Wiring Category 1 and Category 2. Safe Stop according<br>to EN 61800-5-2. |

1. Safe Stop, Wiring Category 1 and Category 2. Safe Stop according to EN 61800-5-2.

| Name                                                         | lcon                                                                                   | Description                                                                                                                                             |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital I/O                                                  | С<br>ГГ                                                                                | To provide control of 2 digital outputs and status of 4 digital inputs                                                                                  |
| Analog I/O                                                   | $\bigotimes_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | To provide control of 1 analog output and status of 2 analog inputs                                                                                     |
| Power Interface without I/O (measure)                        |                                                                                        | To monitor current supplied to an external device, such as a solid-state relay, soft starter, or variable speed drive                                   |
| Power Interface with I/O (control)                           |                                                                                        | To monitor current supplied to and to control an external device, such as a solid-state relay, soft starter, or variable speed drive                    |
| Motor One Direction                                          | M                                                                                      | To manage <sup>2</sup> a motor in one direction                                                                                                         |
| Motor One Direction - Safe Stop, W. Cat 1/23                 |                                                                                        | To manage a motor in one direction, with Safe Stop, Wiring<br>Category 1 and Category 2. Safe Stop according to EN<br>61800-5-2.                        |
| Motor Two Directions                                         | M                                                                                      | To manage a motor in two directions (forward and reverse)                                                                                               |
| Motor Two Directions -<br>Safe Stop, W. Cat 1/2 <sup>3</sup> |                                                                                        | To manage a motor in two directions (forward and reverse),<br>with Safe Stop, Wiring Category 1 and Category 2. Safe Stop<br>according to EN 61800-5-2. |
| Motor Y/D One Direction                                      | M                                                                                      | To manage a wye-delta (star-delta) motor in one direction                                                                                               |
| Motor Y/D Two Directions                                     | M                                                                                      | To manage a wye-delta (star-delta) motor in two directions (forward and reverse)                                                                        |

<sup>2.</sup> 3. "Manage" in this context encompasses energizing, controlling, monitoring, diagnosing, and protecting the load. Safe Stop, Wiring Category 1 and Category 2. Safe Stop according to EN 61800-5-2.

| Name                                                        | lcon | Description                                                                                                                                                 |
|-------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor Two Speeds                                            | M    | To manage a two-speed motor                                                                                                                                 |
| Motor Two Speeds -<br>Safe Stop, W. Cat 1/24                |      | To manage a two-speed motor, with Safe Stop, Wiring<br>Category 1 and Category 2. Safe Stop according to EN<br>61800-5-2.                                   |
| Motor Two Speeds Two Directions                             | M    | To manage a two-speed motor in two directions (forward and reverse)                                                                                         |
| Motor Two Speeds Two Directions -<br>Safe Stop, W. Cat 1/24 | M    | To manage a two-speed motor in two directions (forward and reverse), with Safe Stop, Wiring Category 1 and Category 2. Safe Stop according to EN 61800-5-2. |
| Resistor                                                    |      | To manage a resistive load                                                                                                                                  |
| Power Supply                                                |      | To manage a power supply                                                                                                                                    |
| Transformer                                                 | -00- | To manage a transformer                                                                                                                                     |

<sup>4.</sup> Safe Stop, Wiring Category 1 and Category 2. Safe Stop according to EN 61800-5-2.

## Modbus TCP Addressing

TeSys<sup>™</sup> island applies the following Unit ID ranges for physical and virtual modularity.

#### Table 2 - Unit ID Ranges

| Item                        | Unit ID | Comment                                                                                                                                                                           |
|-----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Avatars                     | 1–99    | Device and Load Avatars                                                                                                                                                           |
| Bus Devices                 | 101–199 | Digital I/O Module (DIOM)<br>Analog I/O Module (AIOM)<br>Starters<br>SIL Starters<br>Power Interface Module (PIM)<br>SIL Interface Module (SIM)<br>Voltage Interface Module (VIM) |
| Bus Coupler / System Avatar | 255     | _                                                                                                                                                                                 |

#### NOTES:

- Bus devices are numbered sequentially, left to right.
- Avatars are numbered as defined in the Context File.
- Data larger than 16 bits is split into multiple registers, encoded in Big Endian. For example, a 32-bit integer value of decimal 305419896 (or 0x12345678 hexadecimal) is mapped onto two registers, 500 and 501, where register 500 contains the most significant word (0x1234) and register 501 contains the least significant word (0x5678).
- See the table below for examples.

#### Table 3 - Examples of Device and Avatar Numbering

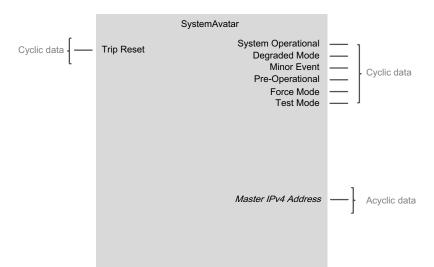
| Order of<br>Avatar in Avatar | Avatar    | Description                                                     | Physical Order in island |      |      |     |                |                |     |         |     |
|------------------------------|-----------|-----------------------------------------------------------------|--------------------------|------|------|-----|----------------|----------------|-----|---------|-----|
| Digital Tool                 | Unit ID   | Description                                                     | 1                        | 2    | 3    | 4   | 5              | 6              | 7   | 8       | 9   |
| 1                            | 255       | System                                                          | BC                       |      |      | VIM |                |                | SIM |         |     |
| 2                            | 1         | AIOM                                                            |                          | AIOM |      |     |                |                |     |         |     |
| 3                            | 2         | Motor Two Directions<br>— Safe Stop,<br>W. Cat 1/2 <sup>5</sup> |                          |      |      |     | SIL<br>Starter | SIL<br>Starter |     |         |     |
| 4                            | 3         | Motor One Direction                                             |                          |      |      |     |                |                |     | Starter |     |
| 5                            | 4         | Power Interface with I/O (Control)                              |                          |      | DIOM |     |                |                |     |         | PIM |
|                              | Modbus/TC | P Physical Device Unit ID                                       | 255                      | 101  | 102  | 103 | 104            | 105            | 106 | 107     | 108 |

<sup>5.</sup> Safe Stop according to EN 61800-5-2

## EtherNet/IP™ Addressing

### Table 4 - EtherNet/IP Addressing

| Step | Action                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1    | Configure your island in the TeSys™ island DTM.                                                                                                                                                                                                                                                              |  |  |  |  |
| 2    | In the TeSys island DTM, click on <b>Device</b> from the drop-down menu and select the file format you wish to export. You can choose between an EDS file or Rockwell Software® L5X files.                                                                                                                   |  |  |  |  |
|      | <ul> <li>For L5X:</li> <li>Click Export then EDS to L5X File Format.</li> <li>Click Save. The file will be saved as a zip file in the format <i>island_name.zip</i>.</li> </ul>                                                                                                                              |  |  |  |  |
|      | <ul> <li>For EDS:</li> <li>Click Export then EDS File Format.</li> <li>Click Save. The file will be saved as an eds file in the format <i>island_name.eds</i>.</li> </ul>                                                                                                                                    |  |  |  |  |
|      | You will receive a notification that the EDS file has been created. Click <b>OK</b> .                                                                                                                                                                                                                        |  |  |  |  |
| 3    | Consult the <i>EtherNet/IP™ Quick Start Guide</i> , document number 8536IB1906, for instructions on importing the L5X files into the Rockwell Software Studio 5000 <sup>®</sup> environment. For instructions on importing the EDS file, consult the documentation provided for the programming environment. |  |  |  |  |


# **TeSys island Function Block Diagrams**

This section contains generic function block diagrams and register data that can be used to assist with PLC programming. For the I/O data and value ranges available at the system and Avatar level, refer to *Third Party Function Block Programming, page 53.* 

## **System Avatar**

The SystemAvatar function block returns the status of the System Avatar.

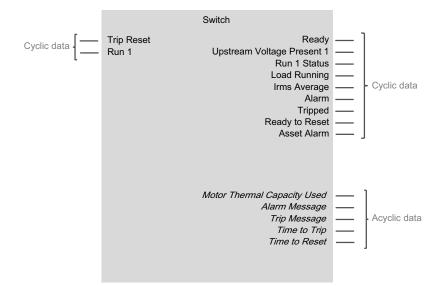
#### Figure 2 - SystemAvatar Function Block



#### Table 5 - Modbus TCP Inputs—System Avatar

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Trip Reset | 8501    | 3            | 1           |

#### Table 6 - Modbus TCP Outputs—System Avatar


| Input Name         | Address | Starting Bit | Size (Bits) |
|--------------------|---------|--------------|-------------|
| System Operational | 3201    | 1            | 1           |
| Force Mode         | 3201    | 2            | 1           |
| Minor Event        | 3201    | 3            | 1           |
| Pre-Operational    | 3201    | 4            | 1           |
| Degraded Mode      | 3201    | 5            | 1           |
| Test Mode          | 3201    | 6            | 1           |
| IP Address         | 64234   | 0            | 32          |

## **Device Function Blocks**

## Switch

This function block establishes or interrupts a power line in an electrical circuit.

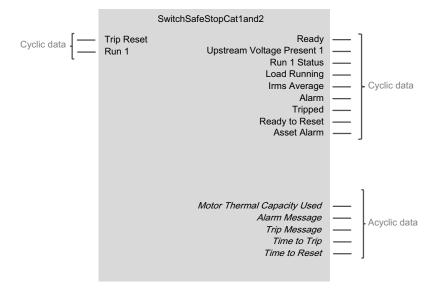
Figure 3 - Switch Function Block



### Table 7 - Modbus TCP Inputs—Switch

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Run 1      | 8501    | 0            | 1           |
| Trip Reset | 8501    | 3            | 1           |

#### Table 8 - Modbus TCP Outputs—Switch


| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time To Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time To Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run 1 Status                   | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Motor Thermal Capacity Used    | 9630    | 0            | 8           |

## Switch - Safe Stop, W. Cat 1/2

NOTE: Safe Stop according to EN 61800-5-2

This function block establishes or interrupts a power line in an electrical circuit with Safe Stop<sup>6</sup> function compliance for Wiring Category 1 and Category 2.



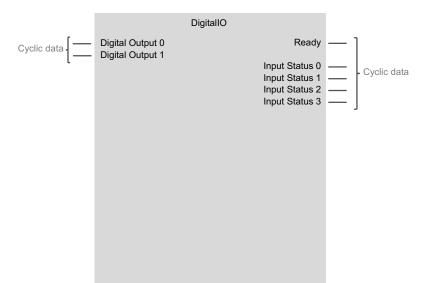


NOTE: Safe Stop according to EN 61800-5-2

#### Table 9 - Modbus TCP Inputs—Switch

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Run 1      | 8501    | 0            | 1           |
| Trip Reset | 8501    | 3            | 1           |

#### Table 10 - Modbus TCP Outputs—Switch


| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time To Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time To Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run 1 Status                   | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Motor Thermal Capacity Used    | 9630    | 0            | 8           |

6. Safe Stop according to EN 61800-5-2

## **Digital I/O**

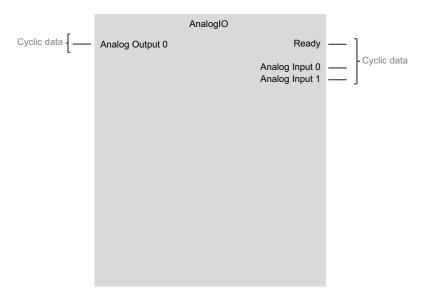
This function block provides information about the Digital I/O Avatar. The Digital I/O Avatar has four inputs and two outputs.





#### Table 11 - Modbus TCP Inputs—Digital I/O

| Input Name       | Address | Starting Bit | Size (Bits) |
|------------------|---------|--------------|-------------|
| Digital Output 1 | 8501    | 8            | 1           |
| Digital Output 2 | 8501    | 9            | 1           |


#### Table 12 - Modbus TCP Outputs—Digital I/O

| Output Name            | Address | Starting Bit | Size (Bits) |
|------------------------|---------|--------------|-------------|
| Digital Input 0 Status | 3201    | 4            | 1           |
| Digital Input 1 Status | 3201    | 5            | 1           |
| Digital Input 2 Status | 3201    | 6            | 1           |
| Digital Input 3 Status | 3201    | 7            | 1           |

## Analog I/O

This function block provides information about the Analog I/O Avatar. The Analog I/O Avatar has two inputs and one output.

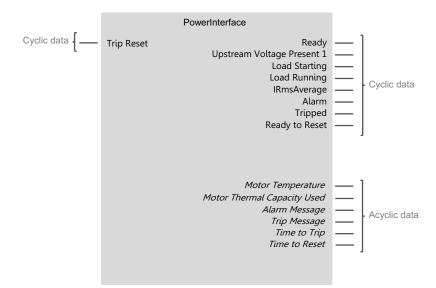
### Figure 6 - AnalogIO Function Block



#### Table 13 - Modbus TCP Inputs—Analog I/O

| Input Name      | Address | Starting Bit | Size (Bits) |
|-----------------|---------|--------------|-------------|
| Analog Output 0 | 8504    | 0            | 16          |

#### Table 14 - Modbus TCP Outputs—Analog I/O


| Output Name    | Address | Starting Bit | Size (Bits) |
|----------------|---------|--------------|-------------|
| Analog Input 0 | 3204    | 0            | 16          |
| Analog Input 1 | 3205    | 0            | 16          |

## **Load Function Blocks**

### Power Interface Module without I/O (Measure)

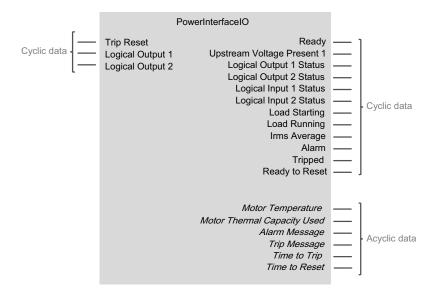
This function block is used to monitor current on an external power device, such as a solid-state relay, soft starter, or variable speed drive.

#### Figure 7 - PowerInterface Function Block



#### Table 15 - Modbus TCP Inputs—PIM without I/O (Measure)

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Trip Reset | 8501    | 3            | 1           |


#### Table 16 - Modbus TCP Outputs—PIM without I/O (Measure)

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| Motor Temperature              | 464     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready to Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Motor Thermal Capacity Used    | 9630    | 0            | 8           |

## Power Interface Module with I/O (Control)

This function block is used to monitor current and control an external power device, such as a solid-state relay, soft starter, or variable speed drive.



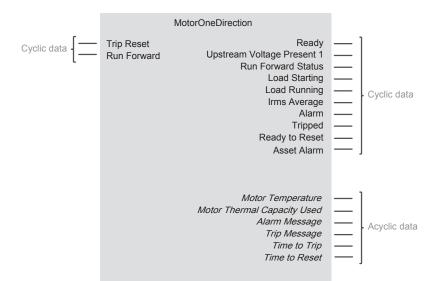


#### Table 17 - Modbus TCP Inputs—Power Interface Module (PIM) with I/O (Control)

| Input Name     | Address | Starting Bit | Size (Bits) |
|----------------|---------|--------------|-------------|
| Trip Reset     | 8501    | 3            | 1           |
| Logic Output 1 | 8501    | 8            | 1           |
| Logic Output 2 | 8501    | 9            | 1           |

#### Table 18 - Modbus TCP Outputs—PIM with I/O (Control)

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time To Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| Motor Temperature              | 464     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time To Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Logic Input 1 Status           | 3201    | 4            | 1           |
| Logic Input 2 Status           | 3201    | 5            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Logical Output 1 Status        | 3201    | 10           | 1           |
| Logical Output 2 Status        | 3201    | 11           | 1           |
| Load Starting                  | 3201    | 15           | 1           |


### Table 18 - Modbus TCP Outputs—PIM with I/O (Control) (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Upstream Voltage Present 1  | 3202    | 12           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

## **Motor One Direction**

This function block is used to manage a motor in one direction.

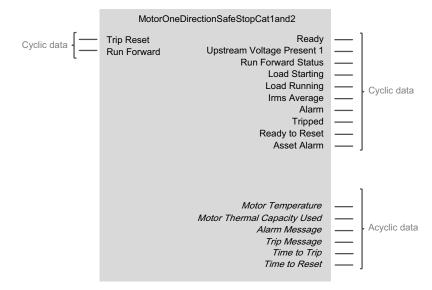
#### Figure 9 - MotorOneDirection Function Block



#### Table 19 - Modbus TCP Inputs—Motor One Direction

| Input Name  | Address | Starting Bit | Size (Bits) |
|-------------|---------|--------------|-------------|
| Run Forward | 8501    | 0            | 1           |
| Trip Reset  | 8501    | 3            | 1           |

#### Table 20 - Modbus TCP Outputs—Motor One Direction


| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time To Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time To Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run Forward Status             | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Motor Thermal Capacity Used    | 9630    | 0            | 8           |

## Motor One Direction - Safe Stop, W. Cat 1/2

NOTE: Safe Stop according to EN 61800-5-2

This function block is used to manage a motor in one direction with Safe Stop<sup>7</sup> function compliance for Wiring Category 1 and Category 2.





NOTE: Safe Stop according to EN 61800-5-2

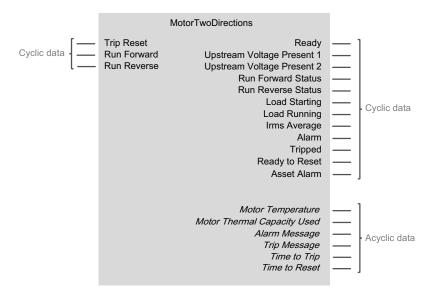
#### Table 21 - Modbus TCP Inputs

| Input Name  | Address | Starting Bit | Size (Bits) |
|-------------|---------|--------------|-------------|
| Run Forward | 8501    | 0            | 1           |
| Trip Reset  | 8501    | 3            | 1           |

#### Table 22 - Modbus TCP Outputs

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time To Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time To Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run Forward Status             | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |

<sup>7.</sup> Safe Stop according to EN 61800-5-2


### Table 22 - Modbus TCP Outputs (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Upstream Voltage Present 1  | 3202    | 12           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

### **Motor Two Directions**

This function block is used to manage a motor in two directions (forward and reverse).

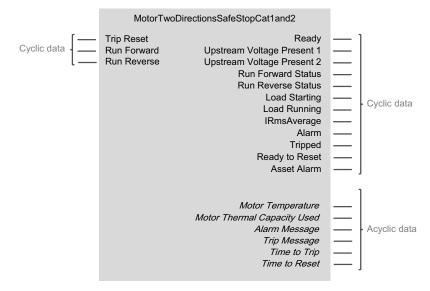
#### Figure 11 - MotorTwoDirections Function Block



#### Table 23 - Modbus TCP Inputs—Motor Two Directions

| Input Name  | Address | Starting Bit | Size (Bits) |
|-------------|---------|--------------|-------------|
| Run Forward | 8501    | 0            | 1           |
| Run Reverse | 8501    | 1            | 1           |
| Trip Reset  | 8501    | 3            | 1           |

#### Table 24 - Modbus TCP Outputs—Motor Two Directions


| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run Forward Status             | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Run Reverse Status             | 3202    | 1            | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Upstream Voltage Present 2     | 3202    | 13           | 1           |
| Motor Thermal Capacity Used    | 9630    | 0            | 8           |

### Motor Two Directions - Safe Stop, W. Cat 1/2

NOTE: Safe Stop according to EN 61800-5-2

This function block is used to manage a motor in two directions (forward and reverse) with Safe Stop<sup>8</sup> function compliance for Wiring Category 1 and Category 2.





#### **NOTE:** Safe Stop according to EN 61800-5-2

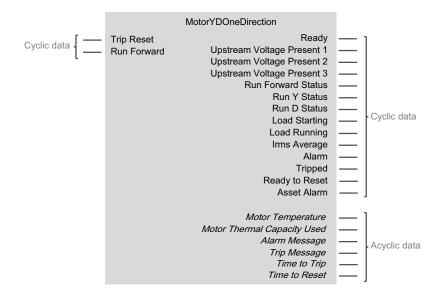
#### Table 25 - Modbus TCP Inputs

| Input Name  | Address | Starting Bit | Size (Bits) |
|-------------|---------|--------------|-------------|
| Run Forward | 8501    | 0            | 1           |
| Run Reverse | 8501    | 1            | 1           |
| Trip Reset  | 8501    | 3            | 1           |

#### Table 26 - Modbus TCP Outputs

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run Forward Status             | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready to Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Run Reverse Status             | 3202    | 1            | 1           |

#### 8. Safe Stop according to EN 61800-5-2


### Table 26 - Modbus TCP Outputs (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Asset Alarm                 | 3202    | 3            | 1           |
| Upstream Voltage Present 1  | 3202    | 12           | 1           |
| Upstream Voltage Present 2  | 3202    | 13           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

### **Motor Y/D One Direction**

This function block is used to manage a wye-delta (star-delta) motor in one direction.

Figure 13 - MotorYDOneDirection Function Block

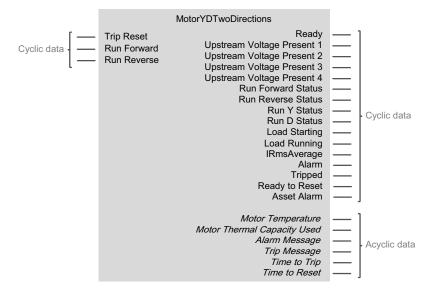


#### Table 27 - Modbus TCP Inputs—Motor Y/D One Direction

| Input Name  | Address | Starting Bit | Size (Bits) |
|-------------|---------|--------------|-------------|
| Run Forward | 8501    | 0            | 1           |
| Trip Reset  | 8501    | 3            | 1           |

#### Table 28 - Modbus TCP Outputs—Motor Y/D One Direction

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run Forward Status             | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Run Y Status                   | 3201    | 6            | 1           |
| Run D Status                   | 3201    | 7            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready to Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Upstream Voltage Present 2     | 3202    | 13           | 1           |


### Table 28 - Modbus TCP Outputs—Motor Y/D One Direction (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Upstream Voltage Present 3  | 3202    | 14           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

### **Motor Y/D Two Directions**

This function block is used to manage a wye-delta (star-delta) motor in two directions (forward and reverse).



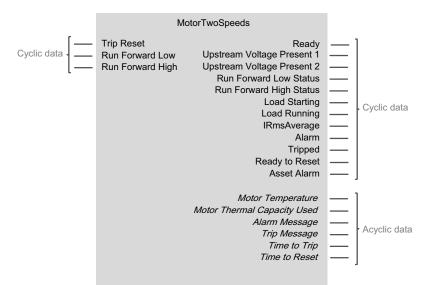


#### Table 29 - Modbus TCP Inputs—Motor Y/D Two Directions

| Input Name  | Address | Starting Bit | Size (Bits) |
|-------------|---------|--------------|-------------|
| Run Forward | 8501    | 0            | 1           |
| Run Reverse | 8501    | 1            | 1           |
| Trip Reset  | 8501    | 3            | 1           |

#### Table 30 - Modbus TCP Outputs—Motor Y/D Two Directions

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Run Forward Status             | 3201    | 1            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Run Y Status                   | 3201    | 6            | 1           |
| Run D Status                   | 3201    | 7            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready to Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Run Reverse Status             | 3202    | 1            | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |


### Table 30 - Modbus TCP Outputs—Motor Y/D Two Directions (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Upstream Voltage Present 2  | 3202    | 13           | 1           |
| Upstream Voltage Present 3  | 3202    | 14           | 1           |
| Upstream Voltage Present 4  | 3202    | 15           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

## **Motor Two Speeds**

This function block is used to manage a two speed motor.

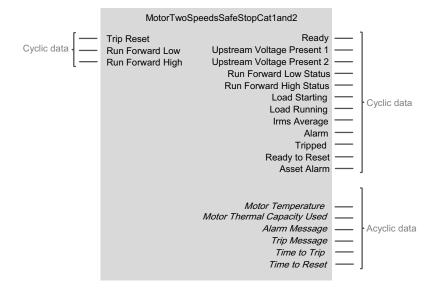
#### Figure 15 - MotorTwoSpeeds Function Block



#### Table 31 - Modbus TCP Inputs—Motor Two Speeds

| Input Name       | Address | Starting Bit | Size (Bits) |
|------------------|---------|--------------|-------------|
| Run Forward High | 8501    | 0            | 1           |
| Trip Reset       | 8501    | 3            | 1           |
| Run Forward Low  | 8501    | 6            | 1           |

#### Table 32 - Modbus TCP Outputs—Motor Two Speeds


| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Run Forward Low Status         | 3201    | 5            | 1           |
| Run Forward High Status        | 3201    | 6            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready To Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |
| Asset Alarm                    | 3202    | 3            | 1           |
| Upstream Voltage Present 1     | 3202    | 12           | 1           |
| Upstream Voltage Present 2     | 3202    | 13           | 1           |
| Motor Thermal Capacity Used    | 9630    | 0            | 8           |

## Motor Two Speeds - Safe Stop, W. Cat 1/2

NOTE: Safe Stop according to EN 61800-5-2.

This function block is used to manage a two speed motor with Safe Stop<sup>9</sup> function compliance for Wiring Category 1 and Category 2.

#### Figure 16 - MotorTwoSpeedsSafeStopCat1and2 Function Block



NOTE: Safe Stop according to EN 61800-5-2

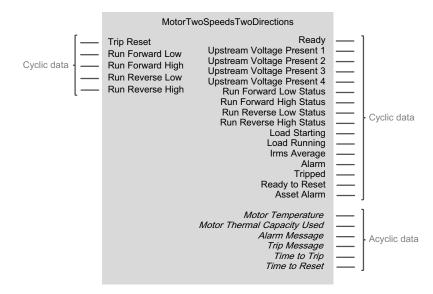
#### Table 33 - Modbus TCP Inputs

| Input Name       | Address | Starting Bit | Size (Bits) |
|------------------|---------|--------------|-------------|
| Run Forward High | 8501    | 0            | 1           |
| Trip Reset       | 8501    | 3            | 1           |
| Run Forward Low  | 8501    | 6            | 1           |

#### Table 34 - Modbus TCP Outputs

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Run Forward Low Status         | 3201    | 5            | 1           |
| Run Forward High Status        | 3201    | 6            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready to Reset                 | 3201    | 9            | 1           |
| Load Starting                  | 3201    | 15           | 1           |

9. Safe Stop according to EN 61800-5-2


### Table 34 - Modbus TCP Outputs (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Asset Alarm                 | 3202    | 3            | 1           |
| Upstream Voltage Present 1  | 3202    | 12           | 1           |
| Upstream Voltage Present 2  | 3202    | 13           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

### **Motor Two Speeds Two Directions**

This function block is used to manage a two speed motor in two directions (forward and reverse).





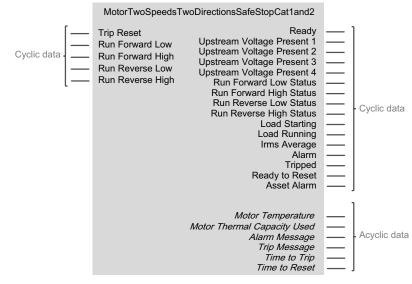
#### Table 35 - Modbus TCP Inputs—Motor Two Speeds Two Directions

| Input Name       | Address | Starting Bit | Size (Bits) |
|------------------|---------|--------------|-------------|
| Run Forward High | 8501    | 0            | 1           |
| Run Reverse High | 8501    | 1            | 1           |
| Trip Reset       | 8501    | 3            | 1           |
| Run Forward Low  | 8501    | 6            | 1           |
| Run Reverse Low  | 8501    | 7            | 1           |

#### Table 36 - Modbus TCP Outputs—Motor Two Speeds Two Directions

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Run Forward Low Status         | 3201    | 5            | 1           |
| Run Forward High Status        | 3201    | 6            | 1           |
| Load Running                   | 3201    | 8            | 1           |
| Ready to Reset                 | 3201    | 9            | 1           |
| Run Reverse Low Status         | 3201    | 12           | 1           |
| Run Reverse High Status        | 3201    | 13           | 1           |
| Load Starting                  | 3201    | 15           | 1           |

# Table 36 - Modbus TCP Outputs—Motor Two Speeds Two Directions (Continued)


| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Asset Alarm                 | 3202    | 3            | 1           |
| Upstream Voltage Present 1  | 3202    | 12           | 1           |
| Upstream Voltage Present 2  | 3202    | 13           | 1           |
| Upstream Voltage Present 3  | 3202    | 14           | 1           |
| Upstream Voltage Present 4  | 3202    | 15           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

# Motor Two Speeds Two Directions - Safe Stop, W. Cat 1/2

NOTE: Safe Stop according to EN 61800-5-2

This function block is used to manage a two speed motor in two directions (forward and reverse) with Safe Stop<sup>10</sup> function compliance for Wiring Category 1 and Category 2.

Figure 18 - MotorTwoSpeedsTwoDirectionsSafeStopCat1and2 Function Block



NOTE: Safe Stop according to EN 61800-5-2

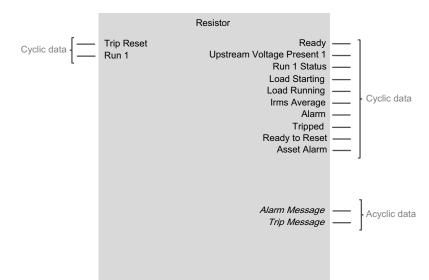
#### Table 37 - Modbus TCP Inputs

| Input Name       | Address | Starting Bit | Size (Bits) |
|------------------|---------|--------------|-------------|
| Run Forward High | 8501    | 0            | 1           |
| Run Reverse High | 8501    | 1            | 1           |
| Trip Reset       | 8501    | 3            | 1           |
| Run Forward Low  | 8501    | 6            | 1           |
| Run Reverse Low  | 8501    | 7            | 1           |

#### Table 38 - Modbus TCP Outputs

| Output Name                    | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Thermal Overload Time to Reset | 450     | 0            | 16          |
| Protection Trip Message 1      | 452     | 0            | 16          |
| Protection Trip Message 2      | 453     | 0            | 16          |
| Protection Alarm Message 1     | 461     | 0            | 16          |
| Protection Alarm Message 2     | 462     | 0            | 16          |
| I <sub>RMS</sub> Average       | 500     | 0            | 32          |
| Thermal Overload Time to Trip  | 511     | 0            | 16          |
| Ready                          | 3201    | 0            | 1           |
| Tripped                        | 3201    | 2            | 1           |
| Alarm                          | 3201    | 3            | 1           |
| Run Forward Low Status         | 3201    | 5            | 1           |
| Run Forward High Status        | 3201    | 6            | 1           |

10. Safe Stop according to EN 61800-5-2


# Table 38 - Modbus TCP Outputs (Continued)

| Output Name                 | Address | Starting Bit | Size (Bits) |
|-----------------------------|---------|--------------|-------------|
| Load Running                | 3201    | 8            | 1           |
| Ready to Reset              | 3201    | 9            | 1           |
| Run Reverse Low Status      | 3201    | 12           | 1           |
| Run Reverse High Status     | 3201    | 13           | 1           |
| Load Starting               | 3201    | 15           | 1           |
| Asset Alarm                 | 3202    | 3            | 1           |
| Upstream Voltage Present 1  | 3202    | 12           | 1           |
| Upstream Voltage Present 2  | 3202    | 13           | 1           |
| Upstream Voltage Present 3  | 3202    | 14           | 1           |
| Upstream Voltage Present 4  | 3202    | 15           | 1           |
| Motor Thermal Capacity Used | 9630    | 0            | 8           |

# Resistor

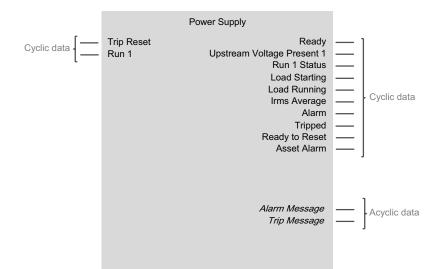
This function block is used to manage a resistive load.

#### Figure 19 - Resistor Function Block



#### Table 39 - Modbus TCP Inputs—Resistor

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Run 1      | 8501    | 0            | 1           |
| Trip Reset | 8501    | 3            | 1           |


#### Table 40 - Modbus TCP Outputs—Resistor

| Output Name                | Address | Starting Bit | Size (Bits) |
|----------------------------|---------|--------------|-------------|
| Protection Trip Message 1  | 452     | 0            | 16          |
| Protection Trip Message 2  | 453     | 0            | 16          |
| Protection Alarm Message 1 | 461     | 0            | 16          |
| Protection Alarm Message 2 | 462     | 0            | 16          |
| I <sub>RMS</sub> Average   | 500     | 0            | 32          |
| Ready                      | 3201    | 0            | 1           |
| Run 1 Status               | 3201    | 1            | 1           |
| Tripped                    | 3201    | 2            | 1           |
| Alarm                      | 3201    | 3            | 1           |
| Load Running               | 3201    | 8            | 1           |
| Ready to Reset             | 3201    | 9            | 1           |
| Load Starting              | 3201    | 15           | 1           |
| Asset Alarm                | 3202    | 3            | 1           |
| Upstream Voltage Present 1 | 3202    | 12           | 1           |

# **Power Supply**

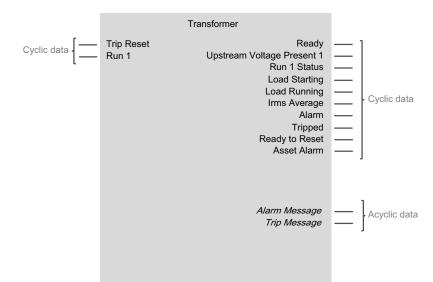
This function block is used to manage a power supply.

#### Figure 20 - Power Supply Function Block



#### Table 41 - Modbus TCP Inputs—Power Supply

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Run 1      | 8501    | 0            | 1           |
| Trip Reset | 8501    | 3            | 1           |


#### Table 42 - Modbus TCP Outputs—Power Supply

| Output Name                | Address | Starting Bit | Size (Bits) |
|----------------------------|---------|--------------|-------------|
| Protection Trip Message 1  | 452     | 0            | 16          |
| Protection Trip Message 2  | 453     | 0            | 16          |
| Protection Alarm Message 1 | 461     | 0            | 16          |
| Protection Alarm Message 2 | 462     | 0            | 16          |
| I <sub>RMS</sub> Average   | 500     | 0            | 32          |
| Ready                      | 3201    | 0            | 1           |
| Run 1 Status               | 3201    | 1            | 1           |
| Tripped                    | 3201    | 2            | 1           |
| Alarm                      | 3201    | 3            | 1           |
| Load Running               | 3201    | 8            | 1           |
| Ready to Reset             | 3201    | 9            | 1           |
| Load Starting              | 3201    | 15           | 1           |
| Asset Alarm                | 3202    | 3            | 1           |
| Upstream Voltage Present 1 | 3202    | 12           | 1           |

# Transformer

This function block is used to manage a transformer.

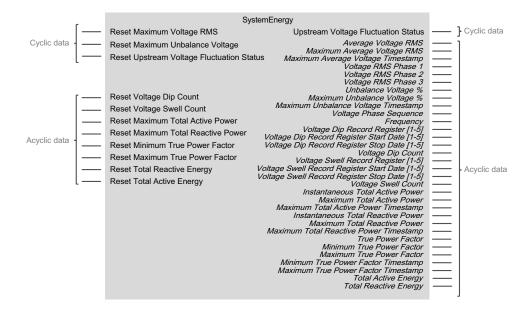
## Figure 21 - Transformer Function Block



# Table 43 - Modbus TCP Inputs—Transformer

| Input Name | Address | Starting Bit | Size (Bits) |
|------------|---------|--------------|-------------|
| Run 1      | 8501    | 0            | 1           |
| Trip Reset | 8501    | 3            | 1           |

#### Table 44 - Modbus TCP Outputs—Transformer


| Output Name                | Address | Starting Bit | Size (Bits) |
|----------------------------|---------|--------------|-------------|
| Protection Trip Message 1  | 452     | 0            | 16          |
| Protection Trip Message 2  | 453     | 0            | 16          |
| Protection Alarm Message 1 | 461     | 0            | 16          |
| Protection Alarm Message 2 | 462     | 0            | 16          |
| I <sub>RMS</sub> Average   | 500     | 0            | 32          |
| Ready                      | 3201    | 0            | 1           |
| Run 1 Status               | 3201    | 1            | 1           |
| Tripped                    | 3201    | 2            | 1           |
| Alarm                      | 3201    | 3            | 1           |
| Load Running               | 3201    | 8            | 1           |
| Ready to Reset             | 3201    | 9            | 1           |
| Load Starting              | 3201    | 15           | 1           |
| Asset Alarm                | 3202    | 3            | 1           |
| Upstream Voltage Present 1 | 3202    | 12           | 1           |

# **System Energy**

This function block performs the following functions:

- Returns the energy information of the System Avatar
- · Resets the energy registers of the System Avatar
- · Sets the energy preset values of the System Avatar

#### Figure 22 - SystemEnergy Function Block

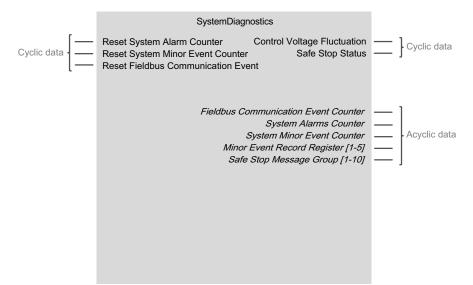


#### Table 45 - Modbus TCP Inputs—System Energy

| Input Name                                | Address | Starting Bit | Size (Bits) |
|-------------------------------------------|---------|--------------|-------------|
| Reset Maximum Voltage RMS                 | 711     | 0            | 1           |
| Reset Maximum Unbalance Voltage           | 711     | 1            | 1           |
| Reset Upstream Voltage Fluctuation Status | 711     | 2            | 1           |
| Reset Voltage Dip Count                   | 711     | 8            | 1           |
| Reset Voltage Swell Count                 | 711     | 9            | 1           |
| Reset Maximum Total Active Power          | 712     | 0            | 1           |
| Reset Maximum Total Reactive Power        | 712     | 1            | 1           |
| Reset Minimum True Power Factor           | 712     | 8            | 1           |
| Reset Maximum True Power Factor           | 712     | 9            | 1           |
| Reset Total Active Energy                 | 713     | 0            | 1           |
| Reset Total Reactive Energy               | 713     | 1            | 1           |

# Table 46 - Modbus TCP Outputs—System Energy

| Output Name                                   | Address | Starting Bit | Size (Bits) |
|-----------------------------------------------|---------|--------------|-------------|
| Total Active Energy                           | 143     | 0            | 32          |
| Total Reactive Energy                         | 145     | 0            | 32          |
| Frequency (Hz)                                | 474     | 0            | 8           |
| Average Voltage RMS                           | 476     | 0            | 16          |
| Voltage RMS Phase 1 (V)                       | 477     | 0            | 16          |
| Voltage RMS Phase 2 (V)                       | 478     | 0            | 16          |
| Voltage RMS Phase 3 (V)                       | 479     | 0            | 16          |
| Percentage of Unbalance Voltage (%)           | 480     | 0            | 8           |
| True Power Factor                             | 481     | 0            | 8           |
| Instantaneous Total Active Power              | 482     | 0            | 32          |
| Instantaneous Total Reactive Power            | 484     | 0            | 32          |
| Voltage Dip Count                             | 1550    | 0            | 16          |
| Voltage Swell Count                           | 1551    | 0            | 16          |
| Upstream Voltage Fluctuation Status           | 1553    | 0            | 1           |
| Voltage Dip Record Register 1 (most recent)   | 1600    | 0            | 16          |
| Voltage Dip Record 1 Start Date               | 1601    | 0            | 64          |
| Voltage Dip Record 1 Stop Date                | 1605    | 0            | 64          |
| Voltage Dip Record Register 2                 | 1609    | 0            | 16          |
| Voltage Dip Record 2 Start Date               | 1610    | 0            | 64          |
| Voltage Dip Record 2 Stop Date                | 1614    | 0            | 64          |
| Voltage Dip Record Register 3                 | 1618    | 0            | 16          |
| Voltage Dip Record 3 Start Date               | 1619    | 0            | 64          |
| Voltage Dip Record 3 Stop Date                | 1623    | 0            | 64          |
| Voltage Dip Record Register 4                 | 1627    | 0            | 16          |
| Voltage Dip Record 4 Start Date               | 1628    | 0            | 64          |
| Voltage Dip Record 4 Stop Date                | 1632    | 0            | 64          |
| Voltage Dip Record Register 5 (least recent)  | 1636    | 0            | 16          |
| Voltage Dip Record 5 Start Date               | 1637    | 0            | 64          |
| Voltage Dip Record 5 Stop Date                | 1641    | 0            | 64          |
| Voltage Swell Record Register 1 (most recent) | 1650    | 0            | 16          |
| Voltage Swell Record 1 Start Date             | 1651    | 0            | 64          |
| Voltage Swell Record 1 Stop Date              | 1655    | 0            | 64          |
| Voltage Swell Record Register 2               | 1659    | 0            | 16          |
| Voltage Swell Record 2 Start Date             | 1660    | 0            | 64          |
| Voltage Swell Record 2 Stop Date              | 1664    | 0            | 64          |
| Voltage Swell Record Register 3               | 1668    | 0            | 16          |
| Voltage Swell Record 3 Start Date             | 1669    | 0            | 64          |
| Voltage Swell Record 3 Stop Date              | 1673    | 0            | 64          |
| Voltage Swell Record Register 4               | 1677    | 0            | 16          |
| Voltage Swell Record 4 Start Date             | 1678    | 0            | 64          |
| Voltage Swell Record 4 Stop Date              | 1682    | 0            | 64          |
|                                               |         | Ĭ            | V T         |


# Table 46 - Modbus TCP Outputs—System Energy (Continued)

| Output Name                                    | Address | Starting Bit | Size (Bits) |
|------------------------------------------------|---------|--------------|-------------|
| Voltage Swell Record Register 5 (least recent) | 1686    | 0            | 16          |
| Voltage Swell Record 5 Start Date              | 1687    | 0            | 64          |
| Voltage Swell Record 5 Stop Date               | 1691    | 0            | 64          |
| Maximum Average Voltage Timestamp              | 2120    | 0            | 64          |
| Maximum Average Voltage RMS                    | 2124    | 0            | 16          |
| Maximum Unbalance Voltage Timestamp            | 2128    | 0            | 64          |
| Maximum Unbalance Voltage %                    | 2132    | 0            | 8           |
| Maximum Total Active Power Timestamp           | 2140    | 0            | 64          |
| Maximum Total Active Power                     | 2144    | 0            | 32          |
| Maximum Total Reactive Power Timestamp         | 2148    | 0            | 64          |
| Maximum Total Reactive Power                   | 2152    | 0            | 32          |
| Maximum True Power Factor Timestamp            | 2160    | 0            | 64          |
| Maximum True Power Factor                      | 2164    | 0            | 8           |
| Minimum True Power Factor Timestamp            | 2168    | 0            | 64          |
| Minimum True Power Factor                      | 2172    | 0            | 8           |
| Voltage Phase Sequence (ABC or ACB)            | 3202    | 0            | 1           |

# **System Diagnostics**

This function block returns and resets the diagnostic information of the System Avatar.

#### Figure 23 - SystemDiagnostics Function Block



NOTE: Safe Stop according to EN 61800-5-2

#### Table 47 - Modbus TCP Inputs—System Diagnostics

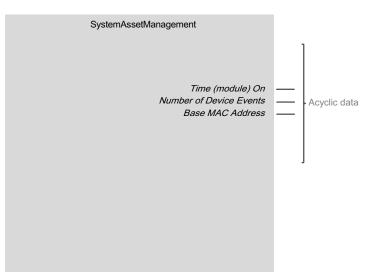
| Input Name                                 | Address | Starting Bit | Size (Bits) |
|--------------------------------------------|---------|--------------|-------------|
| Reset System Alarm Counter                 | 8502    | 0            | 1           |
| Reset System Minor Event Counter           | 8502    | 1            | 1           |
| Reset Fieldbus Communication Event Counter | 8503    | 2            | 1           |

#### Table 48 - Modbus TCP Outputs—System Diagnostics

| Output Name                             | Address | Starting Bit | Size (Bits) |
|-----------------------------------------|---------|--------------|-------------|
| System Minor Event Counter              | 90      | 0            | 16          |
| Fieldbus Communication Event Counter    | 91      | 0            | 16          |
| System Alarms Counter                   | 92      | 0            | 16          |
| Minor Event Record Register 1           | 300     | 0            | 80          |
| Minor Event Record Register 2           | 310     | 0            | 80          |
| Minor Event Record Register 3           | 320     | 0            | 80          |
| Minor Event Record Register 4           | 330     | 0            | 80          |
| Minor Event Record Register 5           | 340     | 0            | 80          |
| Control Voltage Fluctuation             | 452     | 5            | 1           |
| Safe Stop <sup>11</sup> Status          | 3203    | 0            | 1           |
| Safe Stop <sup>11</sup> Message Group 1 | 3204    | 0            | 8           |
| Safe Stop <sup>11</sup> Message Group 2 | 3205    | 0            | 8           |
| Safe Stop <sup>11</sup> Message Group 3 | 3206    | 0            | 8           |
| Safe Stop <sup>11</sup> Message Group 4 | 3207    | 0            | 8           |
| Safe Stop <sup>11</sup> Message Group 5 | 3208    | 0            | 8           |

11. Safe Stop according to EN 61800-5-2

# Table 48 - Modbus TCP Outputs—System Diagnostics (Continued)


| Output Name                              | Address | Starting Bit | Size (Bits) |
|------------------------------------------|---------|--------------|-------------|
| Safe Stop <sup>12</sup> Message Group 6  | 3209    | 0            | 8           |
| Safe Stop <sup>12</sup> Message Group 7  | 3210    | 0            | 8           |
| Safe Stop <sup>12</sup> Message Group 8  | 3211    | 0            | 8           |
| Safe Stop <sup>12</sup> Message Group 9  | 3212    | 0            | 8           |
| Safe Stop <sup>12</sup> Message Group 10 | 3213    | 0            | 8           |

<sup>12.</sup> Safe Stop according to EN 61800-5-2

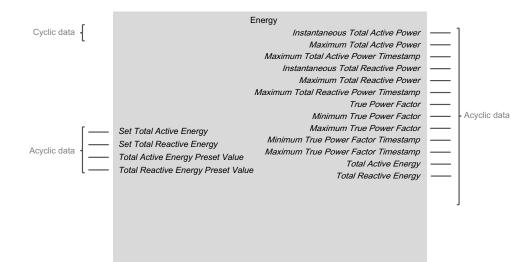
# System Asset Management

This function block returns maintenance and product-specific information of the system device.

#### Figure 24 - SystemAssetManagement Function Block



#### Table 49 - Modbus TCP Outputs—System Asset Management


| Output Name             | Address | Starting Bit | Size (Bits) |
|-------------------------|---------|--------------|-------------|
| Time (module) On        | 28      | 0            | 32          |
| Number of Device Events | 33      | 0            | 16          |
| Base MAC Address        | 64267   | 0            | 48          |

# Energy

This function block performs the following functions:

- · Returns the energy and power information of the selected Avatar
- · Resets the energy registers of the selected Avatar
- · Sets the energy preset values of the selected Avatar

#### Figure 25 - Energy Function Block



### Table 50 - Modbus TCP Inputs—Energy

| Input Name                         | Address | Starting Bit | Size (Bits) |
|------------------------------------|---------|--------------|-------------|
| Total Active Energy Preset Value   | 680     | 0            | 32          |
| Total Reactive Energy Preset Value | 682     | 0            | 32          |
| Set Total Active Energy            | 713     | 6            | 1           |
| Set Total Reactive Energy          | 713     | 7            | 1           |

#### Table 51 - Modbus TCP Outputs—Energy

| Output Name                            | Address | Starting Bit | Size (Bits) |
|----------------------------------------|---------|--------------|-------------|
| Total Active Energy                    | 143     | 0            | 32          |
| Total Reactive Energy                  | 145     | 0            | 32          |
| True Power Factor                      | 481     | 0            | 8           |
| Instantaneous Total Active Power       | 482     | 0            | 32          |
| Instantaneous Total Reactive Power     | 484     | 0            | 32          |
| Maximum Total Active Power Timestamp   | 2140    | 0            | 64          |
| Maximum Total Active Power             | 2144    | 0            | 32          |
| Maximum Total Reactive Power Timestamp | 2148    | 0            | 64          |
| Maximum Total Reactive Power           | 2152    | 0            | 32          |
| Maximum True Power Factor Timestamp    | 2160    | 0            | 64          |
| Maximum True Power Factor              | 2164    | 0            | 8           |
| Minimum True Power Factor Timestamp    | 2168    | 0            | 64          |
| Minimum True Power Factor              | 2172    | 0            | 8           |

# **Diagnostics**

This function block performs the following functions for the selected Avatar:

- Returns diagnostic information
- Resets the Maximum I<sub>RMS</sub> register
- · Returns the values of the trip counters and resets all trip counters
- Returns the values of the trip registers
- · Returns the values of the alarm counters and resets all alarm counters

## Figure 26 - Diagnostics Function Block

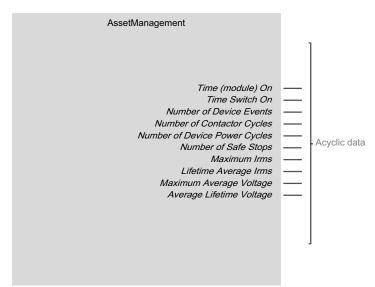
| Cyclic data - Reset Alarm Counter Maximum Average Irms - ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Diagnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| Accordination Counter Maximum Average Irms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [ — F          | Reset Maximum Irms Upstream Voltage Prese                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sence [1-4] | Cyclic data    |
| Irms Phase 1<br>Irms Phase 2<br>Irms Phase 3<br>Irms Phase 3<br>Thermal Overload Alarm Count<br>Jam Alarm Count<br>Overcurrent Alarm Count<br>Overcurrent Alarm Count<br>Ground Current Alarm Count<br>Motor Overhead Alarm Count<br>All Alarms Count<br>All Alarms Count<br>All Alarms Count<br>All Alarms Count<br>All Alarms Count<br>All Alarms Count<br>Acyclic d<br>Jam Trip Count<br>Long Start Trip Count<br>Motor Overheat Trip Count<br>Stall Trip Count<br>Current Phase Unbalance Trip Count<br>Phase Configuration Trip Count<br>Ground Current Trip Count<br>All Trips Count<br>Phase Reversal Trip Count<br>All Trips Count | yclic data · F | ata Reset Alarm Counter Maximum Aver<br>Reset Trip Counter Maximum Average Irms Ti-<br>Irms<br>Irms<br>Irms<br>Thermal Overload Ala<br>Undercurrent Ala<br>Overcurrent Ala<br>Current Phase Unbalance Ala<br>Ground Current Ala<br>Motor Overheat Ala<br>All Alan<br>Thermal Overload T<br>Jam T<br>Undercurrent T<br>Long Start T<br>Overcurrent T<br>Motor Overheat T<br>Stall T<br>Current Phase Configuration T<br>Ground Current T<br>Phase Reversal T<br>Current Phase Loss T<br>All Tm | arage Irms  | - Acyclic data |

#### Table 52 - Modbus TCP Inputs—Diagnostics

| Input Name                     | Address | Starting Bit | Size (Bits) |
|--------------------------------|---------|--------------|-------------|
| Reset Trip Counter             | 710     | 0            | 1           |
| Reset Alarm Counter            | 710     | 1            | 1           |
| Reset Maximum I <sub>RMS</sub> | 710     | 2            | 1           |

#### Table 53 - Modbus TCP Outputs—Diagnostics

| Output Name                        | Address | Starting Bit | Size (Bits) |
|------------------------------------|---------|--------------|-------------|
| Maximum Average I <sub>RMS</sub>   | 32      | 0            | 16          |
| Ground Current Trip Count          | 102     | 0            | 16          |
| Thermal Overload Trip Count        | 103     | 0            | 16          |
| Long Start Trip Count              | 104     | 0            | 16          |
| Jam Trip Count                     | 105     | 0            | 16          |
| Current Phase Unbalance Trip Count | 106     | 0            | 16          |
| Undercurrent Trip Count            | 107     | 0            | 16          |
| Thermal Overload Alarm Count       | 116     | 0            | 16          |
| All Trips Count                    | 122     | 0            | 16          |
| All Alarms Counter                 | 123     | 0            | 16          |
| Stall Trip Count                   | 129     | 0            | 16          |


# Table 53 - Modbus TCP Outputs—Diagnostics (Continued)

| Output Name                             | Address | Starting Bit | Size (Bits) |
|-----------------------------------------|---------|--------------|-------------|
| Overcurrent Trip Count                  | 130     | 0            | 16          |
| Current Phase Loss Trip Count           | 131     | 0            | 16          |
| Motor Overheat Trip Count               | 132     | 0            | 16          |
| Phase Reversal Trip Count               | 135     | 0            | 16          |
| Trip Record Register 1                  | 150     | 0            | 80          |
| Trip Record Register 2                  | 180     | 0            | 80          |
| Trip Record Register 3                  | 210     | 0            | 80          |
| Trip Record Register 4                  | 240     | 0            | 80          |
| Trip Record Register 5                  | 270     | 0            | 80          |
| I <sub>RMS</sub> Phase 1                | 502     | 0            | 32          |
| I <sub>RMS</sub> Phase 2                | 504     | 0            | 32          |
| I <sub>RMS</sub> Phase 3                | 506     | 0            | 32          |
| Phase Configuration Trip Count          | 1500    | 0            | 16          |
| Ground Current Alarm Count              | 1502    | 0            | 16          |
| Jam Alarm Count                         | 1505    | 0            | 16          |
| Current Phase Unbalance Alarm Count     | 1506    | 0            | 16          |
| Undercurrent Alarm Count                | 1507    | 0            | 16          |
| Overcurrent Alarm Count                 | 1530    | 0            | 16          |
| Motor Overheat Alarm Count              | 1532    | 0            | 16          |
| Max Average I <sub>RMS</sub> Time Stamp | 2104    | 0            | 64          |
| Upstream Voltage Present 1              | 3202    | 12           | 1           |
| Upstream Voltage Present 2              | 3202    | 13           | 1           |
| Upstream Voltage Present 3              | 3202    | 14           | 1           |
| Upstream Voltage Present 4              | 3202    | 15           | 1           |

# **Asset Management**

This function block returns maintenance and product identification information of the devices.

#### Figure 27 - AssetManagement Function Block



NOTE: Safe Stop according to EN 61800-5-2

#### Table 54 - Modbus TCP Outputs—Asset Management

| Output Name                        | Address | Starting Bit | Size (Bits) |
|------------------------------------|---------|--------------|-------------|
| Number of Device Power Cycles      | 24      | 0            | 32          |
| Number of Contactor Cycles         | 26      | 0            | 32          |
| Time (module) On                   | 28      | 0            | 32          |
| Time Switch On                     | 30      | 0            | 32          |
| Lifetime Average I <sub>RMS</sub>  | 32      | 0            | 32          |
| Maximum I <sub>RMS</sub>           | 32      | 0            | 16          |
| Number of Device Events            | 33      | 0            | 16          |
| Average Lifetime Voltage           | 34      | 0            | 16          |
| Number of Safe Stops <sup>13</sup> | 40      | 0            | 32          |
| Maximum Average Voltage            | 2124    | 0            | 16          |

<sup>13.</sup> Safe Stop according to EN 61800-5-2

# Third Party Function Block Programming

# TeSys island I/O Data

TeSys<sup>™</sup> island generates and sends advanced data to the PLC to enhance machine efficiency and improve asset management. I/O data is available at the system and the Avatar level. Types of I/O data include control, diagnostics, energy, and asset management. The following tables describe the inputs and outputs available for the Avatars. The following tables can be used to assist in third party PLC function block programming when pre-defined function blocks are not available.

# System I/O

The tables in this section describe the inputs and outputs available for the System Avatar.

# Control

#### Table 55 - System Control Inputs

| I/O Name   | Datatype | Size<br>(Bits) | Scale | Value | Description                                               |
|------------|----------|----------------|-------|-------|-----------------------------------------------------------|
| Trip Reset | BOOL     | 1              | 1     | 0, 1  | Command to reset an Avatar Trip Event.<br>0 = Off, 1 = On |

#### Table 56 - System Control Outputs

| I/O Name           | Datatype | Size<br>(Bits) | Scale | Value               | Description                                                                               |
|--------------------|----------|----------------|-------|---------------------|-------------------------------------------------------------------------------------------|
| System Operational | BOOL     | 1              | 1     | 0, 1                | Indicates that the System Avatar is in<br>Operational mode.<br>0 = Off, 1 = On            |
| Degraded Mode      | BOOL     | 1              | 1     | 0, 1                | Indicates that the System Avatar is in Degraded<br>mode.<br>0 = Off, 1 = On               |
| Minor Event        | BOOL     | 1              | 1     | 0, 1                | Indicates that the System Avatar is in Minor<br>Event mode.<br>0 = Off, 1 = On            |
| Pre-Operational    | BOOL     | 1              | 1     | 0, 1                | Indicates that the System Avatar is in Pre-<br>operational mode.<br>0 = Off, 1 = On       |
| Force Mode         | BOOL     | 1              | 1     | 0, 1                | Indicates whether the system is in Force mode.<br>0 = No, 1 = Yes                         |
| Test Mode          | BOOL     | 1              | 1     | 0, 1                | Returns a status indicating that the System<br>Avatar is in Test mode.<br>0 = Off, 1 = On |
| IP Address         | UDINT    | 32             | -     | Max.:<br>0xFFFFFFFF | IP address of the Bus Coupler controlling the island.                                     |

# **Diagnostics**

# Table 57 - System Diagnostics Inputs

| I/O Name                                         | Datatype | Size<br>(Bits) | Scale | Value | Description                                                              |
|--------------------------------------------------|----------|----------------|-------|-------|--------------------------------------------------------------------------|
| Reset System Alarm<br>Counter                    | BOOL     | 1              | 1     | 0, 1  | Resets System Alarm Counter to 0.<br>0 = Off, 1 = On                     |
| Reset System Minor<br>Event Counter              | BOOL     | 1              | 1     | 0, 1  | Resets System Minor Event Counter to 0.<br>0 = Off, 1 = On               |
| Reset Fieldbus<br>Communication Event<br>Counter | BOOL     | 1              | 1     | 0, 1  | Resets Fieldbus Communication Events<br>Counter to 0.<br>0 = Off, 1 = On |

## Table 58 - System Diagnostics Outputs

| I/O Name                                   | Datatype    | Size<br>(Bits) | Scale | Value                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------|-------------|----------------|-------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Voltage<br>Fluctuation             | BOOL        | 1              | 1     | 0, 1                      | If this output is set to TRUE, a control voltage fluctuation is detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Safe Stop <sup>14</sup> Status             | BOOL        | 1              | 1     | 0, 1                      | 0 = All SIL Groups have Safe Stop <sup>14</sup> status 5<br>(normal operation, no Safe Stop <sup>14</sup> command<br>received)<br>1 = Any SIL Group has received a Safe Stop <sup>14</sup><br>command                                                                                                                                                                                                                                                                                                                                                                                           |
| Fieldbus<br>Communication Event<br>Counter | UINT        | 16             | 1     | 0–65535<br>in steps of 1  | Counts the number of Fieldbus communication events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| System Alarms<br>Counter                   | UINT        | 16             | 1     | 0– 65535<br>in steps of 1 | Counts the number of alarms on the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| System Minor Event<br>Counter              | UINT        | 16             | 1     | 0–65535<br>in steps of 1  | Counts the number of minor events on the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minor Event Record<br>Register 1           | MINEVENTREC | 80             | _     | 0, —                      | Record of most recent Minor Event 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minor Event Record<br>Register 2           | MINEVENTREC | 80             | _     | 0, —                      | Record of Minor Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minor Event Record<br>Register 3           | MINEVENTREC | 80             | _     | 0, —                      | Record of Minor Event 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minor Event Record<br>Register 4           | MINEVENTREC | 80             | _     | 0, —                      | Record of Minor Event 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minor Event Record<br>Register 5           | MINEVENTREC | 80             | _     | 0, —                      | Record of Minor Event 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Safe Stop <sup>14</sup> Message<br>Group 1 | USINT       | 8              | _     | 0–5                       | Status for Safe Stop <sup>14</sup> 0 function for SIL Group<br>1.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>14</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>14</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>14</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed |
| Safe Stop <sup>14</sup> Message<br>Group 2 | USINT       | 8              | _     | 0–5                       | Status for Safe Stop <sup>14</sup> 0 function for SIL Group<br>2.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>14</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>14</sup> command successfully issued,<br>all SIL starters are open                                                                                                                                                                                                                                               |

14. Safe Stop according to EN 61800-5-2

# Table 58 - System Diagnostics Outputs (Continued)

| I/O Name                                   | Datatype | Size<br>(Bits) | Scale | Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------|----------|----------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |          |                |       |       | <ul> <li>4 = Safe Stop<sup>15</sup> command issued to only one<br/>SIM input channel (jumper or SIM input wiring is<br/>causing an issue), but SIL starters did<br/>successfully open.</li> <li>5 = Normal operation, SIL starters can be open<br/>or closed</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| Safe Stop <sup>15</sup> Message<br>Group 3 | USINT    | 8              |       | 0–5   | Status for Safe Stop <sup>15</sup> 0 function for SIL Group<br>3.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>15</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>15</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>15</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed |
| Safe Stop <sup>15</sup> Message<br>Group 4 | USINT    | 8              | _     | 0–5   | Status for Safe Stop <sup>15</sup> 0 function for SIL Group<br>4.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>15</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>15</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>15</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed |
| Safe Stop <sup>15</sup> Message<br>Group 5 | USINT    | 8              |       | 0–5   | Status for Safe Stop <sup>15</sup> 0 function for SIL Group<br>5.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>15</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>15</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>15</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed |
| Safe Stop <sup>15</sup> Message<br>Group 6 | USINT    | 8              |       | 0–5   | Status for Safe Stop <sup>15</sup> 0 function for SIL Group<br>6.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>15</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>15</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>15</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed |
| Safe Stop <sup>15</sup> Message<br>Group 7 | USINT    | 8              | _     | 0–5   | Status for Safe Stop <sup>15</sup> 0 function for SIL Group<br>7.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>15</sup> command received, SIL starters<br>not open yet                                                                                                                                                                                                                                                                                                                                        |

15. Safe Stop according to EN 61800-5-2

# Table 58 - System Diagnostics Outputs (Continued)

| I/O Name                                    | Datatype | Size<br>(Bits) | Scale | Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|----------|----------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |          |                |       |       | <ul> <li>3 = Safe Stop<sup>16</sup> command successfully issued,<br/>all SIL starters are open</li> <li>4 = Safe Stop<sup>16</sup> command issued to only one<br/>SIM input channel (jumper or SIM input wiring is<br/>causing an issue), but SIL starters did<br/>successfully open.</li> <li>5 = Normal operation, SIL starters can be open<br/>or closed</li> </ul>                                                                                                                                                                                                                           |
| Safe Stop <sup>16</sup> Message<br>Group 8  | USINT    | 8              | _     | 0–5   | Status for Safe Stop <sup>16</sup> 0 function for SIL Group<br>8.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>16</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>16</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>16</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed  |
| Safe Stop <sup>16</sup> Message<br>Group 9  | USINT    | 8              | _     | 0–5   | Status for Safe Stop <sup>16</sup> 0 function for SIL Group<br>9.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>16</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>16</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>16</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed  |
| Safe Stop <sup>16</sup> Message<br>Group 10 | USINT    | 8              |       | 0–5   | Status for Safe Stop <sup>16</sup> 0 function for SIL Group<br>10.<br>0 = SIL Group not present in system<br>configuration<br>1 = SIL Group impacted by Avatar Device Event<br>2 = Safe Stop <sup>16</sup> command received, SIL starters<br>not open yet<br>3 = Safe Stop <sup>16</sup> command successfully issued,<br>all SIL starters are open<br>4 = Safe Stop <sup>16</sup> command issued to only one<br>SIM input channel (jumper or SIM input wiring is<br>causing an issue), but SIL starters did<br>successfully open.<br>5 = Normal operation, SIL starters can be open<br>or closed |

<sup>16.</sup> Safe Stop according to EN 61800-5-2

# Energy

# Table 59 - System Voltage Basic Inputs

| I/O Name                                        | Datatype | Size<br>(Bits) | Scale | Value | Description                                                                        |
|-------------------------------------------------|----------|----------------|-------|-------|------------------------------------------------------------------------------------|
| Reset Maximum<br>Voltage RMS                    | BOOL     | 1              | 1     | 0, 1  | Reset the Max. Voltage RMS value and associated timestamps.<br>0 = No, 1 = Yes     |
| Reset Maximum<br>Unbalance Voltage              | BOOL     | 1              | 1     | 0, 1  | Reset Max. Unbalance Voltage to zero, and associated timestamp.<br>0 = No, 1 = Yes |
| Reset Upstream<br>Voltage Fluctuation<br>Status | BOOL     | 1              | 1     | 0, 1  | Command to reset Voltage Fluctuation Status.<br>0 = No, 1 = Yes                    |

#### Table 60 - System Voltage Basic Outputs

| I/O Name                                  | Datatype | Size<br>(Bits) | Scale | Value                     | Description                                                                                                  |
|-------------------------------------------|----------|----------------|-------|---------------------------|--------------------------------------------------------------------------------------------------------------|
| Upstream Voltage<br>Fluctuation Status    | BOOL     | 1              | 1     | 0, 1                      | On when a Voltage Dip or Swell has occurred.<br>Reset by command.<br>0 = Off, 1 = On                         |
| Average Voltage RMS                       | UINT     | 16             | 1     | 0–1,000<br>in steps of 1  | Average RMS Voltage (V) on 3 phases                                                                          |
| Maximum Average<br>Voltage RMS            | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Maximum voltage (V) measured by the system                                                                   |
| Maximum Average<br>Voltage Timestamp      | DT       | 64             | _     | _                         | Date and Time of the maximum average voltage                                                                 |
| Voltage RMS Phase 1<br>(V)                | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Average RMS voltage (V) between L1 and neutral                                                               |
| Voltage RMS Phase 2<br>(V)                | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Average RMS voltage (V) between L2 and neutral                                                               |
| Voltage RMS Phase 3<br>(V)                | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Average RMS voltage (V) between L3 and neutral                                                               |
| Percentage of<br>Unbalance Voltage<br>(%) | USINT    | 8              | 1     | 0–100<br>in steps of 1    | % of unbalance voltage                                                                                       |
| Maximum Unbalance<br>Voltage %            | USINT    | 8              | 1     | 0–100<br>in steps of 1    | Maximum unbalance voltage in %                                                                               |
| Maximum Unbalance<br>Voltage Timestamp    | DT       | 64             | _     | _                         | Date and Time of the maximum unbalance voltage                                                               |
| Voltage Phase<br>Sequence (ABC or<br>ACB) | BOOL     | 1              | 1     | 0, 1                      | Measured voltage phase sequence (ABC or<br>ACB)<br>0 = Phase order ABC<br>1 = Phase order ACB                |
| Frequency (Hz)                            | USINT    | 8              | 1     | 0–255<br>in steps of 1    | Main power voltage frequency ( <b>Hz</b> ). This register returns the line frequency as measured on phase 1. |

#### Table 61 - System Voltage Enhanced Inputs

| I/O Name                     | Datatype | Size<br>(Bits) | Scale | Value | Description                                                            |
|------------------------------|----------|----------------|-------|-------|------------------------------------------------------------------------|
| Reset Voltage Dip<br>Count   | BOOL     | 1              | 1     | 0, 1  | Command to reset the Voltage Dip counter to 0.<br>0 = No, 1 = Yes      |
| Reset Voltage Swell<br>Count | BOOL     | 1              | 1     | 0, 1  | Command to reset the Voltage Swell counter to<br>0.<br>0 = No, 1 = Yes |

# Table 62 - System Voltage Enhanced Outputs

| I/O Name                                             | Datatype | Size<br>(Bits) | Scale | Value                     | Description                                                                      |
|------------------------------------------------------|----------|----------------|-------|---------------------------|----------------------------------------------------------------------------------|
| Voltage Dip Record<br>Register 1 (most<br>recent)    | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Minimum voltage magnitude (V) for Voltage Dip<br>Record 1                        |
| Voltage Dip Record<br>Register 2                     | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Minimum voltage magnitude (V) for Voltage Dip<br>Record 2                        |
| Voltage Dip Record<br>Register 3                     | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Minimum voltage magnitude (V) for Voltage Dip<br>Record 3                        |
| Voltage Dip Record<br>Register 4                     | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Minimum voltage magnitude (V) for Voltage Dip<br>Record 4                        |
| Voltage Dip Record<br>Register 5 (least<br>recent)   | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Minimum voltage magnitude (V) for Voltage Dip<br>Record 5                        |
| Voltage Dip Record 1<br>Start Date                   | DT       | 64             | _     | _                         | Voltage Dip Record Register 1 Start Timestamp (Date, Time)                       |
| Voltage Dip Record 2<br>Start Date                   | DT       | 64             | _     | _                         | Voltage Dip Record Register 2 Start Timestamp (Date, Time)                       |
| Voltage Dip Record 3<br>Start Date                   | DT       | 64             | _     | _                         | Voltage Dip Record Register 3 Start Timestamp<br>(Date, Time)                    |
| Voltage Dip Record 4<br>Start Date                   | DT       | 64             | _     | _                         | Voltage Dip Record Register 4 Start Timestamp<br>(Date, Time)                    |
| Voltage Dip Record 5<br>Start Date                   | DT       | 64             | _     | _                         | Voltage Dip Record Register 5 Start Timestamp (Date, Time)                       |
| Voltage Dip Record 1<br>Stop Date                    | DT       | 64             | _     | _                         | Voltage Dip Record Register 1 Stop Timestamp (Date, Time)                        |
| Voltage Dip Record 2<br>Stop Date                    | DT       | 64             | _     | _                         | Voltage Dip Record Register 2 Stop Timestamp (Date, Time)                        |
| Voltage Dip Record 3<br>Stop Date                    | DT       | 64             | _     | _                         | Voltage Dip Record Register 3 Stop Timestamp (Date, Time)                        |
| Voltage Dip Record 4<br>Stop Date                    | DT       | 64             | _     | _                         | Voltage Dip Record Register 4 Stop Timestamp (Date, Time)                        |
| Voltage Dip Record 5<br>Stop Date                    | DT       | 64             | _     | _                         | Voltage Dip Record Register 5 Stop Timestamp (Date, Time)                        |
| Voltage Dip Count                                    | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Voltage Dip counter                                                              |
| Voltage Swell Record<br>Register 1 (most<br>recent)  | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Maximum voltage magnitude ( <b>V</b> ) for Voltage Swell Record 1                |
| Voltage Swell Record<br>Register 2                   | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Maximum voltage magnitude (V) for Voltage Swell Record 2                         |
| Voltage Swell Record<br>Register 3                   | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Maximum voltage magnitude (V) for Voltage<br>Swell Record 3                      |
| Voltage Swell Record<br>Register 4                   | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Maximum voltage magnitude (V) for Voltage<br>Swell Record 4                      |
| Voltage Swell Record<br>Register 5 (least<br>recent) | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Maximum voltage magnitude ( <b>V</b> ) Voltage Swell<br>Record 5                 |
| Voltage Swell Record<br>1 Start Date                 | DT       | 64             | _     | _                         | Voltage Swell Record Register 1 Start<br>Timestamp ( <b>Date</b> , <b>Time</b> ) |
| Voltage Swell Record<br>2 Start Date                 | DT       | 64             | _     | _                         | Voltage Swell Record Register 2 Start<br>Timestamp ( <b>Date</b> , <b>Time</b> ) |
| Voltage Swell Record<br>3 Start Date                 | DT       | 64             | _     | _                         | Voltage Swell Record Register 3 Start<br>Timestamp ( <b>Date</b> , <b>Time</b> ) |
| Voltage Swell Record<br>4 Start Date                 | DT       | 64             | _     | _                         | Voltage Swell Record Register 4 Start<br>Timestamp ( <b>Date</b> , <b>Time</b> ) |

#### Table 62 - System Voltage Enhanced Outputs (Continued)

| I/O Name                             | Datatype | Size<br>(Bits) | Scale | Value                     | Description                                                                      |
|--------------------------------------|----------|----------------|-------|---------------------------|----------------------------------------------------------------------------------|
| Voltage Swell Record<br>5 Start Date | DT       | 64             | _     | _                         | Voltage Swell Record Register 5 Start<br>Timestamp ( <b>Date</b> , <b>Time</b> ) |
| Voltage Swell Record<br>1 Stop Date  | DT       | 64             | _     | _                         | Voltage Swell Record Register 1 Stop<br>Timestamp ( <b>Date</b> , <b>Time</b> )  |
| Voltage Swell Record<br>2 Stop Date  | DT       | 64             | _     | _                         | Voltage Swell Record Register 2 Stop<br>Timestamp ( <b>Date</b> , <b>Time</b> )  |
| Voltage Swell Record<br>3 Stop Date  | DT       | 64             | _     | _                         | Voltage Swell Record Register 3 Stop<br>Timestamp ( <b>Date</b> , <b>Time</b> )  |
| Voltage Swell Record<br>4 Stop Date  | DT       | 64             | _     | _                         | Voltage Swell Record Register 4 Stop<br>Timestamp ( <b>Date</b> , <b>Time</b> )  |
| Voltage Swell Record<br>5 Stop Date  | DT       | 64             | _     | _                         | Voltage Swell Record Register 5 Stop<br>Timestamp ( <b>Date</b> , <b>Time</b> )  |
| Voltage Swell Count                  | UINT     | 16             | 1     | 0–65,335<br>in steps of 1 | Voltage Swell counter                                                            |

# Table 63 - System Power Basic Inputs

| I/O Name                              | Datatype | Size<br>(Bits) | Scale | Value | Description                                                                                 |
|---------------------------------------|----------|----------------|-------|-------|---------------------------------------------------------------------------------------------|
| Reset Maximum Total<br>Active Power   | BOOL     | 1              | 1     | 0, 1  | Reset the Active Power Max. value and<br>associated timestamp.<br>0 = No, 1 = Yes           |
| Reset Maximum Total<br>Reactive Power | BOOL     | 1              | 1     | 0, 1  | Reset the Reactive Power Max. value and<br>associated timestamp.<br>0 = No, 1 = Yes         |
| Reset Minimum True<br>Power Factor    | BOOL     | 1              | 1     | 0, 1  | Reset the true Power Factor Min. value to 1 and<br>associated timestamp.<br>0 = No, 1 = Yes |
| Reset Maximum True<br>Power Factor    | BOOL     | 1              | 1     | 0, 1  | Reset the true Power Factor Max. value to 0 and<br>associated timestamp.<br>0 = No, 1 = Yes |

#### Table 64 - System Power Basic Outputs

| I/O Name                                     | Datatype | Size<br>(Bits) | Scale | Value                                               | Description                                                                                          |  |
|----------------------------------------------|----------|----------------|-------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Instantaneous Total<br>Active Power          | DINT     | 32             | 0.001 | -2,147,483,648<br>to 2,147,483,647<br>in steps of 1 | Returns the total Active Power ( <b>kW</b> ) for the avatar.                                         |  |
| Maximum Total Active<br>Power                | DINT     | 32             | 0.001 | -9,999,999 to<br>9,999,999<br>in steps of 1         | Returns the maximum value of total active power ( <b>kW</b> ) for the avatar.                        |  |
| Maximum Total Active<br>Power Timestamp      | DT       | 64             | _     | _                                                   | Provide <b>date</b> and <b>time</b> when maximum total Active Power value has been recorded.         |  |
| Instantaneous Total<br>Reactive Power        | DINT     | 32             | 0.001 | -9,999,999 to<br>9,999,999<br>in steps of 1         | Returns the total Reactive Power value ( <b>kVAR</b> ) for the avatar.                               |  |
| Maximum Total<br>Reactive Power              | DINT     | 32             | 0.001 | -9,999,999 to<br>9,999,999<br>in steps of 1         | Returns the maximum value of Reactive Power ( <b>kVAR</b> ) for the avatar.                          |  |
| Maximum Total<br>Reactive Power<br>Timestamp | DT       | 32             | _     | _                                                   | Provides <b>date</b> and <b>time</b> when total maximum total Reactive Power value has been recorded |  |
| True Power Factor                            | USINT    | 8              | 0.01  | 0–100<br>in steps of 1                              | Returns the true Power factor value.                                                                 |  |
| Minimum True Power<br>Factor                 | USINT    | 8              | 0.01  | 0–100<br>in steps of 1                              | Returns the true Power factor minimum value.                                                         |  |

#### Table 64 - System Power Basic Outputs (Continued)

| I/O Name                               | Datatype | Size<br>(Bits) | Scale | Value                  | Description                                                                            |
|----------------------------------------|----------|----------------|-------|------------------------|----------------------------------------------------------------------------------------|
| Maximum True Power<br>Factor           | USINT    | 8              | 0.01  | 0–100<br>in steps of 1 | Returns the true Power factor maximum value.                                           |
| Minimum True Power<br>Factor Timestamp | DT       | 64             | _     | _                      | Provide <b>date</b> and <b>time</b> when Minimum Power Factor value has been recorded. |
| Maximum True Power<br>Factor Timestamp | DT       | 64             | _     | _                      | Provide <b>date</b> and <b>time</b> when Maximum Power Factor value has been recorded. |

#### Table 65 - System Energy Basic Inputs

| I/O Name                       | Datatype | Size<br>(Bits) Scale Value |   | Value | Description                                                                                                                                   |
|--------------------------------|----------|----------------------------|---|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Reset Total Reactive<br>Energy | BOOL     | 1                          | 1 | 0, 1  | Resets System Avatar accumulation of reactive<br>energy to zero, does not affect load or<br>application level energy data.<br>0 = No, 1 = Yes |
| Reset Total Active<br>Energy   | BOOL     | 1                          | 1 | 0, 1  | Command to set the Total Active Energy value<br>to Total Active Energy Preset value.<br>0 = No, 1 = Yes                                       |

#### Table 66 - System Energy Basic Outputs

| I/O Name              | Datatype | Size<br>(Bits) | Scale | Value                            | Description                                      |  |
|-----------------------|----------|----------------|-------|----------------------------------|--------------------------------------------------|--|
| Total Active Energy   | UDINT    | 32             | 0.001 | 0–4,294,967,295<br>in steps of 1 | Returns the Total Active Energy value (kWh).     |  |
| Total Reactive Energy | UDINT    | 32             | 0.001 | 0–999,999,999<br>in steps of 1   | Returns the Total Reactive Energy value (kVARh). |  |

# **Asset Management**

# Table 67 - System Product Data Outputs

| I/O Name            | Datatype | Size<br>(Bits) | Scale | Unit | Min. | Max. | Step | Description                              |
|---------------------|----------|----------------|-------|------|------|------|------|------------------------------------------|
| Base MAC<br>Address | DT_MAC   | 48             | _     |      | _    | _    | _    | MAC address of Fieldbus Ethernet port 1. |

#### Table 68 - System Maintenance Data Outputs

| I/O Name                               | Datatype | Size<br>(Bits) | Scale | Unit | Min. | Max.          | Step | Description                                                                                                                                                                                               |
|----------------------------------------|----------|----------------|-------|------|------|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time (module)<br>ON                    | UDINT    | 32             | 1     | Hour | 0    | 4,294,967,295 | 1    | This register indicates the time that<br>the module has been powered on<br>in its lifetime.                                                                                                               |
| Number of<br>Events (Device<br>Events) | UINT     | 16             | 1     | _    | 0    | 65,535        | 1    | This register attempts to indicate<br>number of times this module has<br>experienced a device event. This<br>value does not include device<br>event which prevent the saving or<br>corruption of the NVM. |

# Avatar I/O

The tables in this section describe the inputs and outputs available for the avatars.

## Control

#### Table 69 - Avatar Control Inputs

| I/O Name         | Datatype | Size<br>(Bits) | Scale | Value                              | Description                                                                    |
|------------------|----------|----------------|-------|------------------------------------|--------------------------------------------------------------------------------|
| Trip Reset       | BOOL     | 1              | 1     | 0, 1                               | Command to reset an Avatar trip event<br>0 = Off, 1 = On                       |
| Run 1            | BOOL     | 1              | 1     | 0, 1                               | Command to Avatar Forward Switch.<br>0 = Off, 1 = On                           |
| Run Forward      | BOOL     | 1              | 1     | 0, 1                               | Command to Avatar Forward Switch.<br>0 = Off, 1 = On                           |
| Run Reverse      | BOOL     | 1              | 1     | 0, 1                               | Command to close the Reverse switch with<br>Reverser Avatar<br>0 = Off, 1 = On |
| Run Forward Low  | BOOL     | 1              | 1     | 0, 1                               | Command to start Motor forward with Low<br>Speed<br>0 = Off, 1 = On            |
| Run Forward High | BOOL     | 1              | 1     | 0, 1                               | Command to start Motor forward with High<br>Speed<br>0 = Off, 1 = On           |
| Run Reverse Low  | BOOL     | 1              | 1     | 0, 1                               | Run Reverse Low Speed command<br>0 = Off, 1 = On                               |
| Run Reverse High | BOOL     | 1              | 1     | 0, 1                               | Run Reverse High Speed command<br>0 = Off, 1 = On                              |
| Logic Output 1   | BOOL     | 1              | 1     | 0, 1                               | Command to Close Logical output 1<br>0 = Off, 1 = On                           |
| Logic Output 2   | BOOL     | 1              | 1     | 0, 1                               | Command to Close Logical output 2<br>0 = Off, 1 = On                           |
| Digital Output 0 | BOOL     | 1              | 1     | 0, 1                               | Command to close Digital output 0<br>0 = Off, 1 = On                           |
| Digital Output 1 | BOOL     | 1              | 1     | 0, 1                               | Command to close Digital output 1<br>0 = Off, 1 = On                           |
| Analog Output 0  | INT      | 16             | 1     | -32,768 to 32,767<br>in steps of 1 | Value to be written to Analog output 0                                         |

# Table 70 - Avatar Control Outputs

| I/O Name                                         | Datatype | Size<br>(Bits) | Scale | Value | Description                                                                                                                                                           |  |
|--------------------------------------------------|----------|----------------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ready                                            | BOOL     | 1              | 1     | 0, 1  | Avatar is ready to be controlled (all Devices in<br>the Avatar are Ready).<br>0 = Off, 1 = On                                                                         |  |
| Upstream Voltage<br>Present 1                    | BOOL     | 1              | 1     | 0, 1  | Avatar has detected that Upstream main power<br>of its first Device is present (Breaker closed).<br>0 = no voltage presence detected<br>1 = voltage presence detected |  |
| Upstream Voltage<br>Present 2                    | BOOL     | 1              | 1     | 0, 1  | Avatar has detected that Upstream main power<br>of its second Device (if available) is present.<br>0 = no voltage presence detected<br>1 = voltage presence detected  |  |
| Upstream Voltage<br>Present 3                    | BOOL     | 1              | 1     | 0, 1  | Avatar has detected that Upstream main power<br>of its third Device (if available) is present.<br>0 = no voltage presence detected<br>1 = voltage presence detected   |  |
| Upstream Voltage<br>Present 4                    | BOOL     | 1              | 1     | 0, 1  | Avatar has detected that Upstream main power<br>of its fourth Device (if available) is present.<br>0 = no voltage presence detected<br>1 = voltage presence detected  |  |
| Run 1 Status                                     | BOOL     | 1              | 1     | 0, 1  | Avatar Forward Switch Feedback,<br>0 = switch is open, 1 = switch is closed                                                                                           |  |
| Run Forward Status                               | BOOL     | 1              | 1     | 0, 1  | Avatar Forward Switch Feedback,<br>0 = switch is open, 1 = switch is closed                                                                                           |  |
| Run Reverse Status                               | BOOL     | 1              | 1     | 0, 1  | Avatar Reverse Switch Feedback,<br>0 = switch is open, 1 = switch is closed                                                                                           |  |
| Status Run Forward:<br>Open/Close Line<br>Status | BOOL     | 1              | 1     | 0, 1  | Position of the Line switch for Y/D avatars.<br>0 = Off, 1 = On                                                                                                       |  |
| Run Y Status                                     | BOOL     | 1              | 1     | 0, 1  | Position of the Y switch for Y/D avatars.<br>0 = Off, 1 = On                                                                                                          |  |
| Run D Status                                     | BOOL     | 1              | 1     | 0, 1  | Position of the D Switch for Y/D avatars.<br>0 = Off, 1 = On                                                                                                          |  |
| Run Forward Low<br>Status                        | BOOL     | 1              | 1     | 0, 1  | Motor is running in Speed1<br>0 = Motor stopped or in Speed1<br>1 = Motor running in Speed2                                                                           |  |
| Run Forward High<br>Status                       | BOOL     | 1              | 1     | 0, 1  | Motor is running in Speed2<br>0 = Motor stopped or in Speed1<br>1 = Motor running in Speed2                                                                           |  |
| Run Reverse Low<br>Status                        | BOOL     | 1              | 1     | 0, 1  | Position of the Low Speed Reverser switch.<br>0 = Off, 1 = On                                                                                                         |  |
| Run Reverse High<br>Status                       | BOOL     | 1              | 1     | 0, 1  | Position of the High Speed Reverser switch.<br>0 = Off, 1 = On                                                                                                        |  |
| Logic Output 1 Status                            | BOOL     | 1              | 1     | 0, 1  | Position of the Output 1.<br>0 = Off, 1 = On                                                                                                                          |  |
| Logic Output 2 Status                            | BOOL     | 1              | 1     | 0, 1  | Position of the Output 2.<br>0 = Off, 1 = On                                                                                                                          |  |
| Logic Input 1 Status                             | BOOL     | 1              | 1     | 0, 1  | State of Digital Input 1 of Avatar.<br>0 = Off, 1 = On                                                                                                                |  |
| Logic Input 2 Status                             | BOOL     | 1              | 1     | 0, 1  | State of Digital Input 1 of Avatar.<br>0 = Off, 1 = On                                                                                                                |  |
| Digital Input Status 0                           | BOOL     | 1              | 1     | 0, 1  | State of Digital Input 0 of DIOM Avatar<br>0 = Off, 1 = On                                                                                                            |  |
| Digital Input Status 1                           | BOOL     | 1              | 1     | 0, 1  | State of Digital Input 1 of DIOM Avatar<br>0 = Off, 1 = On                                                                                                            |  |
| Digital Input Status 2                           | BOOL     | 1              | 1     | 0, 1  | State of Digital Input 2 of DIOM Avatar<br>0 = Off, 1 = On                                                                                                            |  |
| Digital Input Status 3                           | BOOL     | 1              | 1     | 0, 1  | State of Digital Input 3 of DIOM Avatar<br>0 = Off, 1 = On                                                                                                            |  |

# Table 70 - Avatar Control Outputs (Continued)

| I/O Name                       | Datatype | Size<br>(Bits) | Scale | Value                              | Description                                                                                                                                                                                           |
|--------------------------------|----------|----------------|-------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog Input 0                 | INT      | 16             | 1     | -32,768 to 32,767<br>in steps of 1 | Value read from the Analog input 0                                                                                                                                                                    |
| Analog Input 1                 | INT      | 16             | 1     | -32,768 to 32,767<br>in steps of 1 | Value read from the Analog input 1                                                                                                                                                                    |
| Load Starting                  | BOOL     | 1              | 1     | 0, 1                               | Returns 1 if the load is in start phase.<br>0 = Off, 1 = On                                                                                                                                           |
| Load Running                   | BOOL     | 1              | 1     | 0, 1                               | Set to 1 when a Run or Close command has<br>been executed and current is flowing in the<br>poles (equivalent to Motor Running but also for<br>non-motor avatars).<br>0 = Off, 1 = On                  |
| Motor Temperature              | INT      | 16             | 1     | –200 to 850<br>in steps of 1       | Returns the motor temperature in °C. Depending on the Temperature Sensor type, the range is:         -200 to 850 °C for PT100         -200 to 600 °C for PT1000         -60 to 180 °C for NI 100/1000 |
| I <sub>RMS</sub> Average       | UDINT    | 32             | 0.001 | 0–4,294,967,295<br>in steps of 1   | Calculate the average of the most recent phase current RMS values ( <b>A</b> ).                                                                                                                       |
| Alarm                          | BOOL     | 1              | 1     | 0, 1                               | Avatar has detected a protection alarm event.<br>0 = Off, 1 = On                                                                                                                                      |
| Tripped                        | BOOL     | 1              | 1     | 0, 1                               | Avatar has detected a trip event.<br>0 = Off, 1 = On                                                                                                                                                  |
| Ready to Reset                 | BOOL     | 1              | 1     | 0, 1                               | 0 = Off, 1 = On                                                                                                                                                                                       |
| Asset Alarm                    | BOOL     | 1              | 1     | 0, 1                               | Triggered when a Power Device or SIM<br>references within the Avatar has reached or<br>exceeded 90% of expected durability (per<br>Avatar Parameter).<br>0 = Off, 1 = On                              |
| Motor Thermal<br>Capacity Used | USINT    | 8              | 1     | 0–255<br>in steps of 1             | Returns the percentage (%) of the motor's thermal capacity which has been used.                                                                                                                       |
|                                |          |                |       |                                    | 1st Modbus register protection alarm bits:                                                                                                                                                            |
|                                |          |                |       |                                    | Bit 2: Ground Current Alarm                                                                                                                                                                           |
| Protection Alarm               | UINT     | 16             |       | 0 to max. 0xFFFF                   | Bit 3: Thermal Overload Alarm                                                                                                                                                                         |
| Message 1                      | UNI      | 10             |       | o to max. oxi i i i                | Bit 5: Jam Alarm                                                                                                                                                                                      |
|                                |          |                |       |                                    | Bit 6: Current Phase Unbalance Alarm                                                                                                                                                                  |
|                                |          |                |       |                                    | Bit 7: Undercurrent Alarm                                                                                                                                                                             |
|                                |          |                |       |                                    | 2nd Modbus register protection alarm bits:                                                                                                                                                            |
| Protection Alarm<br>Message 2  | UINT     | 16             | —     | 0 to max. 0xFFFF                   | Bit 3: Overcurrent Alarm                                                                                                                                                                              |
|                                |          |                |       |                                    | Bit 6: Motor Overheat Alarm                                                                                                                                                                           |
|                                |          |                |       |                                    | 1st Modbus register protection trip bits:                                                                                                                                                             |
|                                |          |                |       |                                    | Bit 2: Ground Current Trip                                                                                                                                                                            |
|                                |          |                |       |                                    | Bit 3: Thermal Overload Trip                                                                                                                                                                          |
| Protection Trip                | UINT     | 16             |       | 0 to max. 0xFFFF                   | Bit 4: Long Start Trip                                                                                                                                                                                |
| Message 1                      | CINT     | 10             |       |                                    | Bit 5: Jam Trip                                                                                                                                                                                       |
|                                |          |                |       |                                    | Bit 6: Current Phase Unbalance Trip                                                                                                                                                                   |
|                                |          |                |       |                                    | Bit 7: Undercurrent Trip                                                                                                                                                                              |
|                                |          |                |       |                                    | Bit 8: Stall Trip                                                                                                                                                                                     |
|                                |          |                |       |                                    | 2nd Modbus register protection trip bits:                                                                                                                                                             |
| Protection Trip<br>Message 2   | UINT     | 16             | -     | 0 to max. 0xFFFF                   | Bit 2: Phase Configuration Trip                                                                                                                                                                       |
| Ĩ                              |          |                |       |                                    | Bit 3: Overcurrent Trip                                                                                                                                                                               |

# Table 70 - Avatar Control Outputs (Continued)

| I/O Name                          | Datatype | Size<br>(Bits) | Scale | Value                    | Description                                                                                           |
|-----------------------------------|----------|----------------|-------|--------------------------|-------------------------------------------------------------------------------------------------------|
|                                   |          |                |       |                          | Bit 4: Current Phase Loss Trip<br>Bit 5: Current Phase Reversal Trip<br>Bit 6: Motor Overheat Trip    |
| Thermal Overload<br>Time To Trip  | UINT     | 16             | 1     | 0–65535<br>in steps of 1 | Estimated time (in <b>seconds</b> ) before a Thermal Overload trip.                                   |
| Thermal Overload<br>Time To Reset | UINT     | 16             | 1     | 0–65535<br>in steps of 1 | Estimated time (in <b>seconds</b> ) to wait before a reset could acknowledge a Thermal Overload trip. |

# Energy

## Table 71 - Avatar Power Outputs

| I/O Name                                        | Datatype | Size<br>(Bits) | Scale | Unit          | Minimum        | Maximum       | Step | Description                                                                                    |
|-------------------------------------------------|----------|----------------|-------|---------------|----------------|---------------|------|------------------------------------------------------------------------------------------------|
| Instantaneous<br>Total Active<br>Power          | DINT     | 32             | 0.001 | kW            | -2,147,483,648 | 2,147,483,647 | 1    | Returns the total Active<br>Power for the Avatar.                                              |
| Maximum Total<br>Active Power                   | DINT     | 32             | 0.001 | kW            | -9,999,999     | 9,999,999     | 1    | Returns the maximum value of total active power for the Avatar.                                |
| Maximum Total<br>Active Power<br>Timestamp      | DT       | 64             | _     | Date,<br>Time | _              | _             | _    | Provide date and time<br>when maximum total<br>active Power value has<br>been recorded.        |
| Instantaneous<br>Total Reactive<br>Power        | DINT     | 32             | 0.001 | kVAR          | -9,999,999     | 9,999,999     | 1    | Returns the total<br>Reactive Power value for<br>the Avatar.                                   |
| Maximum Total<br>Reactive<br>Power              | DINT     | 32             | 0.001 | kVAR          | -9,999,999     | 9,999,999     | 1    | Returns the maximum value of Reactive Power for the Avatar.                                    |
| Maximum Total<br>Reactive<br>Power<br>Timestamp | DT       | 32             | _     | Date,<br>Time | _              | _             | —    | Provide date and time<br>when total maximum total<br>Reactive Power value<br>has been recorded |
| True Power<br>Factor                            | USINT    | 8              | 0.01  | —             | 0              | 100           | 1    | Returns the true Power factor value.                                                           |
| Minimum True<br>Power Factor                    | USINT    | 8              | 0.01  | —             | 0              | 100           | 1    | Returns the true Power factor minimum value.                                                   |
| Maximum True<br>Power Factor                    | USINT    | 8              | 0.01  | —             | 0              | 100           | 1    | Returns the true Power factor maximum value.                                                   |
| Minimum True<br>Power Factor<br>Timestamp       | DT       | 64             | _     | Date,<br>Time | _              | _             | _    | Provide date and time<br>when Minimum Power<br>Factor value has been<br>recorded.              |
| Maximum True<br>Power Factor<br>Timestamp       | DT       | 64             | —     | Date,<br>Time | _              | _             | —    | Provide date and time<br>when Maximum Power<br>Factor value has been<br>recorded.              |

# Table 72 - Avatar Energy Inputs

| I/O Name                                 | Data-<br>type | Size<br>(Bits) | Scale | Unit  | Minimum | Maximum       | Step | Description                                                                                                       |
|------------------------------------------|---------------|----------------|-------|-------|---------|---------------|------|-------------------------------------------------------------------------------------------------------------------|
| Set Total<br>Active Energy               | BOOL          | 1              | 1     | -     | 0       | 1             | 1    | Command to set the Total<br>Active Energy value to<br>Total Active Energy<br>Preset value.<br>0 = no, 1 = yes     |
| Set Total<br>Reactive<br>Energy          | BOOL          | 1              | 1     | -     | 0       | 1             | 1    | Command to set the Total<br>Reactive Energy value to<br>Total Reactive Energy<br>Preset value.<br>0 = no, 1 = yes |
| Total Active<br>Energy Preset<br>Value   | UDINT         | 32             | 0.001 | kWh   | 0       | 4,294,967,295 | 1    | Preset the Total Active<br>Energy value.                                                                          |
| Total Reactive<br>Energy Preset<br>Value | UDINT         | 32             | 0.001 | kVARh | 0       | 4,294,967,295 | 1    | Preset the Total Reactive<br>Energy value.                                                                        |

# Table 73 - Avatar Energy Outputs

| I/O Name                 | Datatype | Size<br>(Bits) | Scale | Unit  | Minimum | Maximum       | Step | Description                                |
|--------------------------|----------|----------------|-------|-------|---------|---------------|------|--------------------------------------------|
| Total Active<br>Energy   | UDINT    | 32             | 0.001 | kWh   | 0       | 4,294,967,295 | 1    | Returns the Total Active<br>Energy value.  |
| Total Reactive<br>Energy | UDINT    | 32             | 0.001 | kVARh | 0       | 999,999,999   | 1    | Returns the Total<br>Reactive Energy value |

# **Diagnostics**

# Table 74 - Avatar Diagnostics Inputs

| I/O Name                   | Datatype | Size<br>(Bits) | Scale | Value | Description                                                                                        |
|----------------------------|----------|----------------|-------|-------|----------------------------------------------------------------------------------------------------|
| Reset Max I <sub>RMS</sub> | BOOL     | 1              | 1     | 0, 1  | Command to reset the Maximum Average $I_{RMS}$<br>current value and Time Stamp.<br>0 = Off, 1 = On |

#### Table 75 - Avatar Diagnostics Outputs

| I/O Name                                   | Datatype | Size<br>(Bits) | Scale | Value                                  | Description                                                                                                                                                           |
|--------------------------------------------|----------|----------------|-------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upstream Voltage<br>Present 1              | BOOL     | 1              | 1     | 0, 1                                   | Avatar has detected that Upstream main power<br>of its first Device is present (Breaker closed).<br>0 = no voltage presence detected<br>1 = voltage presence detected |
| Upstream Voltage<br>Present 2              | BOOL     | 1              | 1     | 0, 1                                   | Avatar has detected that Upstream main power<br>of its second Device (if available) is present.<br>0 = no voltage presence detected<br>1 = voltage presence detected  |
| Upstream Voltage<br>Present 3              | BOOL     | 1              | 1     | 0, 1                                   | Avatar has detected that Upstream main power<br>of its third Device (if available) is present.<br>0 = no voltage presence detected<br>1 = voltage presence detected   |
| Upstream Voltage<br>Present 4              | BOOL     | 1              | 1     | 0, 1                                   | Avatar has detected that Upstream main power<br>of its fourth Device (if available) is present.<br>0 = no voltage presence detected<br>1 = voltage presence detected  |
| Max Average I <sub>RMS</sub>               | UINT     | 16             | 0.1   | 0–65,535<br>in steps of 1              | Indicates the maximum current (A) measured by the device in its lifetime.                                                                                             |
| Max Average I <sub>RMS</sub><br>Time Stamp | DT       | 64             | _     | _                                      | Provides the <b>date</b> and <b>time</b> when Maximum average $I_{RMS}$ current value has been recorded.                                                              |
| I <sub>RMS</sub> Phase 1                   | UDINT    | 32             | 0.001 | 0 to<br>4,294,967,295<br>in steps of 1 | Phase L1 I <sub>RMS</sub> value ( <b>A</b> )                                                                                                                          |
| I <sub>RMS</sub> Phase 2                   | UDINT    | 32             | 0.001 | 0 to<br>4,294,967,295<br>in steps of 1 | Phase L2 I <sub>RMS</sub> value ( <b>A</b> )                                                                                                                          |
| I <sub>RMS</sub> Phase 3                   | UDINT    | 32             | 0.001 | 0 to<br>4,294,967,295<br>in steps of 1 | Phase L3 I <sub>RMS</sub> value ( <b>A</b> )                                                                                                                          |

#### Table 76 - Avatar Read Alarm Counters Inputs

| I/O Name            | Datatype | Size<br>(Bits) | Scale | Value | Description                                        |
|---------------------|----------|----------------|-------|-------|----------------------------------------------------|
| Reset Alarm Counter | BOOL     | 1              | 1     | 0, 1  | Resets all alarm counters to 0.<br>0 = Off, 1 = On |

## Table 77 - Avatar Read Alarm Counters Outputs

| I/O Name                        | Datatype | Size<br>(Bits) | Scale | Value                     | Description                                               |
|---------------------------------|----------|----------------|-------|---------------------------|-----------------------------------------------------------|
| Thermal Overload<br>Alarm Count | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of alarms related to Thermal Overload protection. |
| Jam Alarm Count                 | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of alarms related to Jam protection.              |
| Undercurrent Alarm<br>Count     | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of alarms related to Undercurrent protection.     |
| Overcurrent Alarm<br>Count      | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of alarms related to Overcurrent protection.      |

# Table 77 - Avatar Read Alarm Counters Outputs (Continued)

| I/O Name                                  | Datatype | Size<br>(Bits) | Scale | Value                     | Description                                              |
|-------------------------------------------|----------|----------------|-------|---------------------------|----------------------------------------------------------|
| Current Phase<br>Unbalance Alarm<br>Count | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of alarms related to Phase Unbalance protection. |
| Ground Current Alarm<br>Count             | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of alarms related to Ground Current protection.  |
| Motor Overheat Alarm<br>Count             | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of Motor Overheat Alarm events.                  |
| All Alarms Count                          | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of all alarms related to protections.            |

#### Table 78 - Avatar Read Trip Counters Inputs

| I/O Name           | Datatype | Size<br>(Bits) | Scale | Value | Description                                 |
|--------------------|----------|----------------|-------|-------|---------------------------------------------|
| Reset Trip Counter | BOOL     | 1              | 1     | 0, 1  | Reset all trip counters.<br>0 = Off, 1 = On |

#### Table 79 - Avatar Read Trip Counters Outputs

| I/O Name                              | Datatype | Size<br>(bits) | Scale | Value                     | Description                                                 |
|---------------------------------------|----------|----------------|-------|---------------------------|-------------------------------------------------------------|
| Thermal Overload Trip<br>Count        | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Thermal Overload protection.    |
| Jam Trip Count                        | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Jam protection.                 |
| Undercurrent Trip<br>Count            | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Undercurrent protection.        |
| Long Start Trip Count                 | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Long Start protection.          |
| Overcurrent Trip<br>Count             | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Overcurrent protection.         |
| Motor Overheat Trip<br>Count          | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of Motor Overheat trip events.                      |
| Stall Trip Count                      | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Stall protection.               |
| Current Phase<br>Unbalance Trip Count | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Phase Unbalance protection.     |
| Phase Configuration<br>Trip Count     | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Phase Configuration protection. |
| Ground Current Trip<br>Count          | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Ground Current protection.      |
| Phase Reversal Trip<br>Count          | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Phase Reversal protection.      |
| Current Phase Loss<br>Trip Count      | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of trips related to Phase Loss protection.          |
| All Trips Count                       | UINT     | 16             | 1     | 0–65,535<br>in steps of 1 | Counter of all trips related to protections.                |

#### Table 80 - Avatar Trip Register Outputs

| I/O Name               | Datatype | Size<br>(bits) | Scale | Value | Description                   |
|------------------------|----------|----------------|-------|-------|-------------------------------|
| Trip Record Register 1 | TRIPREC  | 80             | —     | 0, —  | Date and Trip reason record 1 |
| Trip Record Register 2 | TRIPREC  | 80             | _     | 0, —  | Date and Trip reason record 2 |
| Trip Record Register 3 | TRIPREC  | 80             | _     | 0, —  | Date and Trip reason record 3 |

## Table 80 - Avatar Trip Register Outputs (Continued)

| I/O Name               | Datatype | Size<br>(bits) | Scale | Value | Description                   |
|------------------------|----------|----------------|-------|-------|-------------------------------|
| Trip Record Register 4 | TRIPREC  | 80             | -     | 0, —  | Date and Trip reason record 4 |
| Trip Record Register 5 | TRIPREC  | 80             |       | 0, —  | Date and Trip reason record 5 |

# **Asset Management**

## Table 81 - Avatar Maintenance Data Outputs

| I/O Name                              | Datatype | Size<br>(Bits) | Scale | Value                                  | Description                                                                                                                                                                                  |
|---------------------------------------|----------|----------------|-------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time (module) On                      | UDINT    | 32             | 1     | 0 to<br>4,294,967,295<br>in steps of 1 | Indicates the time that the module has been powered on in its lifetime (in <b>hours</b> ).                                                                                                   |
| Time Switch On                        | UDINT    | 32             | 1     | 0 to<br>4,294,967,295<br>in steps of 1 | Indicates the time (in <b>hours</b> ) that the contactor has been in the closed state.                                                                                                       |
| Number of Events<br>(Device Events)   | UINT     | 16             | 1     | 0 to 65,535<br>in steps of 1           | Indicates the number of times this module has<br>experienced a device event. This value does not<br>include device events which corrupt or prevent<br>the saving of the non-volatile memory. |
| Number of Contactor<br>Cycles         | UDINT    | 32             | 1     | 0 to<br>4,294,967,295<br>in steps of 1 | Indicates number of times the contactor has been commanded to the closed state from the open state.                                                                                          |
| Number of Device<br>Power Cycles      | UDINT    | 32             | 1     | 0 to<br>4,294,967,295<br>in steps of 1 | Indicates number of times the device has been powered on.                                                                                                                                    |
| Number of Safe<br>Stops <sup>17</sup> | UDINT    | 32             | 1     | 0 to<br>4,294,967,295<br>in steps of 1 | Indicates the number of mirror relay operations.                                                                                                                                             |
| Max. I <sub>RMS</sub>                 | UINT     | 16             | 0.1   | 0 to 65,535<br>in steps of 1           | Indicates maximum current ( <b>A</b> ) the device has measured in its lifetime.                                                                                                              |
| Lifetime Average I <sub>RMS</sub>     | UDINT    | 32             | 0.001 | 0 to<br>4,294,967,295<br>in steps of 1 | Lifetime average current ( <b>A</b> ) measured by the device (Total Current / Time Current ON).                                                                                              |
| Max. Average Voltage                  | UINT     | 16             | 1     | 0 to 65,535<br>in steps of 1           | Indicates maximum voltage (V) the device has measured in its lifetime.                                                                                                                       |
| Average Lifetime<br>Voltage           | UNIT     | 16             | 1     | 0 to 65,535<br>in steps of 1           | Indicates average lifetime voltage (V) measured.                                                                                                                                             |

<sup>17.</sup> Safe Stop according to EN 61800-5-2.

# **Data Definitions**

# Data types are in conformance with IEC 61131-3.

# Table 82 - Data Definitions

| Keyword | Description                                   | Size<br>(Bits) | Value Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|-----------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOOL    | Boolean                                       | 1              | Range [0,1], where [0,1] represents [False, True] or [Off, On]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| INT     | Integer                                       | 16             | Range [-32768, 32767]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DINT    | Double Integer                                | 32             | Range [-2 <sup>31</sup> , 2 <sup>31</sup> -1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USINT   | Unsigned Short Integer                        | 8              | Range [0, 255]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UINT    | Unsigned Integer                              | 16             | Range [0, 65535]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UDINT   | Unsigned Double Integer                       | 32             | Range [0, 2 <sup>32</sup> -1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STRING  | Variable-length (N) single-<br>byte Character | 8*N            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DT      | Date and Time of Day                          | 64             | <ul> <li>Format: YYYYMMDDhhmmsscc, where:</li> <li>YYYY: Year coded on a UINT</li> <li>MM: Month coded on a USINT, Range [1, 12]</li> <li>DD: Day coded on a USINT, Range [1, 31]</li> <li>hh: hour coded on a USINT, Range [0, 23]</li> <li>mm: minute coded on a USINT, Range [0, 59]</li> <li>ss: second coded on a USINT, Range [0, 59]</li> <li>cc: hundredth of second coded on a USINT, Range [0,99]</li> </ul>                                                                                                                                                                                                                                                                                                               |
| TRIPREC | Record for a trip event                       | 80             | Format YYYMMDDhhmmssccTTTT, where YYYY: Year coded on a UINT MM: Month coded on a USINT, Range [1, 12] DD: Day coded on a USINT, Range [1, 31] hh: hour coded on a USINT, Range [0, 23] mm: minute coded on a USINT, Range [0, 59] ss: second coded on a USINT, Range [0, 59] cc: hundredth of second coded on a USINT, Range [0,99] TTTT = Trip event identifier. See following list for values. And where TTTT=Trip event identifier: TTTT = 0000 No Event TTTT = 0001 Thermal Overload TTTT = 0002 Motor Overheat TTTT = 0003 Jam TTTT = 0004 Undercurrent TTTT = 0005 Long Start TTTT = 0006 Overcurrent TTTT = 0007 Stall TTTT = 0009 Current Phase Reversal TTTT = 0011 Current Phase Unbalance TTTT = 0012 Current Phase Loss |

# Table 82 - Data Definitions (Continued)

| Keyword     | Description              | Size<br>(Bits) | Value Range                                                                                                       |
|-------------|--------------------------|----------------|-------------------------------------------------------------------------------------------------------------------|
| DT_MAC      | MAC Address              | 48             | Format XXYYZZUUVVWW, where:                                                                                       |
|             |                          |                | • XX = 0x00                                                                                                       |
|             |                          |                | • YY = 0x80                                                                                                       |
|             |                          |                | • ZZ = 0xF4                                                                                                       |
|             |                          |                | <ul> <li>UU = Product MAC address high byte</li> </ul>                                                            |
|             |                          |                | <ul> <li>VV = Product MAC Address middle byte</li> </ul>                                                          |
|             |                          |                | <ul> <li>WW = Product MAC address low byte</li> </ul>                                                             |
| MINEVENTREC | Record for a Minor Event | 80             | Format YYYMMDDhhmmssccFFFF, where:                                                                                |
|             |                          |                | YYYY: Year coded on a UINT                                                                                        |
|             |                          |                | MM: Month coded on a USINT, Range [1, 12]                                                                         |
|             |                          |                | DD: Day coded on a USINT, Range [1, 31]                                                                           |
|             |                          |                | hh: hour coded on a USINT, Range [0, 23]                                                                          |
|             |                          |                | mm: minute coded on a USINT, Range [0, 59]                                                                        |
|             |                          |                | ss: second coded on a USINT, Range [0, 59]                                                                        |
|             |                          |                | cc: hundredth of second coded on a USINT, Range [0,99]                                                            |
|             |                          |                | TTTT = Trip event identifier. See following list for values.                                                      |
|             |                          |                | And where FFFF=Minor Event event identifier                                                                       |
|             |                          |                | FFFF = 0000 No Minor Event                                                                                        |
|             |                          |                | FFFF = 0001 No module in the island                                                                               |
|             |                          |                | <ul> <li>FFFF = 0002 Number of physical devices detected in the island is<br/>beyond the limit allowed</li> </ul> |
|             |                          |                | FFFF = 0003 Modules mismatch                                                                                      |
|             |                          |                | FFFF = 0004 Island control power supply voltage fluctuation                                                       |

Schneider Electric 800 Federal Street Andover, MA 01810 USA

https://www.schneider-electric.com/en/work/support/

www.schneider-electric.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.

© 2019 - Schneider Electric. All rights reserved.

8536IB1905EN