

Profil environnemental produit

Moteur radio pour volets roulants Oximo io -Oximo TH io - Oximo RH io

Acteur reconnu de l'habitat depuis plus de 50 ans, SOMFY agit pour réduire de 50% ses émissions de carbone d'ici 2030 et aide ainsi ses clients et partenaires dans leurs démarches environnementales.

Nos actions pour réduire notre bilan carbone :

PROPOSER DES PRODUITS ÉCO-CONÇUS*, AYANT UN IMPACT ENVIRONNEMENTAL RÉDUIT TOUT AU LONG DE LEUR CYCLE DE VIE

PROPOSER DES SOLUTIONS QUI AMÉLIORENT L'EFFICACITÉ ÉNERGÉTIQUE DES BÂTIMENTS ET LIMITENT AINSI LES ÉMISSIONS DE CO2.

[1]. Démarche d'éco-conception Somfy, identifiée par le label ACT FOR GREEN qui vise à réduire l'impact environnemental des produits tout au long de leur cycle de vie, de l'extraction des matières premières à la fin de vie, en plaçant les exigences au-dessus des règlementations en

- Référence produit

> Produit de référence

OXIMO TH io 15/17

Réf. 983186F

> Unité fonctionnelle

Assurer le mouvement de la fermeture en effectuant 14 000 cycles de fonctionnement, sur une durée de vie de 15 ans, avec un couple de 15 Nm sur une course de 2 mètres, correspondant à 13 tours d'enroulement par demi-cycle avec un diamètre de tube de 50 mm.

> Références concernées

983184F	OXIMO TH io 6/17	983192F	OXIMO io 15/17	5135039C	OXIMO io 40/17 C2
983185F	OXIMO TH io 10/17	983193F	OXIMO io 20/17	5136664C	OXIMO RH io 6/17
983186F	OXIMO TH io 15/17	983194F	OXIMO io 30/17	5136908C	OXIMO RH io 10/17
983187F	OXIMO TH io 20/17	983195F	OXIMO io 40/17	5136910C	OXIMO RH io 15/17
983188F	OXIMO TH io 30/17	5109413B	OXIMO io 40/17 C2	5136913C	OXIMO RH io 20/17
983189F	OXIMO io 6/17	983580D	OXIMO io 50/12	5136918C	OXIMO RH io 30/17
983191F	OXIMO io 10/17	5124239C	OXIMO io 6/17 C2	5138576C	OXIMO io 10/17 C2
5109408A	OXIMO io 10/17 C2	5124241B	OXIMO io 10/17 C2	5138582C	OXIMO io 40/17 C2

Profil environnemental produit

Moteur radio pour volets roulants Oximo io -Oximo TH io - Oximo RH io

- Matériaux et substances

Toutes les mesures nécessaires ont été prises pour s'assurer que les matériaux utilisés dans la composition du produit ne contiennent aucune substance interdite par la législation en vigueur au moment de la commercialisation.

Plastiq	ues	Métaı	ıx	Autres		
	%		%		%	
PA66	6,9	Acier	51,6	Glass fiber	3,4	
PVC	4,7	Cuivre	8,1	Polyphenylene sulfide	0,2	
Polystyrene	2,4	Alliage	1,6	Other	0,3	
Thermoset	1,4	Aluminium	0,8	Sum	3,9	
POM	1,4	Zamak	0,5			
Other	3,3	Other	1,0	Emballage		
Sum	20,2	Sum	63,6	Carton	9,4	
				Papier	2,9	
				Total	12,3	

Masse totale du flux de reference : 2540g Estimation du contenu recyclable : 67,4%

> Substances chimiques

Les produits couverts par ce PEP respectent le règlement REACH ainsi que la directive ROHS: 2011/65/EU, 2015/863, 2017/2102.

Profil environnemental produit

Moteur radio pour volets roulants Oximo io -Oximo TH io - Oximo RH io

Les produits couverts par ce PEP sont fabriqués sur un site ayant une démarche de réduction de ses impacts environnementaux.

> Modèle énergétique

Mix énergétique polonais

La — Distribution ——

> Les notices sont en papier 100% fibres recyclées et le carton de l'emballage final contient au moins 50% de fibres recyclées. Ce scénario est considéré pour chaque envoie de produit Act for Green dans le monde.

L'emballage est continuellement amélioré pour en réduire la quantité et favoriser l'emploi de matières renouvelables, recyclées et recyclables.

> Éléments d'installation

Aucun élément prévu à cette phase.

> Procédures d'installation

Aucune procédure d'installation.

> Modèle énergétique

Non applicable

🎢 − Utilisation ·

Pour le scénario d'utilisation retenu, le produit développe une puissance de 140 W en mode actif pendant 0.307 % du temps, et 0,38W pendant le reste du temps de son cycle de vie.

- > Modèle énergétique pour la phase d'utilisation : Mix énergétique français.
- > Maintenance et consommables : Aucun

> Conditions de transport types

Compte tenu de la difficulté d'établir une moyenne internationale sur le recyclage des DEEE dans le monde, nous choisissons le scénario pénalisant suivant :

- 200 km de transport.
- Un prétraitement des déchets d'équipements électriques et électroniques, y compris le démantèlement et le tri des matériaux.
- L'incinération des déchets d'équipements électriques et électroniques.

Profil environnemental produit

Moteur radio pour volets roulants Oximo io -Oximo TH io - Oximo RH io

– Impacts environnementaux *–*

L'évaluation de l'impact environnemental couvre les étapes suivantes du cycle de vie : fabrication, distribution, installation, utilisation et fin de vie. Tous les calculs ont été réalisés à l'aide du logiciel EIME© v5.9.3 et de CODDE 2022-01.

Indicateurs	Unité	Global	Fabrication	Distribution	Installation	Utilisation	Fin de vie
Acidification des sols et de l'eau	Kg eq. SO ₂	6,80e-2	4,44e-2	2,82e-3	9,31e-5	2,01e-2	5,99e-4
Appauvrissement des ressources abiotiques - éléments	Kg eq. Antimoine	1,20e-3	1,19e-3	2,51e-8	1,15e-9	6,61e-6	5,54e-9
Appauvrissement des ressources abiotiques – combustibles fossiles	MJ	2,94e+2	1,83e+2	8,81e+0	2,18e-1	1,01e+2	1,26e+0
Pollution de l'air	m³	3,13e+3	2,46e+3	2,57e+1	3,84e+0	6,20e+2	1,55e+1
Eutrophisation de l'eau	kg eq. PO4	1,39e-2	7,39e-3	6,47e-4	7,06e-4	3,80e-3	1,32e-3
Réchauffement climatique	kg eq. CO2	2,43e+1	1,50e+1	6,27e-1	3,93e-1	6,89e+0	1,32e+0
Appauvrissement de la couche d'ozone	kg eq. CFC-11	1,64e-6	1,54e-6	1,27e-9	1,20e-9	9,49e-8	4,16e-9
Formation d'ozone photochimique	kg eq. ethylene	6,03e-3	4,57e-3	2,00e-4	9,41e-5	1,13e-3	4,18e-5
Pollution de l'eau	m ³	2,21e+3	1,84e+3	1,03e+2	1,92e+1	2,10e+2	4,46e+1
Total énergie primaire utilisée	MJ	1,89e+3	3,82e+2	8,86e+0	2,53e-1	1,49e+3	1,47e+0
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	1,35e+2	8,29e+0	1,18e-2	4,33e-3	1,26e+2	1,31e-2
Utilisation totale de ressources d'énergie primaire non renouvelable	MJ	1,75e+3	3,74e+2	8,85e+0	2,48e-1	1,37e+3	1,45e+0
Utilisation d'énergie primaire renouvelable, à l'exclusion de l'énergie primaire renouvelable utilisée comme matière première	MJ	1,34e+2	7,57e+0	1,18e-2	4,33e-3	1,26e+2	1,31e-2
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	7,14e-1	7,14e-1	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Utilisation d'énergie primaire non renouvelable, à l'exclusion de l'énergie primaire non renouvelable utilisée comme matière première	MJ	1,73e+3	3,58e+2	8,85e+0	2,48e-1	1,37e+3	1,45e+0
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	MJ	1,59e+1	1,59e+1	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Utilisation de combustibles secondaires non renouvelables	MJ	0,00e+0	0,00e+0	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Utilisation de combustibles secondaires renouvelables	MJ	0,00e+0	0,00e+0	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Utilisation de matière première recyclée	kg	8,20e-1	8,20e-1	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Volume net d'eau douce	m3	2,16e+0	1,87e+0	5,61e-5	3,49e-5	2,89e-1	5,01e-4
Déchets dangereux éliminés	kg	3,04e+1	2,94e+1	0,00e+0	3,12e-4	1,06e-1	8,02e-1
Déchets non dangereux éliminés	kg	9,66e+0	6,15e+0	2,23e-2	3,77e-1	6,84e-1	2,43e+0
Déchets radioactifs éliminés	kg	2,61e-3	2,28e-3	1,59e-5	5,41e-6	2,87e-4	1,75e-5
Composants destinés à réutilisation	kg	0,00e+0	0,00e+0	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Matériaux destinés au recyclage	kg	3,99e-8	3,99e-8	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Matériaux destinés à la valorisation énergétique	kg	9,00e-9	9,00e-9	0,00e+0	0,00e+0	0,00e+0	0,00e+0
Énergie exportée	MJ	1,34e-1	9,42e-2	0,00e+0	4,01e-2	0,00e+0	0,00e+0

Profil environnemental produit

Moteur radio pour volets roulants Oximo io -Oximo TH io - Oximo RH io

> Voici le détail des impacts du module B.

Indicateurs	Unité	Phase	B1	B2	В3	B4	B5	В6	В7
Acidification des sols et de l'eau		d'utilisation	0,00E+00						
	kg SO2 eq	2,01E-02	0,000	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,01E-02	0,00E+00
Appauvrissement des ressources abiotiques – éléments	Kg eq. Antimoine	6,61E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,61E-06	0,00E+00
Appauvrissement des ressources abiotiques – combustibles fossiles	MJ	1,01E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,01E+02	0,00E+00
Pollution de l'air	m³	6,20E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,20E+02	0,00E+00
Eutrophisation de l'eau	kg PO4- eq	3,80E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,80E-03	0,00E+00
Réchauffement climatique	kg CO2 eq.	6,89E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,89E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq.	9,49E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,49E-08	0,00E+00
Formation d'ozone photochimique	kg ethylene eq.	1,13E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,13E-03	0,00E+00
Pollution de l'eau	m³	2,10E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,10E+02	0,00E+00
Total énergie primaire utilisée	MJ	1,49E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,49E+03	0,00E+00
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	1,26E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,26E+02	0,00E+00
Utilisation totale de ressources d'énergie primaire non renouvelable	MJ	1,37E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,37E+03	0,00E+00
Utilisation d'énergie primaire renouvelable, à l'exclusion de l'énergie primaire renouvelable utilisée comme matière première	МЛ	1,26E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,26E+02	0,00E+00
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation d'énergie primaire non renouvelable, à l'exclusion de l'énergie primaire non renouvelable utilisée comme matière première	МЈ	1,37E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,37E+03	0,00E+00
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	МЛ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de matière première recyclée	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Volume net d'eau douce	m3	2,89E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,89E-01	0,00E+00
Déchets dangereux éliminés	kg	1,06E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,06E-01	0,00E+00
Déchets non dangereux éliminés	kg	6,84E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,84E-01	0,00E+00
Déchets radioactifs éliminés	kg	2,87E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,87E-04	0,00E+00
Composants destinés à réutilisation	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés au recyclage	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés à la valorisation énergétique	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Énergie exportée	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

Profil environnemental produit

Moteur radio pour volets roulants Oximo io -Oximo TH io - Oximo RH io

> Ces impacts environnementaux sont uniquement applicables au produit de référence mentionné en page 1.

> Règles d'extrapolation

Pour chaque étape du cycle de vie, afin de retrouver les impacts de chacune des références disponibles en page 1, il faut multiplier les impacts du produit de référence par les coefficients indiqués dans le tableau ci-dessous.

	Fabrication	Distribution	Installation	Utilisation	Fin de vie	Exemple phase d'utilisation Indicateur Réchauffement climatique (kg eq, CO2)
6/17	1	1	1	0,81	1	5,58E+00
10/17	1	1	1	0,92	1	6,37E+00
15/17	1	1	1	1,00	1	6,89E+00
20/17	1	1	1	1,08	1	7,41E+00
30/17	1	1	1	1,38	1	9,51E+00
40/17	1	1	1	1,49	1	1,03E+01
50/12	1	1	1	1,75	1	1,20E+01

N° enregistrement : SOMF-00121-V01.01-FR	Règles de rédaction : PCR-ed3-FR-2015 04 02	Règles de rédaction : PCR-ed3-FR-2015 04 02				
	Complété par : PSR-0006-ed1.1-EN-2015 10 1	.6				
N° d'habilitation du vérificateur : VH18	Information et référentiel : www.pep-ecopa	ssport.org				
Date d'édition : 08-2022	Durée de validité : 5 ans	Durée de validité : 5 ans				
Vérification indépendante de la déclaration et des données	, conformément à l'ISO 14025:2006					
Interne 🔲 Externe 🕝 Bureau Veritas LCIE						
Revue critique du PCR conduite par un panel d'experts prés	idé par Philippe Osset (SOLINNEN)					
Les PEP sont conformes à la norme XP C08-100-1: 2016		PEP				
Les éléments du présent PEP ne peuvent être comparés ave	ec les éléments issus d'un autre programme.	l leco				
Document conforme à la norme ISO 14025:2006 « Marquage environnementales de Type III »		PASS				
Interlocuteur Somfy · Pierre HOGUET Ingénieur en Ecocono	rention, pierre hoguet@somfv.com	PUNIS				