# **RX-MIFARE-WDT**

# Lecteur de proximité Wiegand Data&Clock+ clavier

# CARACTÉRISTIQUES TECHNIQUES

Alimentation: 12-24 v CC.

• Consommation maximum sous 12v: 100 mA

• Température : -20°C à +50°C

• Etanchéité: IP40

• Dimensions (hxlxp): 158 x 86 x 33 mm

• Installation en saillie

• Fonctionnement connecté aux centrales Wiegand

• Disponible en identifications TAG, code ou TAG+code

# PROGRAMMATION CODE MAÎTRE

Le code d'origine est 000 à sa sortie d'usine.

Pour programmer un NOUVEAU CODE MAÎTRE,

taper 000 et valider par P

Le témoin lumineux jaune s'allume

Taper 0 puis 000

Composer votre nouveau code maître de1 à 8 chiffres.

Valider par la touche A

Appuyer sur **P** pour sortir de programmation.

Exemple: **5823** 

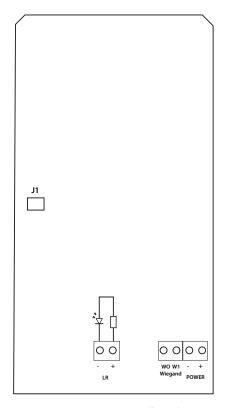
Taper 0 puis 000 Taper 5823 valider par A et P

## PROCÉDURE DE SECOURS

EN CAS DE PERTE OU D'OUBLI DE VOTRE CODE MAÎTRE. CETTE PROCÉDURE PERMET D'ENTRER EN PROGRAMMATION POUR EN INTRODUIRE UN NOUVEAU:

- 1) Débrancher l'alimentation et attendre 5 secondes.
- 2) Courtcircuiter le cavalier de programmation J1.
- 3) Re brancher l'alimentation (BIP, BIP, BIP). Le témoin lumineux jaune s'allume.
- 4) Appuyer sur la touche **0** puis **000**
- 5) Composer le code maître désiré de 1 à 8 chiffres.
- 6) Valider par la touche A
- 7) Appuyer sur **P** pour sortir de programmation.

• Types d'identifiants :


MIFARE standard et inverse

MIFARE DESFIRE EV1( seulement en mode lecture exclusive de l'UID)

 Clavier pour usage intensif • Fonctionnement lecteur seul, clavier seul ou lecteur + clavier

- 1 témoin lumineux disponible (rouge)
- 1 témoin lumineux de transmission (vert)
- Témoin d'action lumineux et sonore

### **RACCORDEMENT**



IMPORTANT!! Ne pas installer 2 lecteurs de proximité à une distance inférieure à 0.5 m l'un de l'autre.

## PARAMÈTRES DE CONFIGURATION

#### MODE MIFARE STANDARD/PROPRIÉTAIRE

Le lecteur peut utiliser les identifiants MIFARE Standard ou MIFARE PROPRIÉTAIRE. Ces derniers ne se trouvant pas chez d'autres fabricants , sont une garantie de qualité et d'homogénéité de fonctionnement des tags. ATTENTION: les deux types d'identifiants sont incompatibles. A ce titre, cette option doit être sélectionnée avant de réaliser l'installation et ne changera pas

Pour activer le mode MIFARE STANDARD: Appuver sur 7 6 1 A Pour activer le mode MIFARE PROPRIÉTAIRE: Appuyer sur 7 6 0 A

#### • MODE TAG+PINcode

En s'identifiant en mode TAG+PINcode, on doit présenter le tag et par la suite introduire un code clavier. Pour qu'un utilisateur ait besoin de cette double identification, il faut nécéssairement avoir programmer un code PIN (de 1 à 8 dígits) à l'intérieur du tag. Un tag qui n'a pas de code PIN fonctionnera normalement, sans attendre l'introduction du code, y compris si le mode TAG+PINcode a été sélectionné sur le lecteur.

Le code transmis est l'UID et non le PIN.

Pour programmer le code PIN d'un tag: Appuyer sur 0 802 XXXXXXXX A La led jaune clignote et on entend tic, tic.

Approcher le tag devant l'antenne du lecteur on entend bip, bip.

Pour effacer le code PIN d'un tag: Appuyer sur 9 902 A

La led jaune clignote et on entend tic, tic.

Approcher le tag devant l'antenne du lecteur on entend bip, bip.

Pour activer le mode TAG+PIN: Appuyer sur 7 7 1 A Pour annuler le mode TAG+PIN : Appuyer sur 7 7 0 A

## • MODE DE LECTURE EXCLUSIVE DE L'UID

Le mode de lecture exclusive de l'UID est incompatible avec le mode TAG+PINcode. Ce mode garantit contre toute utilisation d'un secteur du tag, excepté l'UID, lequel permet de s'identifier au moyen de tags appartenant à un système déjà implanté, sans risque de modifier son contenu ou encore de lire des codes non adecuats.

Pour activer le mode de lecture exclusive de l'UID: Appuyer sur 7 8 1 A Pour annuler le mode de lecture exclusive de l'UID: Appuyer sur 7 8 0 A

### • FORMAT CODE CLAVIER

Le code introduit sur le clavier peut-être transmis en 2 formats: Pour indiquer format de clavier numérique: Appuyer sur 7 40 A Appuyer sur 7 41 A Pour indiquer format de clavier ELA:

Exemples format code clavier 1 A

00000001 Format numérique: 1FFFFFFF Format ELA:

### INSTRUCTIONS DE PROGRAMMATION

| ABRÉVIATION | SIGNIFICATION                                                 |  |  |  |  |
|-------------|---------------------------------------------------------------|--|--|--|--|
| TAG         | Identifiant MIFARE                                            |  |  |  |  |
| xxxxxxx     | Code de 1 à 8 digits                                          |  |  |  |  |
| PIN         | Code numérique décimal programmable sur le TAG (1 à 8 digits) |  |  |  |  |
| UID         | Code d'usine du TAG qui ne peut être effacé (8 digits)        |  |  |  |  |

| Accéder à la programmation par le code maître | Pressez les touches XXXXXXXX P | Voyant jaune allumé (XXXXXXXX = 000 à la sortie usine) |  |  |  |  |
|-----------------------------------------------|--------------------------------|--------------------------------------------------------|--|--|--|--|
| POUR PROGRAMMER                               | PRESSEZ LES TOUCHES            | COMMENTAIRES                                           |  |  |  |  |
| Code maître                                   | 0 000 XXXXXXX A                |                                                        |  |  |  |  |
| Code PIN sur TAG                              | 0 802 XXXXXXXX A               | Présenter le TAG devant l'antenne du lecteur           |  |  |  |  |
| Effacer code PIN du TAG                       | 9 902 A                        | Présenter le TAG devant l'antenne du lecteur           |  |  |  |  |
| Effacer tous les utilisateurs                 | 9 999 A                        |                                                        |  |  |  |  |
| Reset total                                   | 9 943 A                        | Comme sortie d'usine                                   |  |  |  |  |

| SÉLECTION DE MODES                      | PRESSEZ LES TOUCHES |
|-----------------------------------------|---------------------|
| Activer mode MIFARE standard            | 7 61 A              |
| Activer mode MIFARE propriétaire        | 7 60 A              |
| Activer mode accès TAG +PINcode         | 7 71 A              |
| Annuler mode accès TAG +PINcode         | 7 70 A              |
| Activer mode lecture exclusive de l'UID | 7 81 A              |
| Annuler mode lecture exclusive de l'UID | 7 80 A              |
| Indiquer clavier en format numérique    | 7 40 A              |
| Indiquer clavier en format ELA          | 7 41 A              |

| SÉLECTION DE PROTOCOLE        | PRESSEZ LES TOUCHES |
|-------------------------------|---------------------|
| WIEGAND-44                    | 7 10 A              |
| WIEGAND-44 INVERSÉ            | 7 11 A              |
| WIEGAND-26                    | 7 12 A              |
| WIEGAND-26 INVERSÉ            | 7 13 A              |
| WIEGAND-34                    | 7 14 A              |
| WIEGAND-34 INVERSÉ            | 7 15 A              |
| CLOCK&DATA de 3 bytes         | 7 16 A              |
| CLOCK&DATA de 3 bytes INVERSÉ | 7 17 A              |
| CLOCK&DATA de 4 bytes         | 7 18 A              |
| CLOCK&DATA de 4 bytes INVERSÉ | 7 19 A              |

|  | POUR SORTIR DE PROGRAMMATION | APPUYER SUR LA TOUCHE: P | VOYANT JAUNE ÉTEINT |
|--|------------------------------|--------------------------|---------------------|
|--|------------------------------|--------------------------|---------------------|

#### • FORMAT DATA/CLOCK

 $\label{eq:protocole} \mbox{PROTOCOLE}: \mbox{R11-2B - Fr\'equence de transmission}: \mbox{1000bits/s} \\ \mbox{FORMAT}$ 

- 1- 16 bits à zéro
- 2- Code démarrage SS (B) + bit de parité impaire.
- 3-10 ou 13 nibles en BCD inversé , correspondants au code identifiant + bit de parité impaire.
- 4- Code de fin d'émission ES (F) + bit de parité impaire.
- 5- Code de redondance linéaire des nibles précédents, exceptés les zéros initiaux + bit de parité impaire.

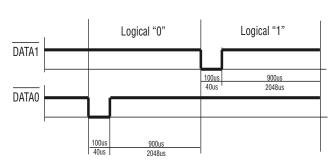
| TIME   | DESCRIPTION             | MIN. | TYP.       | MAX.       | UNIT   |
|--------|-------------------------|------|------------|------------|--------|
| TSET   | Data stup time          | 5    | 1/6 TCLOCK |            | μS     |
| Trm    | Data hold time          | 0    | 8          | 2/3 TCLOCK | μS     |
| TWHITE | Clock pulse width       | -    | 1/3 TCLOCK | -          | μS     |
| Тсьоск | Clock pulse rate        | 80   | 1000       | 1500       | μS     |
| TTOTAL | Time out read operation | -    | 76         | -          | Тсьоск |
|        |                         |      |            |            |        |

| DÉMARRAGE | SS   | Р | N°1  | Р | N°2  | Р | <br>Р | ES   | Р | LRC  | Р | FINAL    |
|-----------|------|---|------|---|------|---|-------|------|---|------|---|----------|
| 00000000  | 1101 | 0 | 0000 | 1 | 1000 | 0 | <br>0 | 1111 | 1 | XXXX | Υ | 00000000 |
| 0         | В    |   | 0    |   | 1    |   |       | F    |   |      |   | 0        |

#### • FORMAT WIEGAND 26 BITS

 $\begin{array}{l} \textbf{PROTOCOLE}: \textbf{3B - Fr\'equence de transmission}: \textbf{1000bits/s} \\ \hline \textbf{FORMAT} \end{array}$ 

- 1- Bit N°1 parité paire sur les bits 2 à 13
- 2- Bit  $N^{\circ}2$  au  $N^{\circ}25$  correspondant au code identifiant en 6 chiffres hexadécimaux
- (3 bytes)
- 3- Bit N°26 parité impaire sur les bits 14 à 26


#### FORMAT WIEGAND 34 BITS

## FORMAT

- 1- Bit n°1 parité paire sur les bits 2 à 17
- 2- Bit n°2 au 33 correspondant au code identifiant en 8 chiffres hexadécimaux (4 bytes)
- 3- Bit n°34 parité impaire sur les bits 18 à 33

Exemples pour une carte MIFARE avec code FC9EF779

Format WIEGAND 26: 9EF779 Format WIEGAND 34: FC9EF779 Format WIEGAND 44: 00FC9EF779



| • | <b>FORMAT WIEGAND 44 BITS</b> |
|---|-------------------------------|

PROTOCOLE : 3C - Standard FORMAT

1- Bit N°1 au n°40 correspondant au code identifiant 10 chiffres héxadéci-

maux maximum (5 bytes)

2- Bit N°41 au N°44 fonctionne XOR des chiffres précédents

 ${\sf EXEMPLE}\ \textbf{PROTOCOLE}: \textbf{3C-Standard}$ 

**FORMAT** 

La trame composée de 44 bits ou 40 suivant le tag.

Data: 10 chiffres héxadécimaux MSByte en premier. Chaque chiffre héxadéci-

mal à 4 bits, MSBit en premier

**LRC**: 4 bits = XOR entre chaque chiffre

| bit 1bit 40           | bit 41bit 44 |
|-----------------------|--------------|
| Data MSBit en premier | LRC          |

| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 1001 | 1101 | 0010 | 0110 |
|------|------|------|------|------|------|------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 9    | D    | 2    | 6    |

Par la présente ACIE AUTOMATISMES SARL déclare que le lecteur RX-MIFARE-WDT est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.