
LECMIEM-WDT

Lecteur de proximité à busWiegand Data&Clock

O CARACTERISTIQUES TECHNIQUES

- Tension d'alimentation: 12v CC
- Consommation: 100 mA
- Portée maximale de lecture des tags: 5 cm
- Type de tag: EM125KHz
- Type de tag: MIFARE standard et sécurisé 4K, 1K et ULTRALIGHT
- Température de fonctionnement: -30°C à +50°C
- Étanchéité: IP66 par résine
- Boîtier plastique: 120x50x22mm
- Signal lumineux en position
- Témoin bleu: action
- Témoin lumineux disponible (rouge): 12v pilotable par GND
- Témoin lumineux disponible (vert): 12v pilotable par GND
- Témoin sonore des opérations en cours
- Différents formats de sortie sélectionnables par pontage

@ RACCORDEMENT

© CONFIGURATION

• PROGRAMMER LE FORMAT DE LECTURE:

- 1) Assembler les 2 entrées W0 et W1
- 2) Connecter l'alimentation
- 3) Attendre le nombre de bips souhaités
- 4) Déconnecter les entrées W0 et W1

N° Bips	FORMAT DE LECTURE					
1 Lecture UID seulement						
2	Lecture des identificateurs MIFARE standard et sécurisé (PIN)					
3	Lecture des identificateurs MIFARE sécurisé seulement (code PIN)					
4 ou plus	Le format de lecture n'est pas modifié					

• PROGRAMMER LE FORMAT DE SORTIE:

- 1) Connecter l'entrée DATAØ/CLOCK au GND
- 2) Connecter l'alimentation
- 3) Attendre le nombre de bips souhaités
- 4) Déconnecter l'entrée DATAØ/CLOCK du GND
- 5) Un dernier bip indique que la configuration du format est terminée

Nº Bips	FORMAT POUR MIFARE	FORMAT POUR EM 125KHz
1	W44	W44
2	W44 INVERSÉ	W44
3	W26	W26
4	W26 INVERSÉ	W26
5	W34	W34
6	W34 INVERSÉ	W34
7	DATACLOCK 10	DATACLOCK 13
8	DATACLOCK 10 INVERSÉ	DATACLOCK 13
9	DATACLOCK 10 DE W26	DATACLOCK 10 DE W26
10	DATACLOCK 10 DE W26 INVERSÉ	DATACLOCK 10 DE W26
11	FORMAT ZK	FORMAT ZK
12	FORMAT ZK INVERSÉ	FORMAT ZK
0 o >12	Le format de sortie ne change pas	Le format de sortie ne change pas

(NOTE: Si le TAG contient le code PIN, celui-ci se transmet, mais n'est jamais inversé

• FORMAT DATA/CLOCK

PROTOCOLE: R11-2B - Fréquence de transmission:

1000bits/s

FORMAT

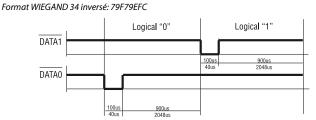
- 1) 8 bits à zéro
- 2) Code démarrage SS (B) + bit de parité impaire.
- 3) 10 ou 13 nibles en BCD inversé , correspondants au code identifiant + bit de parité impaire.
- 4) Code de fin d'émission ES (F) + bit de parité impaire.
- 5) Code de redondance linéaire des nibles précédents, exceptés les zéros initiaux + bit de parité impaire. 6-8 bits à zéro
- LCR = SS N1 \oplus N2 \oplus N3 \oplus N4 \oplus N5 \oplus N6 \oplus N7 \oplus N8 \oplus N9 N10 \oplus N11 \oplus N12 \oplus N13 \oplus ES (\oplus = Fonction O exclusive)

• FORMAT WIEGAND 26 BITS

PROTOCOLE: 3B - Fréquence de transmission: 1000bits/s

FORMAT

- 1) Bit N°1 parité paire sur les bits 2 à 13
- 2) Bit N°2 au N°25 correspondant au code identifiant en 6 chiffres hexadécimaux (3 bytes)
- 3) Bit N°26 parité impaire sur les bits 14 à 26


• FORMAT WIEGAND 34 BITS

FORMAT

- 1) Bit n°1 parité paire sur les bits 2 à 17
- 2) Bit n°2 aa 33 correspondant au code identifiant en 8 chiffres hexadécimaux (4 bytes)
- 3) Bit n°34 parité impaire sur les bits 18 à 33

Exemples pour une carte MIFARE Standard avec le code FC9EF779

Format WIEGAND 26: 9EF779 Format WIEGAND 34: FC9EF779 Format WIEGAND 44: 10FC9EF779

TIME	DESCRIPTION	MIN.	TYP.	MAX.	UNIT
TSET	Data stup time	5	1/6 Tclock		μS
TRM	Data hold time	0	8	2/3 TCLOCK	μS
TWHITE	Clock pulse width	-	1/3 Тсьоск	-	μS
Тсьоск	Clock pulse rate	80	1000	1500	μS
TTOTAL	Time out read operation	-	76	-	Тсьоск

DÉMARRAGE	SS	Р	N°1	Р	N°2	Р	 Р	ES	Р	LRC	Р	FINAL
00000000	1101	0	0000	1	1000	0	 0	1111	1	XXXX	Υ	00000000
0	В		0		1			F				0

• FORMAT WIEGAND 44 BITS

PROTOCOLE: 3C - Standard

FORMAT

1) Bit $N^{\circ}1$ à $n^{\circ}40$ correspondant au code identifiant en 10 chiffres hexadécimaux (5 bytes)

2) Bit N°41 à N°44 function XOR des chiffres précédents

EXEMPLE PROTOCOLE: 3C - Standard

FORMAT

La trame est composée de 44 bits ou 40 suivant le tag. Data: 10 chiffres héxadécimaux MSByte en premier. Chaque chiffre héxadécimal à 4 bits, MSBit en premier.

NOTE: Pour les TAGs standard, les deux premiers chiffres sont: 10 Pour les TAGs sécurisé: 11

	bit	1bit 4	0		bit	bit 41bit 44					
	Dat	ta MSBit	en pren	nier		LR	LRC				
00	000	0000	0000	0000	0000	0000	1001	1101	0010	Ī	

0000	0000	0000	0000	0000	0000	0000	1001	1101	0010	0110
0	0	0	0	0	0	0	9	D	2	6

Par la présente ACIE AUTOMATISMES SARL déclare que le produit est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 2014/53/UE (DER)

