

Compteur d'énergie

D11 15

Manuel de l'utilisateur

Table des matières

1 Informations générales	5
1.1 Utilisation et conservation du manuel	5
1.2 Copyright	5
1.3 Clause de non-responsabilité	5
1.4 Avertissements généraux de sécurité	5
1.5 Avis de non-responsabilité en matière de cybersécurité	6
2 Caractéristiques techniques	7
2.1 Marquage du produit	7
2.2 Versions	9
2.3 Dimensions d'encombrement	9
2.4 Fonctionnalités principales	10
2.5 Données techniques	11
2.6 Carte d'isolation	12
3 Installation	13
3.1 Montage du compteur	13
3.2 Considérations environnementales	14
3.3 Installation du compteur	14
3.4 Diagrammes de câblage	16
3.5 Configuration du compteur	18
4 Première mise en service	19
4.1 Configuration rapide	19
4.2 Confirmation finale	21
5 Accès au dispositif	22
5.1 Explication du bouton	22
5.2 Structure d'affichage	22
5.3 Menu	23
5.4 Description et état des icônes	
5.5 Menu principal	24
6 Configuration	25
6.1 Structure du menu	25
6.2 Définition d'une valeur	26
6.3 Définition du mot de passe	
6.4 Options de réinitialisation	
6.5 Paramétrage des options de veille	
6.6 Paramétrage des options de défilement automatique	
6.7 Paramétrage Devise/CO2	32

6.8 Paramétrage E-S	33
6.9 Réglage de l'alarme	34
6.10 Paramétrage du tarif	35
6.11 Paramétrage de la communication Modbus	36
6.12 Paramétrage de la communication du M-bus	37
7 Fonctions techniques des compteurs	38
7.1 Valeurs énergétiques	38
7.2 Fonctions instrumentales	38
7.3 Alarme	39
7.4 Entrées et sorties	40
7.5 Journaux	42
8 Méthodes de mesure	43
8.1 Mesure de l'énergie et de la puissance	43
8.2 Compteur monophasé	
9 Assistance & Maintenance	49
9.1 Assistance	49
9.2 Codes événement	49
9.3 Nettoyage	50
10 Manuel de communication	51
10.1 Code OR	51

1 Informations générales

1.1 Utilisation et conservation du manuel

Lire attentivement ce manuel et respecter les indications décrites avant d'utiliser le dispositif.

Ce manuel contient toutes les informations de sécurité, les aspects techniques et les opérations nécessaires pour assurer la bonne utilisation du dispositif et le conserver dans des conditions de sécurité.

1.2 Copyright

Les droits d'auteur de ce manuel sont la propriété d'ABB S.p.A.

Ce manuel contient des textes, des dessins et des illustrations de nature technique qui ne doivent pas être divulgués ou transmis à des tiers, même partiellement, sans l'autorisation écrite d'ABB S.p.A.

1.3 Clause de non-responsabilité

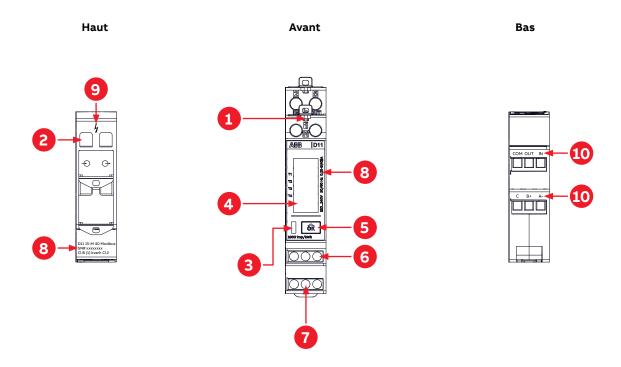
Les informations contenues dans ce document sont sujettes à modification sans préavis et ne peuvent être considérées comme une obligation par ABB S.p.A. ABB S.p.A. n'est pas responsable des erreurs qui pourraient apparaître dans ce document. ABB S.p.A. n'est en aucun cas responsable des dommages directs, indirects, spéciaux, accidentels ou consécutifs de quelque nature que ce soit qui pourraient découler de l'utilisation de ce document. ABB S.p.A. n'est pas non plus responsable des dommages indirects ou consécutifs pouvant résulter de l'utilisation du logiciel ou du matériel mentionné dans ce document.

1.4 Avertissements généraux de sécurité

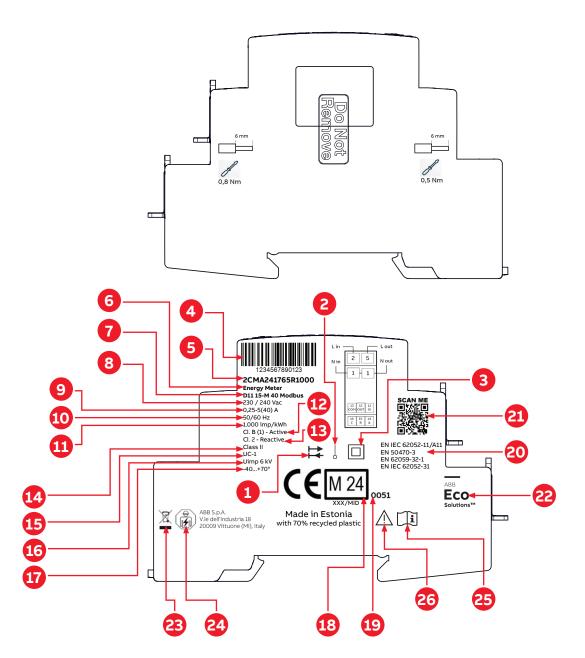
Le non-respect des points suivants peut entraîner des blessures graves ou la mort.

Utiliser les équipements de protection individuelle appropriés et respecter les réglementations en vigueur en matière de sécurité électrique.

- Ce dispositif doit être installé exclusivement par du personnel qualifié ayant pris connaissance de toutes les informations relatives à l'installation.
- · Vérifier que l'alimentation en tension et la mesure soient compatibles avec la plage autorisée par le dispositif.
- S'assurer que toutes les alimentations en courant et en tension soient déconnectées avant d'effectuer des contrôles, des inspections visuelles et des tests sur le dispositif.
- Partir toujours du principe que tous les circuits sont sous tension jusqu'à ce qu'ils soient complètement déconnectés, soumis à des tests et étiquetés.
- Débrancher toute l'alimentation électrique avant de travailler sur le dispositif.
- Utiliser toujours un dispositif de détection de tension adapté pour vérifier que l'alimentation est interrompue.
- Faire attention aux dangers et vérifier soigneusement la zone de travail en s'assurant qu'aucun instrument ou objet étranger n'a été laissé à l'intérieur du compartiment dans lequel le dispositif est logé.
- L'utilisation correcte de ce dispositif dépend d'une manipulation, d'une installation et d'une utilisation correctes
- Le non-respect des informations d'installation de base peut entraîner des blessures ainsi que des dommages aux instruments électriques ou à tout autre produit.
- Ne JAMAIS brancher un fusible externe en by-pass.
- Débrancher tous les fils d'entrée et de sortie avant d'effectuer un test de rigidité diélectrique ou un test d'isolation sur un instrument dans lequel le dispositif est installé.
- · Les tests effectués à haute tension peuvent endommager les composants électroniques du dispositif.
- Le dispositif doit être installé à l'intérieur d'un tableau de distribution.
- L'installation de D11 doit inclure un interrupteur ou un disjoncteur pour la connexion des bornes de mesure de la tension. L'interrupteur ou le disjoncteur doit être positionné correctement, facilement accessible et être marqué comme dispositif de coupure du D11.
- Couper le disjoncteur ou l'interrupteur avant de connecter ou de débrancher les bornes de mesure de tension.


1.5 Avis de non-responsabilité en matière de cybersécurité

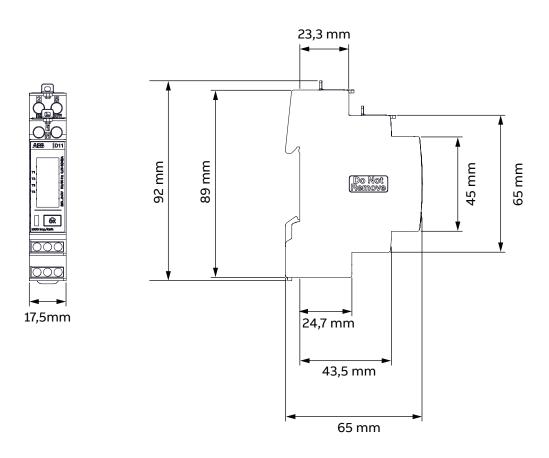
Le compteur D11 est conçu pour être connecté et pour communiquer des informations et des données via une interface réseau, qui doit être connectée à un réseau sécurisé. Il est de votre seule responsabilité de fournir et d'assurer en permanence un branchement sécurisé entre le produit et votre réseau ou tout autre réseau (selon le cas) et d'établir et de maintenir des mesures appropriées (telles que, mais sans s'y limiter, l'installation de pare-feu, d'applications des mesures d'authentification, le cryptage des données, l'installation de programmes antivirus, etc.) pour protéger le compteur D11, le réseau, son système et ses interfaces contre tout type d'atteinte à la sécurité, d'accès non autorisé, d'interférences, d'intrusions, de fuites et/ou de vol de données ou d'informations. ABB S.p.A. et ses filiales ne sont pas responsables des dommages et/ou des pertes liés à de telles failles de sécurité, aux accès non autorisés, aux interférences, aux intrusions, aux fuites et/ou au vol de données ou d'informations.


Bien qu'ABB S.p.A. fournisse des tests de fonctionnalité sur les produits et les mises à jour que nous publions, vous devez mettre en place votre propre programme de test pour toutes les mises à jour de produits ou autres mises à jour majeures du système (y compris, mais sans s'y limiter, les modifications de code, les modifications de fichiers de configuration, les mises à jour de logiciels tiers ou correctifs, le changement de matériel, etc.) pour assurer que les mesures de sécurité que vous avez mises en œuvre n'ont pas été compromises et que la fonctionnalité du système dans votre environnement est conforme à vos attentes.

2 Caractéristiques techniques

2.1 Marquage du produit

Des	Description des pièces			
1	Points d'étanchéité	Le filetage d'étanchéité est utilisé pour sceller le compteur		
2	Bornier	Bornes de tension et de courant		
3	LED	Clignote proportionnellement à l'énergie mesurée		
4	Afficheur	LCD pour la lecture des compteurs		
5	Bouton OK	Faire défiler le menu (appuyer brièvement) Effectuer une action ou sélectionner un menu (pression longue)		
6	Borne pour connexion d'entrée/sortie			
7	Borne pour connexion de communication			
Étic	quette du produit			
8	Informations produit			
9	Tension dangereuse			
10	Description des bornes			


Étiquette du produit			
1	Importer/Exporter de l'énergie	14	Classe de protection
2	Compteur à 1-élément	15	Catégorie d'utilisation
3	Équipement de protection de classe II	16	Tension d'impulsion nominale Uimp
4	Numéro de série	17	Plage de température de fonctionnement
5	Code produit	18	MID et année de vérification
6	Type de produit	19	Organisme notifié
7	Désignation de type	20	Norme de produit
8	Tension nominale	21	QR Code lié à la page Web du compteur d'énergie ABB
9	Courant	22	Marque commerciale ECO Solution
10	Fréquence	23	Les appareils électriques et électroniques usagés ne doivent pas être jetés avec les déchets ménagers
11	LED fréquence d'impulsion	24	Installation par une personne ayant une expérience électrotechnique uniquement
12	Énergie active de précision	25	Se reporter au mode d'emploi
13	Énergie réactive de précision	26	Attention, se reporter aux documents d'accompagnement

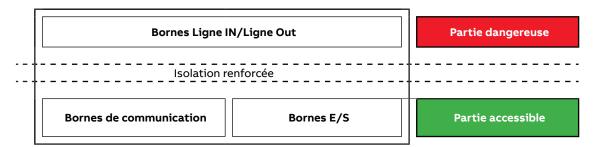
2.2 Versions

Les compteurs D11 15 sont répertoriés dans le tableau ci-dessous :

Nom du produit	Certification	Communication	E/S	Précision
D11 15 40	-	-		Cl. 1 - Active Cl. 2 - Réactive
D11 15-M 40	MID	-	1 Entrée numérique _	Cl. B/1 - Active Cl. 2 - Réactive
D11 15 40 Modbus	-	Modbus RTU	1 Sortie numérique	Cl. 1 - Active Cl. 2 - Réactive
D11 15-M 40 Modbus	MID	Modbus RTU	_	Cl. B/1 - Active
D11 15-M 40 Mbus	MID	Mbus	-	Cl. 2 - Réactive

2.3 Dimensions d'encombrement

2.4 Fonctionnalités principales


Propriétés mécaniques	
Modules DIN	1
Dimensions d'encombrement	65 x 92 x 17,5 mm
Entrées de tension/courant	
Branchement direct	40 A
Branchement indirect via CT	Non
Branchement indirect via VT	Non
Mesures d'énergie	
Énergie active	•
Énergie réactive	
Énergie apparente	
Équivalent Wh/CO ²	
Équivalent Wh/CUR	
Importer/Exporter	
Mesures instantanées	
Tension	
Courant	•
Courant neutre	Calculé
Fréquence	•
Puissance active	•
Puissance réactive	
Puissance apparente	
Mesures de la qualité de la puissance	
Facteur de puissance	
Cos φ	
Quadrant de courant	•
Powerfield	
Fonction	
Tarifs avec entrée numérique	2
Tarifs via communication	4
Alarmes simples	25
Journaux d'événements (avertissements, alarmes et erreurs)	•
,	
E/S	
Entrée numérique	1
Sortie numérique	1
Communication	
Sortie d'impulsion	
M-Bus (en option)	
Modbus RTU (en option)	
Protection par mot de passe	
Mot de passe à 4 chiffres	
	_

2.5 Données techniques

Entrées de tension/courant	
Tension nominale	220 - 240 VAC
Plage de tension	220 - 240 VAC +/- 20%
Consommation d'énergie Circuit de tension	0,69 W maximum
Consommation d'énergie Circuit de courant	0,032 W maximum
Courant de base Ib	5 A
Courant de référence Iref	5 A
Courant transitoire Itr	0,5 A
Courant nominal	5 A
Courant maximal Imax	40 A
Courant minimal Imin	0,25 A
Courant de démarrage Ist	20 mA
Données générales	
Fréquence	50/60 Hz ± 5%
Indice de classe de précision	B (Cl. 1) – Active
	Cl. 2 – Réactive
Constante du compteur	1000 imp/kWh
Diagramme de câblage	Monophasé (ligne 1) – 2 fils
Affichage de l'énergie	LCD à 6 chiffres
Classe de protection	II
Catégorie de surtension	III
Degré de pollution	2
Tension d'impulsion nominale Uimp	6 kV
Catégorie d'utilisation (CU)	CU-1
Mécanique	
Matériau	Boîtier et couvercles de bornes : fabriqués avec au moins 70 % de plastique recyclé
	Panneau avant : Polyester résistant aux UV
Poids	70 g
Environnement	
Température de fonctionnement	-40 °C à +70 °C
Température de stockage	De -40°C à +85°C - La conservation des données est garantie 10 ans
Conditions d'environnement, fonctionnement	Intérieur avec température de fonctionnement prolongée ; lieux secs
Altitude	2,000 m
Humidité	75 % moyenne annuelle, 95 % sur 30 jours/an
Résistance au feu et à la chaleur	Borne 960 °C, couvercle 650 °C (IEC 60695-2-1)-UL V0
Résistance à l'eau et à la poussière	IP 20 sur bornier sans boitier de protection et IP 51 dans boitier de protection, selon IEC 60529
Environnement mécanique	Classe M2 conformément à la Directive sur les Instruments de mesure (MID), (2014/32/UE)
Environnement électromagnétique	Classe E2 conformément à la Directive sur les Instruments de mesure (MID), (2014/32/UE)

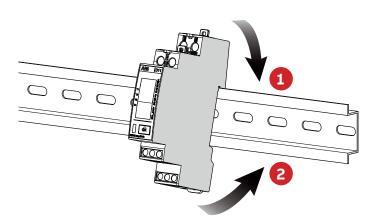
Sortie numérique	
Courant	260 mA
Tension	540 VDC (+/-10%)
Tension de chute d'état ON max	1,5V
Fréquence de sortie d'impulsion	Prog. 1–999999 imp/MWh, 1–999999 imp/kWh,
·	1–99999 imp/Wh
Longueur d'impulsion	10 - 990 ms
Isolement	SELV
Entrée numérique	
Tension maximale (valeur absolue)	44 VDC
Tension d'état off	05 VDC (+/-10%)
Tension d'état ON	1040 VDC (+/-10%)
Longueur d'impulsion min. et pause d'impulsion	30 ms
Isolement	SELV
Communication	
M-Bus	EN 13757-2, EN 13757-3
Modbus	Spécification du protocole d'application Modbus V1.1b
Isolement	SELV
Indicateur d'impulsion (LED)*	
Fréquence d'impulsion	1 000 imp/kWh
Longueur d'impulsion	40 ms
	ns. En cas de temps de mesure minimum de 10 secondes, les mesures sont incertaines a fréquence d'impulsion maximale disponible est de 500 Hz,inférieure au maximum
Compatibilité CEM	
Test de tension d'impulsion	6 kV 1,2/50 μs (IEC 60060-1)
Test de surtension	4 kV 1,2/50μs (IEC 61000-4-5)
Test transitoires rapides en salve	4 kV (IEC 61000-4-4)
Immunité aux champs électromagnétiques HF	80 MHz-2 GHz à 10 V/m (IEC 61000-4-3)
Immunité aux perturbations conduites	150kHz-80MHz, (IEC 61000-4-6)
Immunité aux perturbations électromagnétiques	2–150 kHz pour les compteurs de kWh
Émission radiofréquence	EN 55022, classe B (CISPR22)
Décharge électrostatique	15 kV (IEC 61000-4-2)
Normes	
	EN 50470-3:2022 (Seulement pour les compteurs MID) EN IEC 62052-11:2021/A11:2022 IEC 62052-31:2015-09 EN 62052-31:2016-06 EN 62052-31:2018:04 EN IEC 62053-21/A11:2021 EN IEC 62053-23/A11:2021 EN IEC 62053-23:2022:02 EN 62059-32-1:2012 CISPR 32:2015 Class B

2.6 Carte d'isolation

Guide Welmec 11.1 Guide Welmec 7.2

3 Installation

Ce chapitre décrit comment monter les compteurs Modbus D11 15-M 40 Modbus et comment les connecter à un réseau électrique. Le chapitre contient également des informations sur la façon d'effectuer une configuration de base du compteur et sur la façon de connecter les options d'E/S et de communication.


D'une manière générale, des réglementations nationales sont établies pour les installations électriques. Ces règlements, entre autres, précisent le type et la taille des câbles de connexion à utiliser.

3.1 Montage du compteur

Cette section décrit différentes façons de monter le les compteurs D11 15. Pour certaines méthodes de montage, des accessoires supplémentaires sont nécessaires. Pour plus d'informations sur les accessoires, veuillez consulter le catalogue principal (9AKK107492A3149).

Compteur monté sur rail DIN

Les compteurs D11 15 sont destinés à être montés sur un rail DIN (DIN 50022). Si cette méthode de montage est utilisée, aucun accessoire supplémentaire n'est nécessaire et le compteur se fixe en enclenchant le verrou de rail DIN sur le rail. L'image suivante montre un rail DIN.

Montage du compteur sur mur

La façon recommandée pour l'installation murale du compteur est d'installer un rail DIN séparé sur le mur, puis de monter le compteur sur le rail.

3.2 Considérations environnementales

Protection contre l'intrusion

Le produit est destiné à une utilisation en intérieur uniquement. Pour être conforme aux exigences de protection, le produit doit être monté dans un coffret ignifuge de classe de protection IP 51 ou supérieure, conformément à la norme IEC 60259.

Environnement mécanique

Conformément à la Directive sur les instruments de mesure (2014/32/UE), le produit est conforme à la norme M2, ce qui signifie qu'il peut être utilisé dans «... des lieux présentant des niveaux importants ou élevés de vibrations et de chocs, par exemple transmis par des machines et des véhicules qui passent à proximité ou à proximité de machines lourdes, de bandes transporteuses, etc. »

Environnement électromagnétique

Conformément à la Directive sur les instruments de mesure (2014/32/UE), le produit est conforme à la norme E2, ce qui signifie qu'il peut être utilisé « ...dans des lieux présentant des perturbations électromagnétiques correspondant à celles susceptibles d'être rencontrées dans d'autres bâtiments industriels. »

Environnement climatique

Afin de fonctionner correctement, le produit ne doit pas être utilisé en dehors de la plage de température spécifiée de $-40\,^{\circ}$ C - $+70\,^{\circ}$ C. Afin de fonctionner correctement, le produit ne doit pas être exposé à une humidité dépassant la moyenne annuelle spécifiée de 75 %, 95 % sur 30 jours/an. Le produit est conçu pour une utilisation à l'intérieur uniquement.

3.3 Installation du compteur

Avertissements

Avertissement - L'équipement électrique ne doit être installé, accessible et entretenu que par un personnel électrique qualifié. Travailler en présence de haute tension est potentiellement mortel. Les personnes exposées à une haute tension peuvent subir un arrêt cardiaque, des brûlures ou d'autres blessures graves. Pour éviter de telles blessures, assurez-vous de débrancher l'alimentation électrique avant de commencer l'installation.

Avertissement - Pour des raisons de sécurité, il est recommandé que l'équipement soit installé de manière à ce qu'il soit impossible d'atteindre ou de toucher les borniers par accident. La meilleure façon de faire une installation sûre est d'installer l'appareil dans une enceinte. De plus, l'accès à l'équipement doit être limité par l'application d'une serrure et d'une clé, contrôlées par un personnel qualifié en électricité.

Avertissement - Les compteurs doivent toujours être protégés par des fusibles sur le côté entrant ou par un MCB adéquat (voir "Protection du circuit" pour plus de détails).

Type de câble

Le type de câble connecté aux bornes de tension/courant doit être un câble en cuivre solide ou toronné. Lors de l'utilisation de câbles toronnés des embouts d'extrémité peuvent être utilisées.

Installation du compteur

Suivre les étapes du tableau ci-dessous pour installer et vérifier l'installation du compteur :

Étape	Action	
1	Couper l'alimentation électrique.	
2	Placer le compteur sur le rail DIN et s'assurer qu'il s'y enclenche.	
3	Ôter l'isolation du câble à la longueur indiquée sur le compteur.	
4	Connecter les câbles selon le schéma de câblage imprimé sur le compteur et serrer les vis en suivant le tableau "Communication".	
5	Installer la protection du circuit "Protection du circuit"	
6	Si des entrées/sorties sont utilisées, connecter les câbles selon le schéma de câblage imprimé sur le compteur et serrer les vis en suivant le tableau "Communication". Ensuite, procéder au branchement une alimentation externe en respectant les valeurs de tension nominale (max 40Vdc).	
7	Si la communication est utilisée, connecter les câbles selon le schéma de câblage imprimé sur le compteur et serrer les vis en suivant le tableau "Communication".	

Vérification de l'installation

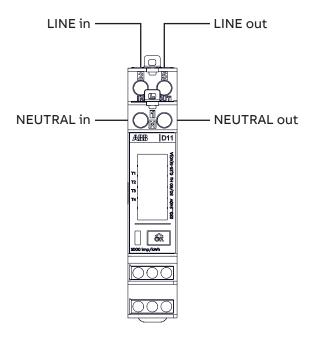
Suivre les étapes du tableau ci-dessous pour vérifier l'installation du compteur :

Étape	Action
8	Vérifier que le compteur est connecté à la tension spécifiée et que les connexions de phase de tension et le neutre (le cas échéant) sont connectés aux bonnes bornes.
10	Mettre l'appareil sous tension. Si un symbole d'avertissement s'affiche, consulter les codes d'erreur dans "9.2 Codes événement".
11	Sous l'élément de menu « Valeurs instantanées » sur le compteur, vérifier que les tensions, les courants, la puissance et les facteurs de puissance sont raisonnables et que la direction de la puissance est la direction attendue (la puissance totale doit être positive pour une charge qui consomme de l'énergie). Lors de la vérification, le compteur doit être branché à la charge prévue, de préférence une charge avec un courant supérieur à zéro sur toutes les phases pour que la vérification soit la plus complète possible.

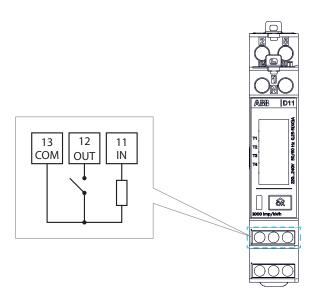
Protection du circuit

Utiliser les informations de ce tableau pour sélectionner le bon fusible pour la protection du circuit :

Type de compteur	Protection maximale du circuit
Lecture directe	40 A MCB, C caractéristique ou 40 A fusible type gL-gG

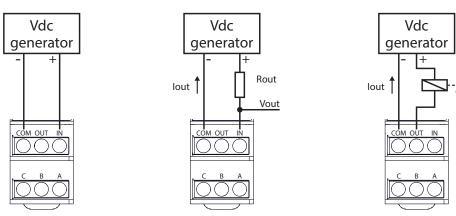

En général, il existe des réglementations nationales couvrant la protection de l'installation électrique. Ces règlements, entre autres, précisent le type, le calibre et les caractéristiques des dispositifs de protection externes, par exemple les disjoncteurs et les fusibles. Leur sélection dépend de l'emplacement où de l'équipement de mesure est installé.

L'installateur est responsable de la coordination de l'évaluation e et des caractéristiques des dispositifs de protection contre les surintensités et les surcharges côté alimentation avec le courant nominal maximal et, dans le cas de compteurs connectés directement, avec la valeur nominale UC de l'équipement de mesure.

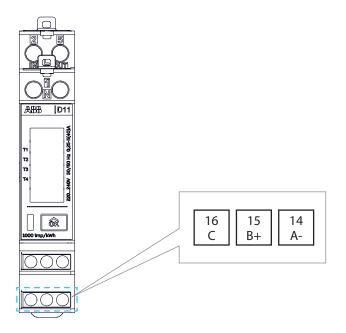

3.4 Diagrammes de câblage

Cette section décrit le mode de branchement du compteur à un réseau électrique. Les numéros de borne dans les schémas de câblage énumérés ci-dessous correspondent au marquage sur le bornier du compteur.

• Monophasé 2 fils



Entrée/Sortie



• Branchement d'entrée

• Branchement de sortie

Communication

RS485 - Version Modbus RTU	Version MBUS
A = Données -	A = MBUS A
B = Données +	B = MBUS B
C = Fréquent	C = Non utilisé

Connecteurs bornes

Bornes de ligne et neutres		
Section de fil min.	1 mm²	
Section de fil max.	10 mm²	
Filetage	M4	
Tête de vis	PZ1	
Couple de serrage	0,8 Nm	
Longueur de dénudage de fil	10 mm	

3
5/5,08 mm
0,2 mm² (AWG 24)
2,5 mm² (AWG 12)
M2
PZ1
0,5 Nm
6 mm

L'utilisation de câbles de section inférieure à 10mm² relève de la responsabilité de l'installateur.

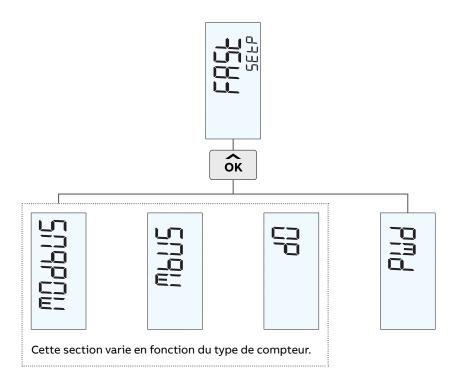
3.5 Configuration du compteur

Réglages par défaut

Pour plus d'informations sur la modification des paramètres par défaut du compteur, reportez-vous à la section "6 Configuration".

Le tableau suivant répertorie les paramètres par défaut du compteur :

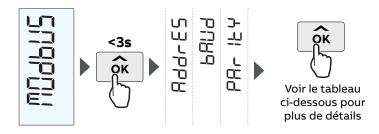
Paramètre	Compteurs branchés directement
Fréquence d'impulsion	1 000 impulsions / kWh (kvarh)
Longueur d'impulsion	10 ms
Communication M-Bus	Address: 1
	Baud rate: 2400
	Access level: Open
Modbus de communication	Address: 1
	Baud rate: 19200
	Parity: Even


4 Première mise en service

Lors de la première mise sous tension du compteur d'énergie D11 15, une procédure avec assistant guidera l'utilisateur dans les premières étapes de mise en service.

4.1 Configuration rapide

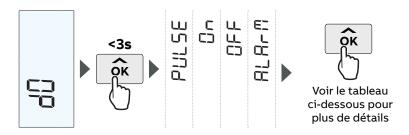
Lors de la configuration rapide, l'utilisateur doit prendre l'une des décisions suivantes :


- a) **NE PAS** effectuer la configuration rapide : Dans ce cas, le compteur adopte les paramètres par défaut suivants :
 - · Communication:
 - En cas de compteur Modbus → Address: 1; Baud: 19200; Parity: Even.
 - En cas de compteur Mbus → Address: 1; Baud: 2400; Access: Open.
 - En cas d'impulsion → DO: Pulse.
- b) Effectuer **DANS UN DEUXIÈME TEMPS** la configuration rapide : chaque fois que l'utilisateur accède au menu de r configuration, le compteur demande d'exécuter la configuration rapide jusqu'à ce que 1 kWh soit atteint.
- c) **Effectuer la configuration rapide** : dans ce cas, l'utilisateur peut configurer le câblage, la communication et le mot de passe.

Configuration rapide - Paramètres de communication

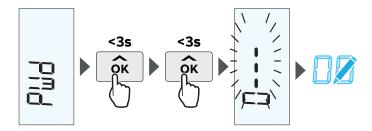
La deuxième étape de la configuration rapide est liée aux paramètres de communication qui varient en fonction du type de compteur :

• Dans le cas d'un compteur **Modbus**, les étapes suivantes doivent être effectuées ("6.11 Paramétrage de la communication Modbus") :

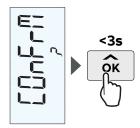

Menu Modbus	
Address	1- 247
Baud	115200
	57600
	38400
	19200
	9600
	4800
	2400
	1200
Parity	Even
	Odd
	None

• Dans le cas d'un compteur **Mbus**, les étapes suivantes doivent être effectuées (voir "6.12 Paramétrage de la communication du M-bus") :

Menu Mbus	
Address	1 -250
Baud	9600
	4800
	2400
	1200
	600
	300
Access Level	Ouvert
	Ouvert avec mot de passe
	Fermer


• Dans le cas d'un compteur sans Modbus ou Mbus, les étapes suivantes doivent être effectuées :

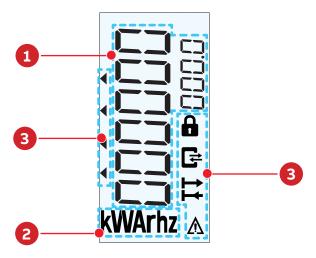
Menu DO		
Pulse	Quant tot IMP kW h (Total énergie active importée)	
	Quant tot EXP kW h (Total énergie active exportée)	
	Quant tot IMP k VArh (Total énergie réactive importée)	
	Quant tot EXP k VArh (Total énergie réactive exportée)	
On		
Off		
Alarm	Sélectionner et définir le paramètre (quantité) associé au canal (voir "6.9 Réglage de l'alarme")	


Configuration rapide - Configuration du mot de passe

Afin de protéger les paramètres de votre compteur, un mot de passe à 4 caractères peut être défini (voir "6.3 Définition du mot de passe") :

4.2 Confirmation finale

Une fois que tous les paramètres de configuration rapide ont été définis, une confirmation est nécessaire :


5 Accès au dispositif

5.1 Explication du bouton

Boutons	Fonctions	
	Appuyer sur	Hold
OK	Faire défiler vers le haut/ Augmenter d'un chiffre	Définir/Confirmer la valeur sélectionnée

5.2 Structure d'affichage

La structure de l'affichage est divisée en trois zones principales, comme le montre la figure ci-dessous :

N	Zone	Description
1	Mesures/Titre	Valeur mesurée spécifique ; Titre du contenu affiché sur chaque écran, comprenant MENU, READ et SET
2	Magnitude/Unité	La magnitude comprend K ; L'unité comprend V, A, W et Wh
3	Icônes	Indiquant les différents types d'état ; Pour plus de détails, voir "5.4 Description et état des icônes"

5.3 Menu

En appuyant sur ok l'écran, les pages suivantes s'affichent :

Icône	Indication
⊢∏Ł kW h	Accueil – Importation énergie active
⊢□⊢ kW h	Accueil – Exportation énergie active
는다는 k VArh	Accueil – Importation énergie réactive
는다는 k VArh	Accueil – Exportation énergie réactive
EnEr6Y	Énergie
InSEAnE	Valeurs instantanées
-5tE6	Réinitialisation registre
LA- IFF	Tarifs
무씺~.9눈Υ	Qualité de l'énergie
!-[]	Entrée/Sortie
L065	Journaux
→ 5Ett In6	Paramètres

5.4 Description et état des icônes

	,	
Icône	Description	Statut
₽	La communication est en cours. Le compteur envoie des informations «→ »ou reçoit des informations «← »	Lorsque la communication est en cours, l'icône s'allume
\triangle	Notification d'erreur Attention : seulement "!"	Pendant la phase où 1kwH n'est pas encore atteint : clignote en mode continu
!	Notification d'avertissement	
Λ	Alarme en cours : Seul le triangle clignotant L'alarme s'est produite : Corriger le triangle uniquement	
•	Le mode de configuration est protégé par un code PIN	En cas de 3 erreurs de PIN consécutives, l'icône de verrouillage commence à clignoter pendant 30 secondes
\mapsto	Énergie totale exportée par le système (connecté aux phases/lignes)	Lorsque l'icône s'allume, cela signifie que le compteur mesure l'énergie totale importée par le système
\mapsto	Énergie totale importée par le système (connecté aux phases/lignes)	Lorsque l'icône s'allume, cela signifie que le compteur mesure l'énergie totale d'exportation du système
4	Tarif actif	Chaque flèche indique le tarif sélectionné imprimé sur le panneau avant du compteur d'énergie.

5.5 Menu principal

Toutes les lectures de données peuvent être disponibles sur l'écran en fonction du schéma de câblage (voir "7.2 Fonctions instrumentales").

EnEr6Y
Tot d'importation d'énergie active
Tot d'exportation d'énergie active
Tot énergie nette active
Tot d'importation d'énergie réactive
Tot d'exportation d'énergie réactive
Tot d'énergie nette réactive
Tot d'énergie apparente
Équivalent Wh/CO ₂
Équivalent Wh/CUR
InSERnE

Inbekne
Tot puissance active
Tot puissance réactive
Tot puissance apparente
Tension L1-N
Courant
Fréquence
·

rbereb
Importation d'énergie active
Exportation d'énergie active
Importation d'énergie réactive
Exportation d'énergie réactive

EAr IFF
Importation d'énergie active T1
Importation d'énergie active T2
Importation d'énergie active T3
Importation d'énergie active T4
Exportation d'énergie active T1
Exportation d'énergie active T2
Exportation d'énergie active T3
Exportation d'énergie active T4
Importation d'énergie réactive T1
Importation d'énergie réactive T2
Importation d'énergie réactive T3
Importation d'énergie réactive T4
Exportation d'énergie réactive T1
Exportation d'énergie réactive T2
Exportation d'énergie réactive T3
Exportation d'énergie réactive T4

PW-9EY
Tot facteur de puissance
Tot Cosphi
Tot Quadrant Courant
1-0
Type de sortie
État de la sortie
Type d'entrée
Compteur d'impulsions
L065
Tous
Alarmes
Avertissements
Erreurs
Audit
SELL ING
Configuration rapide (uniquement la première fois)
Lire

Modifier

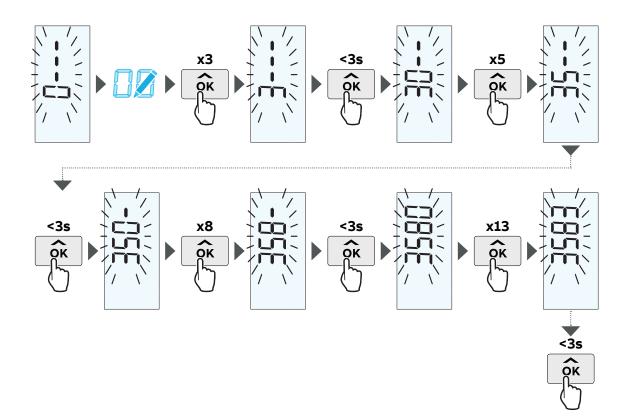
6 Configuration

Ce chapitre donne une vue d'ensemble des paramètres et de la configuration du compteur.

6.1 Structure du menu

Configuration rapide (uniquement la pr	remière fois)
Définir/modifier le mot de passe	
Réinitialisation	Usine
	Global
	Registres réinitialisables (Rst.Rg à l'écran)
	Journal
Luminosité (%)	
Veille	Retard (seconde)
	Luminosité (%)
Défilement automatique	
Équivalent Devise/CO₂	
Fils	
E-S	Sortie d'impulsion (Pul.Out. sur l'écran)
	Sortie communication
	Sortie d'alarme
	Entrée d'impulsion
	Entrée tarif
Alarme	1-25
Tarif	Communication
	Entrée
Modbus (*)	Adresse
	Débit en bauds
	Parité
M-bus (*)	Adresse
	Débit en bauds
	Niveau d'accès

^(*) Le paramètre de communication varie en fonction du type de compteur.


6.2 Définition d'une valeur

Boutons	Fonctions	
	Appuyer sur	Hold
OK	Faire défiler vers le haut/Augmenter d'un chiffre	Définir/Confirmer la valeur sélectionnée

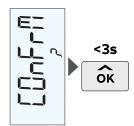
Définition d'une procédure numérique

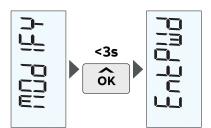
Lien	Description
	Le menu nécessite la saisie de caractères numériques (0-9). Effectuer les étapes suivantes :

Exemple: insérer « 3583 »

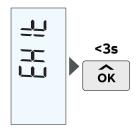
L'option/le chiffre qui est actif pour le réglage clignote. Lorsque le clignotement de la dernière option s'est arrêté, le réglage a été effectué.

Exemple: option clignotante

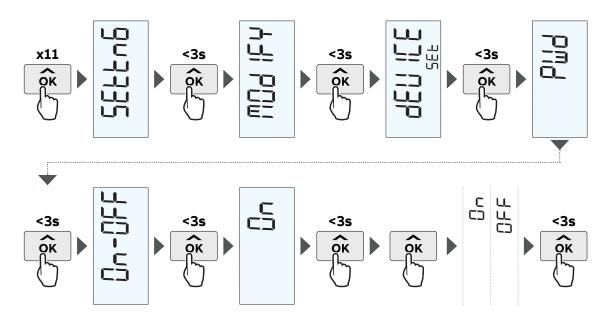




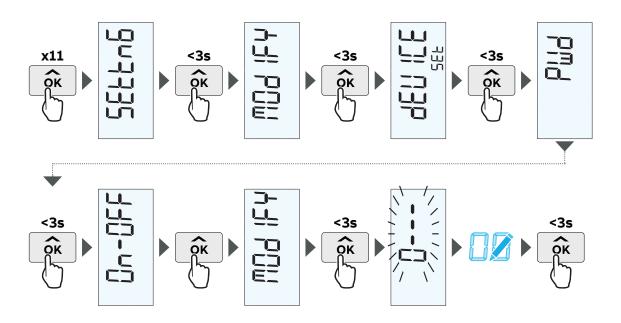
Après avoir configuré un paramètre, un écran de confirmation apparaît toujours. Maintenir ok la touche enfoncée pour rendre le changement définitif.



Dans le menu de réglage, une option de lecture/modification est disponible. Après avoir sélectionné « Modify », saisir le mot de passe si nécessaire (voir "6.3 Définition du mot de passe").

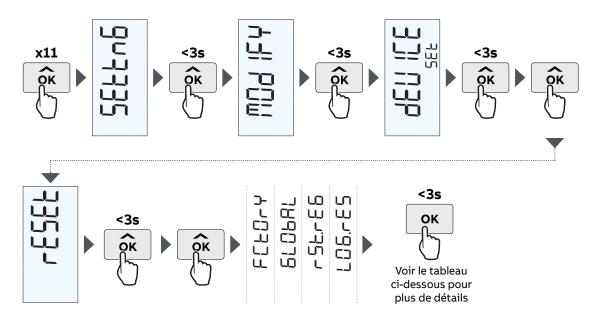


Dans chaque menu à la fin des options se trouve l'option « Exit », en confirmant en maintenant enfoncé, il est possible de revenir au menu précédent.



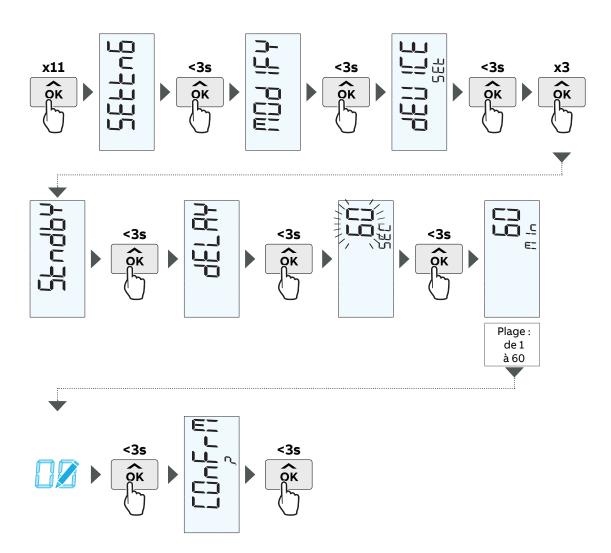
6.3 Définition du mot de passe

• Activer/désactiver le mot de passe



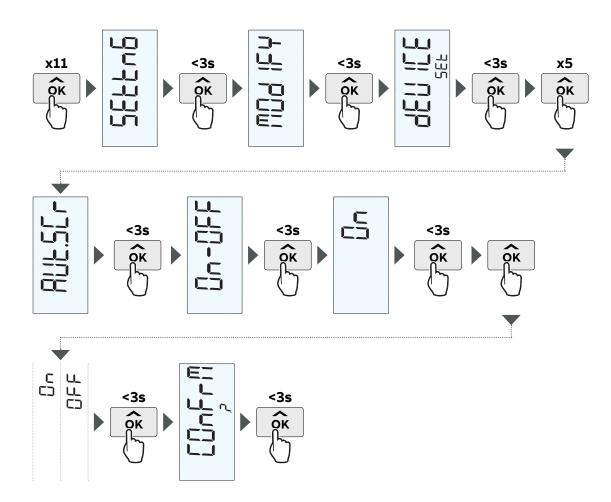
• Modifier le mot de passe

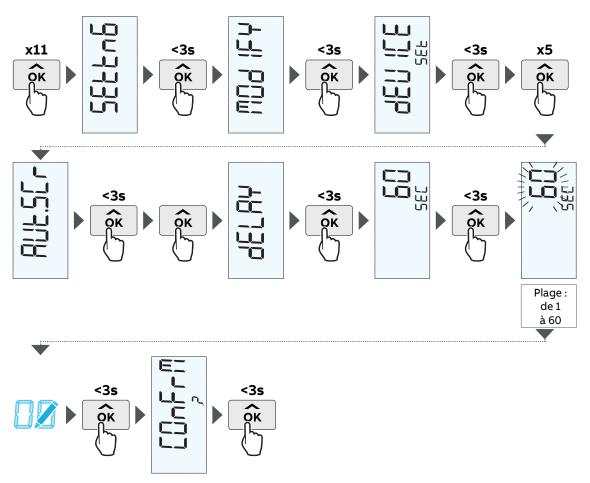
Saisir le nouveau mot de passe (précédemment, l'appareil demandait à l'ancien mot de passe s'il était configuré).


6.4 Options de réinitialisation

Options de réinitialisation	
Réinitialisation aux valeurs par défaut	Restaurer l'état défaut du dispositif à l'exception du journal d'audit et du schéma de câblage dans le cas d'un compteur MID
Réinitialisation générale	Réinitialisation complète du dispositif, à l'exception des paramètres et du journal d'audit
Réinitialiser registres	Registres sélectionnables :
	Tot IMP Énergie active
	Tot EXP Énergie active
	Tot IMP énergie réactive
	Tot EXP énergie réactive
Réinitialisation log	

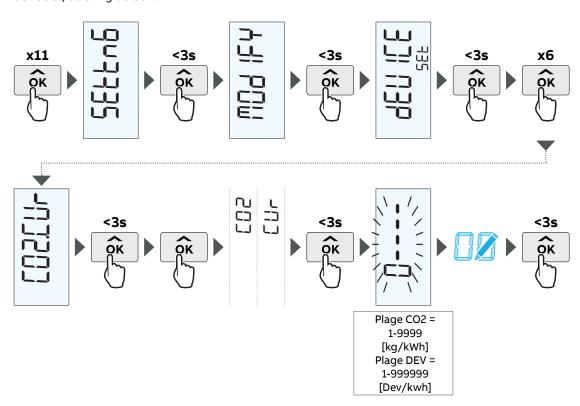
6.5 Paramétrage des options de veille


Le compteur permet de régler l'intervalle de temps nécessaire pour que l'appareil entre en veille et la luminosité maintenue par l'appareil une fois qu'il entre dans cette phase. Pour modifier ces paramètres, effectuer les étapes suivantes :

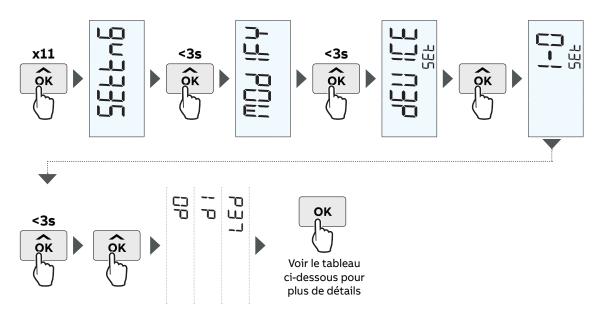

6.6 Paramétrage des options de défilement automatique

L'appareil est équipé d'une fonction de défilement automatique qui peut être activée ou désactivée. Il est également possible de régler l'intervalle de temps nécessaire pour que le défilement automatique ait lieu. Pour définir ces options, procéder comme suit :

• Activer/désactiver le défilement automatique



• Définir l'intervalle de temps de défilement automatique

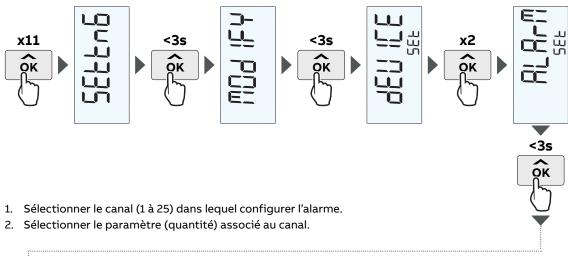


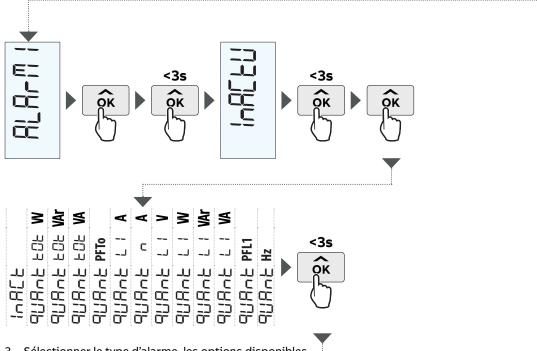
6.7 Paramétrage Devise/CO2

L'appareil permet de définir un facteur de conversion devise/CO2 , par conséquent, le kWh est converti en devise et/ou en kg de CO2.

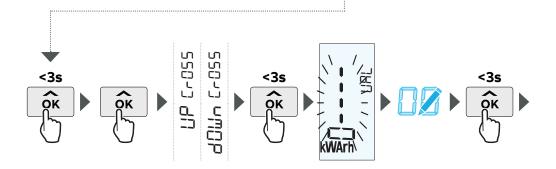
6.8 Paramétrage E-S

Après avoir sélectionné le paramètre associé à la sortie d'impulsion, le compteur demande de sélectionner la fréquence d'impulsion (secondes) et la longueur d'impulsion.

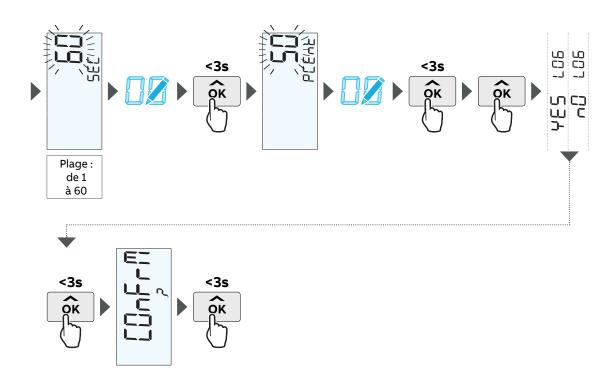

Options de sortie directe	
Pulse	Importation d'énergie active
	Exportation d'énergie active
	Importation d'énergie réactive
	Exportation d'énergie réactive
	Inactif
On	
Off	
	Si cette option est sélectionnée, le compteur
Alarm	demandera ensuite de sélectionner le créneau
	d'alarme et de confirmer
Communication	
LED	
Importation d'énergie active	
Exportation d'énergie active	
Importation d'énergie réactive	
Exportation d'énergie réactive	
Inactif	
Options d'entrée directe	
Pulse	Rapport d'impulsions
	Unité
Tariff	


Pour plus de détails, voir "7.4 Entrées et sorties".

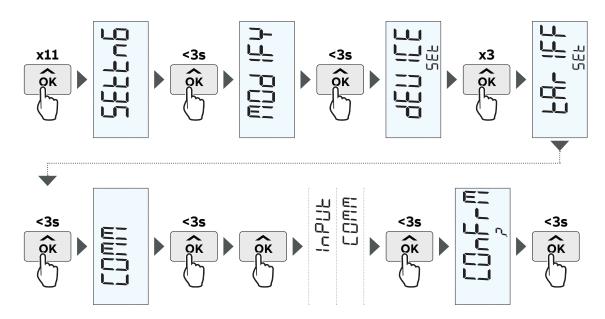
6.9 Réglage de l'alarme


Voir "7.3 Alarme" pour la définition de l'alarme.

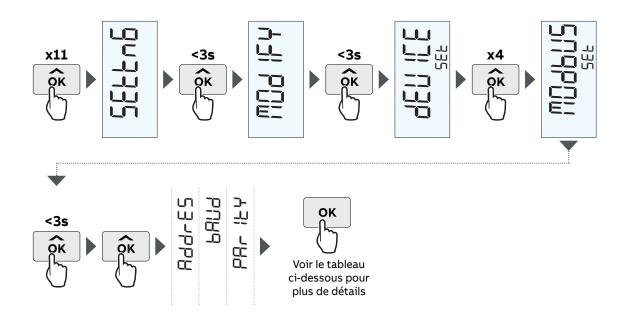
Le compteur permet de configurer des alarmes sur un maximum de 25 canaux différents, connectés à un paramètre sélectionnable. La procédure est la même pour chacun des 25 canaux. Pour configurer les alarmes, procéder comme suit :



- 3. Sélectionner le type d'alarme, les options disponibles sont Cross up et Cross down.
- 4. Sélectionner la valeur de seuil liée à l'activation de l'alarme. en fonction du type d'alarme.

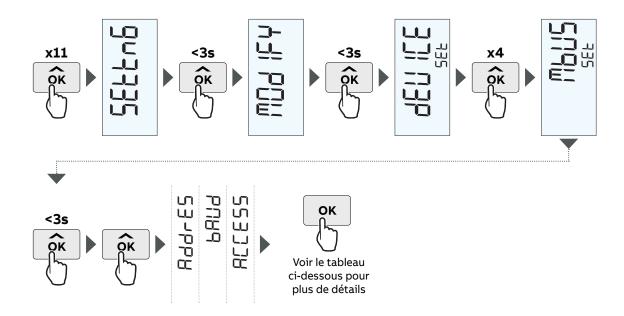


- 5. Sélectionner le temps de retard lié à l'activation de l'alarme une fois que la valeur franchit le seuil supérieur ou inférieur.
- 6. Définit le % des Hystérésis (valeur de 1 à 99). Il représente le pourcentage de la valeur en dessous duquel la mesure doit chuter avant que l'alarme soit désactivée.
- 7. Sélectionner si l'alarme doit être journalisée ou non.
- 8. L'alarme est maintenant réglée.



6.10 Paramétrage du tarif

Voir "7.4 Entrées et sorties" pour plus de détails.



6.11 Paramétrage de la communication Modbus

Menu Modbus	
Address	1-247
Baud	115200
	57600
	38400
	19200
	9600
	4800
	2400
	1200
Parity	Even
	Odd
	None

6.12 Paramétrage de la communication du M-bus

Menu M-Bus	
Address	1-250
Baud	9600
	4800
	2400
	1200
	600
	300
Access Level	Ouvert
	Ouvert avec mot de passe
	Fermer

7 Fonctions techniques des compteurs

Ce chapitre contient des descriptions techniques des fonctions du compteur.

7.1 Valeurs énergétiques

Les valeurs d'énergie sont stockées dans des registres d'énergie. Les différents registres d'énergie peuvent être divisés en :

- Registres contenant de l'énergie active, réactive ou apparente
- Registres contenant différents tarifs ou la somme totale de tous les tarifs
- · Registres contenant de l'énergie par phase ou la somme totale de toutes les phases
- Registres réinitialisables (possibilité de mettre à zéro via des boutons ou une commande de communication)
- Les valeurs d'énergie peuvent être lues via la communication ou directement sur l'écran à l'aide des boutons.

Présentation des valeurs de registre

Dans D11 15, l'énergie est affichée avec 6 chiffres en kWh/ kvarh/KVAh avec deux décimales et présente une décimale de moins au dépassement, c'est-à-dire qu'elle passe à une décimale à 10 000,0 kWh et à aucune décimale à 100 000 kWh.

7.2 Fonctions instrumentales

Fonctions instrumentales	Monophasé, 2 fils
Puissance active, total	
Puissance réactive, total	
Puissance apparente, total	
Tension L1 - N	
Courant L1	
Fréquence	
Facteur de puissance, total	
COS φ Total, Quadrant Total	

Précision

Toute la précision des données instrumentales est définie dans la plage de tension de 20 % de la tension nominale indiquée et dans la plage de courant de 5 % du courant de base au courant maximum.

La précision de toutes les données instrumentales, à l'exception des angles de phase de fréquence, de tension et de courant, est la même que la précision de mesure d'énergie indiquée. La précision pour les angles de phase de tension et de courant est de 2 degrés et de 0,5 % pour la fréquence.

Quantités

Les quantités suivantes peuvent être surveillées :

Tension	
Courant	
Total puissance active	
Total puissance réactive	
Puissance apparente totale	
Total facteur de puissance	

Durée minimale d'enregistrement

Les registres d'énergie ne sont disponibles que si le compteur est verrouillé. Les écrans relatifs à l'énergie ont 6 chiffres présentés en kWh, kVAh, kVArh, selon la quantité. L'énergie est ainsi accumulée jusqu'à 999999 en kWh, kVAh, kVArh. Ce nombre de chiffres permet d'accumuler pendant 4000 h, 24 h de fonctionnement. Après cette valeur, le compteur se remet à zéro. De plus, l'utilisateur ne peut pas réinitialiser les accumulateurs d'énergie au moyen d'une IHM ou d'une interaction de communication.

7.3 Alarme

Le but de la fonction d'alarme est de permettre le suivi des quantités dans le compteur. La surveillance peut être réglée sur une détection de niveau élevé ou faible. La détection de haut niveau donne une alarme lorsque le niveau d'une quantité dépasse le niveau défini. La détection de niveau bas donne une alarme lorsque la valeur passe en dessous du niveau défini.

Il est possible de configurer 25 alarmes (voir "6.9 Réglage de l'alarme"). La configuration peut être effectuée via la communication ou avec les boutons directement sur le compteur.

Description fonctionnelle

Lorsque la valeur de la quantité surveillée dépasse la valeur de référence pendant une période supérieure ou égale au délai spécifié, l'alarme est activée. De la même manière, l'alarme est désactivée lorsque la valeur dépasse le niveau de désactivation et y reste pendant un temps supérieur ou égal au délai spécifié.

Si le niveau d'activation est supérieur au niveau de désactivation, l'alarme est activée lorsque la valeur de la quantité surveillée est supérieure au niveau d'activation.

Si le niveau d'activation est inférieur au niveau de désactivation, l'alarme est activée lorsque la valeur de la quantité surveillée est inférieure au niveau d'activation.

7.4 Entrées et sorties

Les entrées/sorties sont construites avec des optocoupleurs et sont isolées galvaniquement des autres composants électroniques du compteur. Elles sont unidirectionnelles et ne prennent en charge que la tension CC.

Une entrée qui n'est pas connectée équivaut à avoir sa tension coupée.

Le circuit équivalent des sorties est un relais idéal en série avec une résistance.

Voir "6.8 Paramétrage E-S" pour la configuration.

Entrée d'impulsion

Les ondes (carrées) de signaux électriques qui se produisent sur un laps de temps très court et qui ont une certaine largeur sont appelées « impulsions » ou « signaux d'impulsion ».

Les entrées comptent ces impulsions, l'activité du registre et l'état actuel et les données peuvent être lues directement sur l'écran du compteur ou via la communication. De plus, l'activité du registre peut être réinitialisée via la communication ou via les boutons directement sur le compteur.

Entrées tarifaires

· Contrôle des tarifs

Sur les compteurs avec fonction tarifaire, les tarifs sont contrôlés soit par communication, soit par 1 entrée tarifaire.

Le contrôle tarifaire via l'entrée est effectué en appliquant une combinaison appropriée de « tension » ou de « sans tension » à l'entrée. Chaque combinaison de « tension »/« sans tension » aura pour conséquence que le compteur enregistrera l'énergie dans un registre tarifaire particulier.

Dans les compteurs combinés avec comptage actif et réactif, les deux quantités sont contrôlées par les mêmes entrées et le tarif actif pour l'énergie active et réactive sera toujours le même.

· Indication du tarif actif

Les tarifs Tx - où x est le numéro de tarif - sont imprimés sur le panneau avant. Le compteur indique le tarif actif par une flèche dirigée vers lui.

Codage d'entrée

Le codage des entrées est binaire. Le tableau suivant décrit le codage par défaut.

Entrée 1	Tarif
OFF	= T1
ON	= T2

Sorties d'impulsion

Sur les sorties d'impulsion, le compteur envoie un nombre spécifié d'impulsions (fréquence d'impulsion) par kWh (kvarh pour les sorties d'impulsion réactives).

La sortie peut être contrôlée par communication ou alarme.

Le nombre d'impulsions est proportionnel à l'énergie traversant le compteur et à la durée des impulsions.

La fréquence et la longueur d'impulsion peuvent être réglées via les boutons du compteur ou via la communication.

· Fréquence d'impulsion

La fréquence d'impulsion est configurable et peut être réglée sur une valeur comprise entre 1-9999 Impulsions : la valeur doit être un entier.

L'unité est sélectionnable et peut être réglée sur imp/kWh, imp/Wh ou imp/MWh

· Longueur d'impulsion

La longueur d'impulsion peut être réglée sur une valeur comprise entre 10 et 990 ms.

• Décider de la fréquence/longueur d'impulsion

Si la puissance est trop élevée pour une certaine longueur d'impulsion et une certaine fréquence d'impulsion, il existe le risque que les impulsions puissent s'imbriquer les unes dans les autres. Si cela se produit, le compteur émettra une nouvelle impulsion (relais fermé) avant que la précédente soit terminée (relais ouvert) et l'impulsion sera manquante. Dans le pire des cas, le relais peut être fermé en permanence.

Pour éviter ce problème, un calcul doit être effectué pour calculer la fréquence d'impulsion maximale autorisée sur un site particulier en fonction d'une puissance maximale estimée et des données de sortie d'impulsion du compteur.

• Formule

La formule à utiliser pour ce calcul est :

Fréquence maximale des impulsions = 1000*3600 / U / I / n / (PPause + PLongueur)

où U et I sont la tension maximale estimée de l'élément (en volts) et le courant (en ampères), n le nombre d'éléments (1 - 3). Plongueur et Ppause sont la longueur d'impulsion et la pause d'impulsion requise (en secondes). Une longueur d'impulsion minimale raisonnable et une pause d'impulsion est de 30 ms, ce qui est conforme aux normes S0 et IEC .

Exemple:

Dans un compteur à 3 éléments connecté en direct avec une tension et un courant maximum estimés à 240 V et $40 \, \text{A}$ et une longueur d'impulsion de $100 \, \text{ms}$ et une pause d'impulsion requise de $30 \, \text{ms}$, la fréquence d'impulsion maximale autorisée sera :

 $1\,000 * 3\,600 / 240 / 40 / 1 / (0,030 + 0,100)) = 2\,884 impulsions/kWh(kvarh)$

7.5 Journaux

Le compteur D11 contient deux types de journaux différents :

- Journal d'événements
- · Journal d'audit

Journal d'événements

Le journal d'événements comprend les erreurs, les avertissements et les alarmes.

Le journal d'événements peut être lu via la communication ou directement dans l'affichage du compteur.

Un maximum de 200 événements peut être stocké dans le journal d'événements. Lorsque le nombre maximal d'événements pour un journal est atteint, les événements les plus anciens seront écrasés. Il est possible de supprimer toutes les entrées dans le journal d'événements via la communication.

Ce journal stocke les événements liés aux alarmes, aux erreurs et aux avertissements de configuration.

Les informations suivantes sont stockées lors d'un événement :

- Code événement
- Durée

Les événements suivants sont stockés dans ce journal

• Erreur

- Erreur CRC du programme Erreur lors de la vérification de la cohérence du micrologiciel
- Erreur de stockage persistante Les données stockées dans la mémoire à long terme sont corrompues

Avertissement

- · Avertissement de l'élément de puissance négative 1 L'élément 1 mesure la puissance négative.
- U1 Avertissement manquant U1 est manquant.
- Avertissement de fréquence La fréquence du réseau n'est pas stable.

Alarme

- · Alarme Courant L1
- Alarme Total puissance active
- Alarme puissance réactive Totale
- · Alarme Total puissance apparente
- · Alarme Total facteur de puissance
- · Alarme Tension L1

Journal d'audit

Le journal d'audit suit les événements importants tels que la mise à niveau du micrologiciel, les changements de mot de passe, la réinitialisation,

Un maximum de 923 événements peuvent être stockés dans le journal d'audit.

Lorsque le nombre maximum d'événements pour ce journal est atteint, aucun autre événement ne peut être stocké et une « erreur Journal d'audit » est affichée.

Une nouvelle tentative de mise à niveau du micrologiciel échouera car aucun autre événement de journal ne peut être stocké.

Les informations suivantes sont stockées lors d'un événement :

- · Nombre de mises à jour du micrologiciel
- · Version du micrologiciel
- · Importation d'énergie active totale
- Tarif d'importation d'énergie active 1
- Tarif d'importation d'énergie active 2
- Tarif d'importation d'énergie active 3
- Tarif d'importation d'énergie active 4
- Exportation d'énergie active totale
- · Instantané du compteur de durée de vie du journal d'audit
- Identifiant source de la mise à jour du micrologiciel
- État de réussite de la mise à jour du micrologiciel

8 Méthodes de mesure

Ce chapitre contient des informations sur la théorie de la mesure et les méthodes de mesure les plus couramment utilisées. Les informations peuvent être utilisées pour mieux comprendre le comportement du compteur et/ou pour choisir la bonne méthode de mesure.

8.1 Mesure de l'énergie et de la puissance

Énergie active

Il est facile de comprendre la nécessité pour un service public de mesurer l'énergie active, car les informations sont nécessaires pour facturer correctement le client. Habituellement, plus le client consomme d'énergie, plus la précision du compteur doit être élevée. Normalement, 4 classes de précision sont utilisées : 2 %- (petits consommateurs, ex. les ménages),1 %-, 0,5 %- et 0,2 % - compteurs avec des niveaux de puissance définis pour chaque classe.

Également du point de vue du client, il est facile de comprendre la nécessité de mesurer l'énergie active, car cela peut lui donner des informations sur e lieu et le moment de consommation de l'énergie. Ces informations peuvent ensuite être utilisées pour prendre des mesures visant à réduire la consommation et donc le coût.

Dans certains cas, il est souhaité de simplifier la mesure. Dans de tels cas, des méthodes simplifiées peuvent être utilisées, dont les plus courantes sont décrites dans ce chapitre. Ces méthodes nécessitent le plus souvent une charge équilibrée, ce qui signifie que l'impédance est la même dans toutes les phases, donnant la même amplitude de courant et le même facteur de puissance dans toutes les phases. Remarque – Il convient de mentionner que même si la charge est parfaitement équilibrée, la précision sera diminuée si les tensions d'entrée ne sont pas les mêmes sur toutes les phases.

L'énergie active est calculée comme l'intégrale temporelle du produit de la tension et du courant pour tous les éléments mesurés 1, 2, etc. additionnés, voir ci-dessous.

Énergie active =
$$\int (U1(t) \cdot I1(t) + U2(t) \cdot I2(t)...) \cdot dt$$

Aujourd'hui, pratiquement tous les compteurs d'énergie sont numériques et utilisent des convertisseurs analogiques-numériques (CAN) où les tensions et les courants sont échantillonnés et l'intégrale temps devient plutôt une somme du produit des échantillons de tension et de courant et du temps T entre les échantillons pour tous les éléments mesurés, voir ci-dessous.

Énergie active =
$$\sum_{k}$$
 (U1(k) · I1(k) + U2(k) · I2(k)...) · T

L'énergie active est divisée en importation et exportation, où l'importation est l'énergie fournie par la source d'alimentation (normalement le service public) à la charge du client, et l'exportation est l'énergie allant dans la direction opposée, c'est-à-dire du client au réseau électrique. Les sources d'énergie des clients peuvent par exemple être des panneaux solaires.

La différence entre l'énergie d'importation et d'exportation est l'énergie nette.

En plus de mesurer l'énergie active totale, l'énergie individuelle dans chaque élément de mesure peut également être mesurée, où un élément de mesure est normalement l'énergie de phase.

Puissance active

La puissance active est calculée en prenant en continu des instantanés de l'énergie active mesurée et en divisant l'incrément d'énergie par le temps écoulé entre les instantanés, voir la formule ci-dessous où Ek et Ek+1 sont deux instantanés d'énergie active successifs et T est le temps écoulé entre les instantanés, où T est un nombre complet de cycles de ligne secteur. La puissance active peut être positive (importation) ou négative (exportation) en fonction de la direction du flux d'énergie active.

Puissance active =
$$(E_{k+1} - E_k)/T$$

Dans le cas où aucune harmonique n'est présente et que la charge est fixe, la puissance active sur chaque phase peut être calculée comme suit :

$$P = U_{rms}^* \cdot I_{rms}^* \cdot \cos \varphi$$

où Φ est l'angle de phase entre la tension et le courant.

Énergie réactive

Parfois, il est également nécessaire de mesurer l'énergie réactive. L'équipement grand public introduit souvent un déphasage entre le courant et la tension en raison du fait que la charge a un composant plus ou moins réactif, par exemple des moteurs qui ont un composant inductif. Une charge réactive augmentera le courant, ce qui signifie que le générateur de la source d'alimentation et la taille des lignes électriques doivent augmenter, ce qui signifie à son tour un coût plus élevé pour le service public. Un courant plus élevé signifie également que les pertes de ligne augmentent.

Pour cette raison, le déphasage maximal admissible est parfois régi dans les termes du contrat que le consommateur a avec le fournisseur d'électricité. Si le consommateur dépasse une charge réactive maximale spécifiée, il sera redevable d'un supplément. Ce type de contrat nécessitera un compteur de services publics qui mesure l'énergie et/ou la puissance réactive.

De plus, du point de vue du client, il peut être intéressant de mesurer l'énergie/la puissance réactive, car cela permet de connaître la nature de la charge. C'est-à-dire la taille des différentes charges et leur variation dans le temps. Ces connaissances peuvent être utilisées dans la planification de la façon de diminuer la puissance/énergie réactive pour faire baisser la facture d'électricité.

L'énergie réactive mesurée est l'énergie contenue dans la fréquence fondamentale du secteur, comme stipulé dans les normes IEC pour l'énergie réactive. Les harmoniques de la tension et du courant n'influenceront donc pas la quantité d'énergie réactive.

L'énergie réactive est calculée comme la somme de tous les éléments mesurés en tant que produit des valeurs efficaces fondamentales de tension et de courant et de l'angle de phase entre les tensions et les courants, qui est la puissance réactive, multipliée par le temps de mesure efficace T, qui est un nombre de cycles complets de la ligne secteur, voir la formule ci-dessous.

Énergie réactive =
$$\sum_{k} (U1_{k} \cdot I1_{k} \cdot \sin(\varphi 1) + U2_{k} \cdot I2_{k} \cdot \sin(\varphi 2) + ...) \cdot T$$

Puissance réactive

Comme mentionné ci-dessus, l'énergie réactive est calculée en multipliant la puissance réactive par le temps écoulé dans la mesure des valeurs efficaces fondamentales et de l'angle de phase entre les tensions et les courants. Ainsi le calcul de la puissance réactive est le même que pour l'énergie à l'exception que la multiplication du temps écoulé est omise, voir formule ci-dessous. La mesure se fait sur un nombre complet de cycles de la ligne d'alimentation. La puissance réactive peut être positive (importation) ou négative (exportation) en fonction de la direction du flux d'énergie réactive.

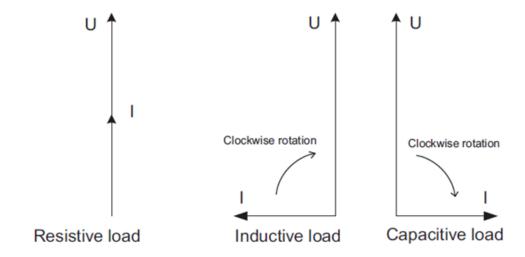
Puissance réactive =
$$\sum_{k} (U1_{k} \cdot I1_{k} \cdot \sin(\varphi 1) + U2_{k} \cdot I2_{k} \cdot \sin(\varphi 2) + ...)$$

Énergie apparente

L'énergie apparente est calculée comme la somme de tous les éléments mesurés en tant que produit des valeurs efficaces de la tension et du courant et du temps de mesure efficace T, qui est un nombre de cycles complets de la ligne d'alimentation, voir la formule ci-dessous. Ainsi, elle n'est pas affectée par le déphasage entre le courant et la tension. Quant à l'énergie réactive, elle peut parfois être utilisée pour la facturation au cas où le facteur de puissance serait inférieur à une certaine valeur.

Énergie apparente =
$$\sum_{k} (U1_{k} \cdot I1_{k} + U2_{k} \cdot I2_{k} + ...) \cdot T$$

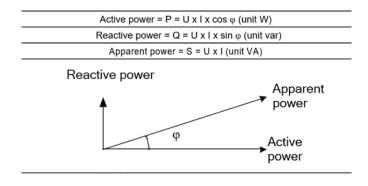
Puissance apparente


Comme mentionné ci-dessus, l'énergie apparente est calculée en multipliant la puissance apparente par le temps écoulé dans la mesure des valeurs efficaces fondamentales. Ainsi le calcul de la puissance apparente est le même que pour l'énergie à l'exception de la multiplication du temps écoulé, voir formule ci-dessous. La mesure se fait sur un nombre complet de cycles de la ligne d'alimentation. Apparente est par définition toujours positive.

Puissance apparente =
$$\sum_{k}$$
 (U1_k·I1_k + U2_k·I2_k + ...)

Charges résistives, inductives et capacitives

Les charges résistives ne donnent lieu à aucun déphasage. Les charges inductives ont un déphasage dans un sens avec le courant à la traîne de la tension, tandis que les charges capacitives produisent un déphasage dans le sens opposé avec le courant conduisant la tension. Par conséquent, des charges inductives et capacitives peuvent être utilisées pour se compenser mutuellement.


L'illustration ci-dessous montre un diagramme vectoriel pour les charges résistives, inductives et capacitives :

Déplacement de phase

Une charge qui consomme à la fois de l'énergie réactive et active peut être divisée en composants actifs et réactifs. L'angle entre le vecteur de puissance apparente (U*I) et la composante de puissance active est décrit comme un angle de déplacement de phase ou un angle de facteur de puissance.

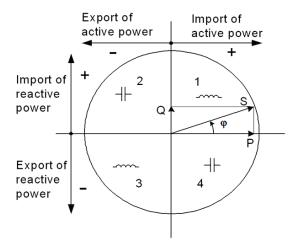
L'illustration ci-dessous montre un diagramme vectoriel pour une charge avec un composant actif et un composant réactif sans harmoniques présentes.

Facteur de puissance et Cos ϕ

Le facteur de puissance est défini comme le rapport entre la puissance active P et la puissance apparente S, voir ci-dessous.

Facteur de puissance = P / S

 $\cos \phi$ est défini comme le rapport de la puissance active fondamentale à la puissance apparente fondamentale, qui est le même que le cosinus pour l'angle de phase entre la tension fondamentale et le courant fondamental, voir ci-dessous.

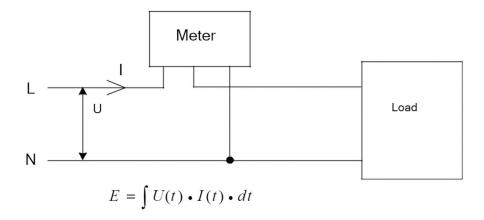

$Cos \varphi = cos(angle U à I)$

Ainsi, la différence entre le facteur de puissance et $Cos \phi$ est que le facteur de puissance inclut toutes les harmoniques tandis que $Cos \phi$ ne considère que la fréquence fondamentale du secteur.

Les 4 quadrants de puissance

Le type de charge peut être représenté géométriquement par quatre quadrants. Dans le premier quadrant, la charge est inductive et active et l'énergie est importée (l'énergie est fournie par le service public au client). Dans le deuxième quadrant, la charge est capacitive et l'énergie active est exportée et l'énergie réactive est importée. Dans le troisième quadrant, la charge est inductive et active et l'énergie réactive est exportée. Dans le dernier quadrant, la charge est capacitive et l'énergie active est importée et l'énergie réactive exportée.

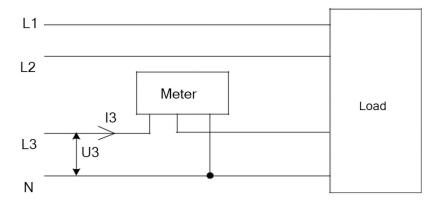
Le type de charge peut être représenté géométriquement par 4 quadrants de puissance, voir figure cidessous.


8.2 Compteur monophasé

Compteur monophasé dans un système à 2 fils

Dans une installation à 2 fils, un compteur monophasé est utilisé. Normalement, les 2 fils sont une tension de phase et le neutre.

L'énergie active consommée par la charge est le produit de la tension momentanée et du courant intégré sur la période de temps de mesure souhaitée.


L'illustration ci-dessous montre un compteur monophasé directement connecté mesurant l'énergie active (E) consommée par une charge.

Compteur monophasé dans un système à 4 fils

Dans un système à 4 fils, un compteur monophasé peut parfois être utilisé pour mesurer l'énergie consommée en une seule phase, et multiplié par 3 pour obtenir l'énergie totale consommée. Cette méthode ne donne des résultats corrects que dans un système équilibré (même tension, courant et facteur de puissance dans toutes les phases). Cette méthode ne doit pas être utilisée pour une mesure précise, mais peut être utilisée lorsqu'une grande précision n'est pas nécessaire.

L'illustration ci-dessous montre le compteur monophasé dans un système triphasé.

9 Assistance & Maintenance

9.1 Assistance

Ce produit ne contient aucune pièce pouvant être réparée ou échangée. Un compteur cassé doit être remplacé. Si vous avez besoin d'aide, veuillez contacter ABB.

Ne pas ouvrir le boîtier du compteur et n'essayer pas de réparer un composant. L'ouverture du compteur annule la précision et l'étalonnage.

9.2 Codes événement

Le tableau suivant décrit les codes d'événement qui peuvent se produire dans le journal événements :

Nom/code/description de l'erreur	Texte [Ligne1, Ligne2]	Code
ERROR_AUDIT_LOG, LOG_ERROR_AUDIT_LOG	AUdlt, LOg	40
ERROR_PROGRAM_CRC, LOG_ERROR_PROGRAM_CRC	Prog, CrC	41
ERROR_PERSISTENT_STORAGE, LOG_ERROR_PERSISTENT_STORAGE	PErSISt, Strg	42
ERROR_RAM_CRC, LOG_ERROR_RAM_CRC	rAM, CrC	43
ERROR_FW_UP_INV_IMAGE, LOG_ERROR_FW_UP_INV_IMAGE	InV.IMg, FWw	44
ERROR_FW_UP_MAX_COUNT, LOG_ERROR_FW_UP_MAX_COUNT	MAX.Cnt, FWw	45
ERROR_FW_UP, LOG_ERROR_FW_UP	FW UP, FWw	46
ERROR_FW_UP_MAX_INV_IMG_COUNT, LOG_ERROR_FW_UP_MAX_INV_IMG_COUNT	InV.Cnt, FWw	47
ERROR_ABB_SPECIFIC_STR_6, LOG_ERROR_ABB_SPECIFIC_STR_6	AbbStr, 7	48
ERROR_ABB_SPECIFIC_STR_7, LOG_ERROR_ABB_SPECIFIC_STR_7	AbbStr, 8	49
ERROR_ABB_SPECIFIC_STR_8, LOG_ERROR_ABB_SPECIFIC_STR_8	AbbStr, 9	50
ERROR_ACREF, LOG_ERROR_ACREF	ACrEF,	51
ERROR_MAINBOARDTEMP_SENSOR, LOG_ERROR_MAINBOARDTEMP_SENSOR	SEnSOr, tMmP	52
ERROR_RTC_CIRCUIT, LOG_ERROR_RTC_CIRCUIT	CIrC, rtC	53

Nom/code/description de l'avertissement	Texte [Ligne1, Ligne2]	Code
WARNING_U1_LOW, LOG_WARNING_U1_LOW	LOW, U1	1000
WARNING_U2_LOW, LOG_WARNING_U2_LOW	LOW, U2	1001
WARNING_U3_LOW, LOG_WARNING_U3_LOW	LOW, U3	1002
WARNING_MID_NOT_LOCKED, LOG_WARNING_MID_NOT_LOCKED	UNLOCK, MId	1003
WARNING_NEG_POW_ELEMENT_1, LOG_WARNING_NEG_POW_ELEMENT_1	NEg.POW, L1	1004
WARNING_NEG_POW_ELEMENT_2, LOG_WARNING_NEG_POW_ELEMENT_2	NEg.POW, L2	1005
WARNING_NEG_POW_ELEMENT_3, LOG_WARNING_NEG_POW_ELEMENT_3	NEg.POW, L3	1006
WARNING_NEG_TOT_POW, LOG_WARNING_NEG_TOT_POW	NEg.POW, tot	1007
WARNING_FREQUENCY, LOG_WARNING_FREQUENCY	FrEq,	1008
WARNING_NOT_USED2, LOG_WARNING_NOT_USED2	nOt.USE, 2	1009
WARNING_DATE_NOT_SET, LOG_WARNING_DATE_NOT_SET	UnSEt, dAtE	1010
WARNING_TIME_NOT_SET, LOG_WARNING_TIME_NOT_SET	UnSEt, tIMm	1011
WARNING_U2_CONNECT, LOG_WARNING_U2_CONNECT	COnnECt, U2	1012
WARNING_U3_CONNECT, LOG_WARNING_U3_CONNECT	COnnECt, U3	1013
WARNING_I1_MISSING, LOG_WARNING_I1_MISSING	MISSIng, I1	1014
WARNING_I2_MISSING, LOG_WARNING_I2_MISSING	MISSIng, I2	1015
WARNING_13_MISSING, LOG_WARNING_13_MISSING	MISSIng, I3	1016

WARNING_I2_CONNECT, LOG_WARNING_I2_CONNECT	COnnECt, I2	1017
WARNING_I3_CONNECT, LOG_WARNING_I3_CONNECT	COnnECt, I3	1018
WARNING_PHASE1_CONNECTED_TO_NEUTRAL, LOG_WARNING_PHASE1_CONNECTED_TO_NEUTRAL	tO_NEUt, PHASE1	1021
WARNING_PHASE2_CONNECTED_TO_NEUTRAL, LOG_WARNING_PHASE2_CONNECTED_TO_NEUTRAL	tO_NEUt, PHASE2	1022
WARNING_PHASE3_CONNECTED_TO_NEUTRAL, LOG_WARNING_PHASE3_CONNECTED_TO_NEUTRAL	tO_NEUt, PHASE3	1023
WARNING_PULSES_MERGED_1, LOG_WARNING_PULSES_MERGED_1	MErgEd, PULSE1	1024
WARNING_PULSES_MERGED_2, LOG_WARNING_PULSES_MERGED_2	MErgEd, PULSE2	1025
WARNING_POWERFAIL, LOG_WARNING_POWERFAIL	POWEr, FAIL	1030

Nom/code/description de l'alarme	Texte [Ligne1, Ligne2]	Code
ALARM_1_ACTIVE, LOG_ALARM_1	ALArM, 1	2013
ALARM_2_ACTIVE, LOG_ALARM_2	ALArM, N	2014
ALARM_3_ACTIVE, LOG_ALARM_3	ALArM, N	2015
ALARM_4_ACTIVE, LOG_ALARM_4	ALArM, N	2016
ALARM_5_ACTIVE, LOG_ALARM_5	ALArM, N	2017
ALARM_6_ACTIVE, LOG_ALARM_6	ALArM, N	2018
ALARM_7_ACTIVE, LOG_ALARM_7	ALArM, N	2019
ALARM_8_ACTIVE, LOG_ALARM_8	ALArM, N	2020
ALARM_9_ACTIVE, LOG_ALARM_9	ALArM, N	2021
ALARM_10_ACTIVE, LOG_ALARM_10	ALArM, N	2022
ALARM_11_ACTIVE, LOG_ALARM_11	ALArM, N	2023
ALARM_12_ACTIVE, LOG_ALARM_12	ALArM, N	2024
ALARM_13_ACTIVE, LOG_ALARM_13	ALArM, N	2025
ALARM_14_ACTIVE, LOG_ALARM_14	ALArM, N	2026
ALARM_15_ACTIVE, LOG_ALARM_15	ALArM, N	2027
ALARM_16_ACTIVE, LOG_ALARM_16	ALArM, N	2028
ALARM_17_ACTIVE, LOG_ALARM_17	ALArM, N	2029
ALARM_18_ACTIVE, LOG_ALARM_18	ALArM, N	2030
ALARM_19_ACTIVE, LOG_ALARM_19	ALArM, N	2031
ALARM_20_ACTIVE, LOG_ALARM_20	ALArM, N	2032
ALARM_21_ACTIVE, LOG_ALARM_21	ALArM, N	2033
ALARM_22_ACTIVE, LOG_ALARM_22	ALArM, N	2034
ALARM_23_ACTIVE, LOG_ALARM_23	ALArM, N	2035
ALARM_24_ACTIVE, LOG_ALARM_24	ALArM, N	2036
ALARM_25_ACTIVE, LOG_ALARM_25	ALArM, 25	2037

9.3 Nettoyage

Si le compteur doit être nettoyé, utiliser pour cela un chiffon légèrement humidifié avec un détergent doux.

Veillez à ce qu'aucun liquide ne pénètre dans le compteur, car cela peut endommager l'équipement.

10 Manuel de communication

10.1 Code QR

ABB S.p.A.

Electrification business Viale dell'Industria, 18 20009 Vittuone (MI) Italy new.abb.com/low-voltage