

Air circuit breakers HW1

U	onte	ents	Page
01	About thi	s manual	4
	1.1	Safetyinstructions	4
	1.2	Using this manual	6
02	Fixed circ	cuit breakers	7
	2.1	Description	7
	2.2	Description of the accessories	8
	2.3	Description of the terminal blocks	9
	2.4	Electrical diagram	12
03	Drawout	circuit breakers	14
	3.1	Description of the circuit breaker	14
	3.2	Description of the circuit breaker accessories	15
	3.3	Description of the chassis and its accessories	16
	3.4	Description of the chassis terminal blocks	17
	3.5	Electrical diagram	20
04	Descripti	on of the electronic trip units	22
05	Circuit br	reaker usage conditions	23
06	Circuit br	reaker operation	24
	6.1	Description	24
	6.2	Closing and opening the circuit breaker	28
07	Positions	of the drawout circuit breaker in the chassis	29
08	Positions	of the drawout circuit breaker in the chassis	30
	8.1	Changing from connected position to test position	30
	8.2	Changing from test position to disconnected position	33
	8.3	Changing from disconnected position to test position	35
	8.4	Changing from test position to connected position	37
09	Extractin	g the drawout circuit breaker	39
10	Inserting	the drawout circuit breaker	41
11	Storage		43
12	Identifica	ation of the circuit breakers	45
13	Unboxing		49
-		Removing the packaging	49
		Prized circuit breaker	50
		Drawout circuit breaker	51
14	Handling	the circuit breakers	53
	_	Handling fixed circuit breakers	53
		Handling drawout circuit breakers	55

			Page
15	Fastening	dimensions	57
	15.1	Circuit breaker dimensions	57
	15.2	Circuit breaker connections	63
	15.3	DF door frame cut-out	82
	15.4	Cut-out of the HTD210H panel display	86
16	Safety clea	arances to respect	87
 17	Installatio	n	88
	17.1	Prerequisites	88
	17.2	Installing fixed circuit breakers	89
	17.3	Installing drawout circuit breakers	93
	17.4	Connecting the connecting bars	95
	17.5	Connection of the connection cables	96
	17.6	Installation of the protection accessories	97
	17.7	Connecting the accessories and auxiliaries	99
	17.8	Connection of the OAC output contacts	100
	17.9	Connecting the inputs	103
	17.10	Connecting the ZSI input and output contacts	104
	17.11	Installation of the control accessories	106
	17.12	Installation of the signalling accessories	107
	17.13	Installation of the neutral protection accessories	110
	17.14	Installation of the communication and display accessories	111
18	Connectin	g diagram	114
19	Protection	settings	118
20	Commissi	oning the circuit breaker	119
21	Locking th	ne circuit breaker	120
	_	Locking of the insulating safety shutters	120
		WIP Wrong insertion preventer for drawout circuit breaker	121
		Mechanical interlock	122

Warnings and instructions

This documentation contains safety advice which must be respected for your own safety and to prevent property damage.

Safety advice relating to your own safety is identified by a safety warning symbol in the documentation. Safety advice relating to damage to property is identified by "ATTENTION". The safety warning symbols and the wording below are classified according to the risk level.

⚠ DANGER

DANGER indicates an imminent dangerous situation which, if not avoided, will result in death or serious injuries.

⚠ WARNING

WARNING indicates a potentially dangerous situation which, if not avoided, may result in serious injuries or even death.

CAUTION

CAUTION indicates a potentially dangerous situation which, if not avoided, may result in minor or moderate injuries.

ATTENTION

ATTENTION indicates a warning message relating to equipment damage. **ATTENTION** also indicates important instructions for use and particularly relevant information regarding the product, which must be respected to ensure effective and safe use.

Qualified personnel

The product or the system described in this documentation must be installed, operated and maintained by qualified personnel only. Hager Electro accepts no responsibility regarding the consequences of this equipment being used by unqualified personnel.

Qualified personnel are those people who have the necessary skills and knowledge for building, operating and installing electrical equipment, and who have received training enabling them to identify and avoid the risks incurred.

Appropriate use of Hager products

Hager products are designed to be used only for the applications described in the catalogues and in the technical documentation relating to them. If products

and components from other manufacturers are used, they must be recommended or approved by Hager.

Appropriate use of Hager products during transport, storage, installation, assembly, commissioning, operation and maintenance is required to guarantee problem-free operation in complete safety.

The permissible ambient conditions must be respected. The information contained in the technical documentation must be respected.

Publication liability

The contents of this documentation have been reviewed in order to ensure that the information is correct at the time of publication.

Hager cannot, however, guarantee the accuracy of all the information contained in this documentation. Hager assumes no responsibility for printing errors and any damage they may cause.

Hager reserves the right to make the necessary corrections and modifications to subsequent versions.

Purpose of the document.

This manual is designed to provide users, electrical installers, panel builders and maintenance personnel with the technical information necessary for the installation and commissioning of HW1 circuit breakers with electronic trip units.

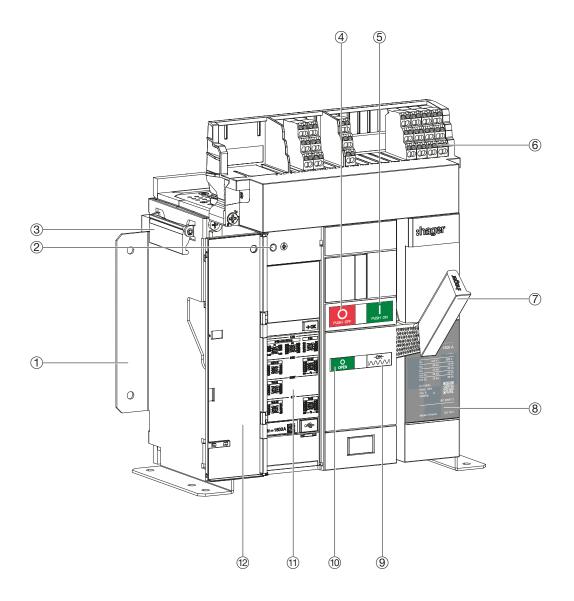
Field of application

This document is applicable to HW1 circuit breakers in the hw+ range.

Revisions

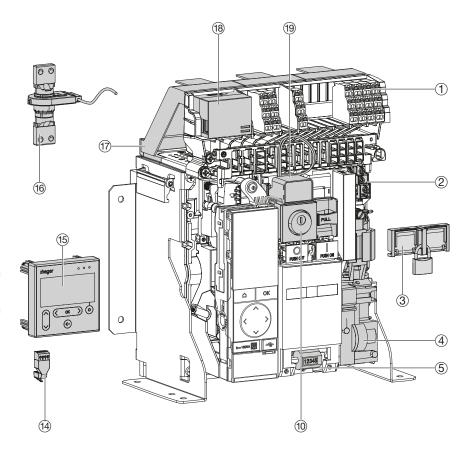
Version	Date
6LE007893Ad	December 2023

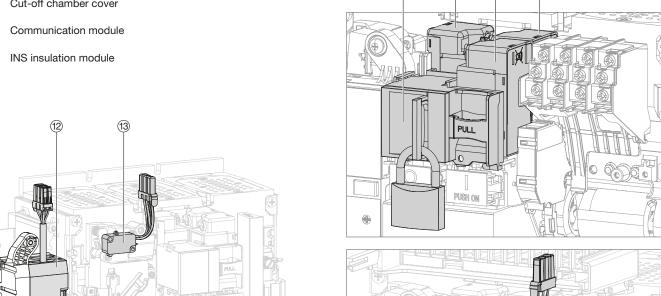
Documents to consult

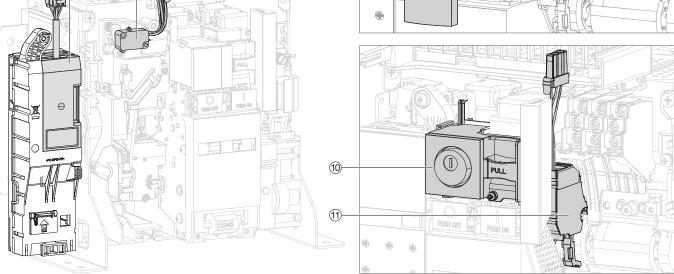

Document	Reference
User manual for sentinel hw+ electronic trip units	6LE007969A
User manual for sentinel Energy hw+ electronic trip units	6LE008147A
User manual for HW1 air circuit breakers	6LE007331A
HW1 user maintenance guide	6LE007897A
sentinel Energy Modbus communication guide	6LE007964A
HTD210H panel display user guide	6LE002999A

You can download these publications and other technical information from our website: www. hager.com

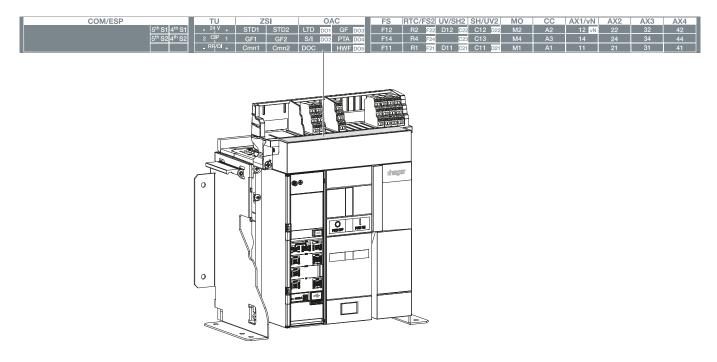
Contact


Address	Hager Electro SAS 132 Boulevard d'Europe	
	67215 Obernai France	
Phone	+ 33 (0)3 88 49 50 50	
Website	www.hager.com	


- 1 Side plate for fixing
- 2 RESET button
- 3 Lifting handle
- 4 Opening push button
- 5 Closing push button
- 6 Terminal blocks TB
- 7 Charging handle
- 8 Circuit breaker rating label
- 9 Closing spring status indicator
- (10) Contact opening and closing indicator
- 11) Trip unit
- 12 Transparent cover of the trip unit


- 1 Terminal blocks TB
- Auxiliary contacts AX
- Opening and closing push-button locking cover PBC
- 4 MO charging Motor
- CYC Operation Cycle Counter
- SH shunt trip coil or UV undervoltage release coil
- (7) CC closing coil
- 8 UV undervoltage release coil or SH shunt trip coil
- (9) Locking the circuit breaker in open position using padlocks OLP
- 10 Locking the circuit breaker in open position using key locks OLK
- (11) Ready-to-close contact RTC
- OAC Output Alarm Contact module
- FS Fault trip contact
- HWY210H adapter for panel display
- HTD210H panel display
- External neutral sensor ENCT
- Cut-off chamber cover

9


6

HW1 circuit breakers are equipped with terminal blocks designed to connect the accessories. Some are provided as standard and always installed while others are installed according to the circuit breaker configuration.

COM/ESP	
	5 th S1 4 th S1
	5 th S2 4 th S2

Terminal blocks	Description	Integrated or additional
COM/ESP	Communication module Either 2 connections via RJ45 cable for connection to the Modbus-RTU HWY965H module. Or 1 connection via RJ45 cable for connection to the Modbus-TCP HWY966H module. External sensors 4 th S1 and 4 th S2: connection of an external ENCT neutral current sensor for 3-pole circuit breakers.	Additional

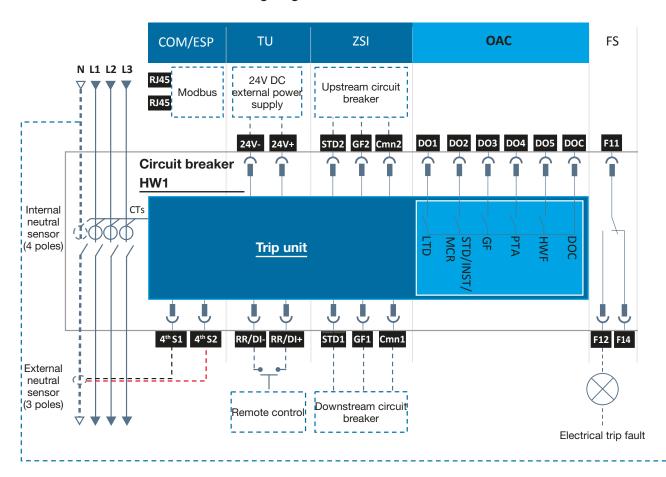
Terminal blocks	Description	Integrated or additional	
TU	Trip unit 24V + and -: an external 24V DC SELV power supply (Hager HTG911H recommended) is necessary to guarantee permanent operation of the trip unit. It is also necessary if the OAC output alarm contacts module or the HTD210H panel display is installed. CIP 1 and 2: connection to the HTD210H panel display. RR/DI + and -: the RR/DI digital input is used to remotely acknowledge the sentinel trip unit's trip alarms and remotely reset the OAC alarm output contacts. It can be used for one of the following control functions on the sentinel Energy trip unit: - remote acknowledgement of the trip unit's trip alarms and remote reset of the alarm output contacts, - switching between tariff meters T1 and T2, - inhibition of advanced protections, - switching between profile A and B. It is configured by default for remote acknowledgement of the sentinel trip unit's trip alarms and the remote reset of the OAC alarm output contacts with the sentinel Energy trip unit.	Integrated	
ZSI	Zone selectivity function Connection to downstream circuit breakers: STD1: selectivity on the Short time delay protection GF1: selectivity on the earth fault protection Cmn1: common Connection to the upstream circuit breaker: STD2: selectivity on the Short time delay protection GF2: selectivity on the earth fault protection Cmn2: common	Integrated terminal block but function deactivated	
OAC	Output Alarm Contacts sentinel Energy trip unit DO1: LTD, tripping after Long Time Delay protection DO2: S/I, tripping after Short Time Delay, Instantaneous or MCR protection DO3: GF, tripping after earth fault protection DO4: PTA, Overload pre-alarm activation DO5: HWF, tripping following a critical system alarm DOC: common sentinel Energy trip unit DO1: by default, tripping after Long Time Delay protection DO2: by default, Grouped Alarm (configured for Short Time Delay, Instantaneous or MCR tripping) DO3: by default, activation of the PTA1 overload prealarm DO5: by default, tripping following a critical system alarm DO5: common	Additional	

FS	RTC/FS2	UV/SH2	SH/UV2	MO	CC	AX1/vN	AX2	AX3	AX4
F12	R2 F22	D12 C22	C12 D22	M2	A2	12 vN	22	32	42
F14	R4 F24	C23	C13	M4	A3	14	24	34	44
F11	R1 F21	D11 C21	C11 D21	M1	A1	11	21	31	41

Terminal blocks	Description	Integrated or additional
FS	Fault trip contact General tripping information.	Integrated
RTC/FS2	Contact ready to close or fault trip contact No. 2 These terminal blocks can be connected either to use an RTC ready to close contact or a 2nd FS2 Fault trip contact.	Additional
UV/SH2	These terminal blocks can be connected either to use a UV undervoltage release coil or an SH shunt trip coil.	Additional
SH/UV2	These terminal blocks can be connected either to use an SH shunt trip coil or a 2nd UV undervoltage release coil.	Additional
MO	Power supply of the MO charging motor. The connection terminals M1 and M2 power the drive mechanism of the MO motor. The M4 terminal is used to connect the SC "spring-loaded" signalling contact. Note that the M4 terminal is at the same potential as the power supply of the drive mechanism.	Additional
CC	Connection of a closing coil CC	Additional
AX1/vN	Auxiliary contact No. 1 - Signals the open/closed status of the circuit breaker / vN connection to the neutral potential	Integrated
AX2	Auxiliary contact No. 2 - Signals the circuit breaker open/closed status	Integrated
AX3	Auxiliary contact No. 3 - Indication of the open / closed state of the circuit breaker	Integrated
AX4	Auxiliary contact No. 4 - Indication of the open / closed state of the circuit breaker	Integrated

ATTENTION

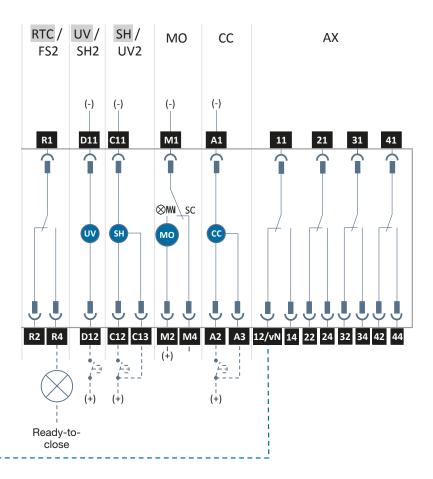
Terminal block vN


In the case of a 3-pole circuit breaker of the sentinel Energy trip unit and installed in an earthing system in which the neutral is distributed, the vN terminal block must be connected to the neutral potential.

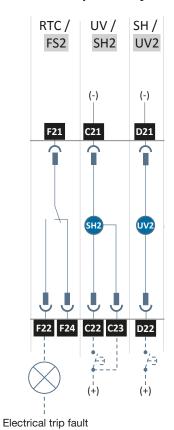
This connection is essential to obtain correct measurement of phase-neutral voltages V1N, V2N, V3N, powers per phase and for operation of the advanced protections against active power feedback and undervoltage or overvoltage.

The three-pole circuit breaker equipped with the sentinel Energy trip unit is delivered without the AX1 contact. Terminals 11 and 14 are inoperative.

Connecting diagram of the HW1 fixed circuit breakers

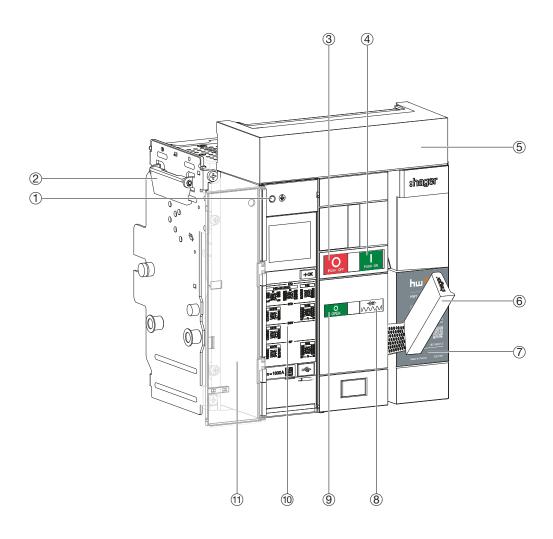

Terminal	Terminations			
blocks				
COM	Communication module			
ESP	External sensors			
TU	External power supply for the trip unit			
ZSI	Zone selectivity function			
OAC Output Alarm Contacts				
FS Fault trip contact				
RTC/FS2 Contact ready to close or 2nd electrical fault trip contact				
UV/SH2	UV undervoltage coil or 2nd SH shunt trip coil			
SH/UV2	UV2 SH shunt trip coil or 2nd UV undervoltage coil			
MO	MO charging motor and SC spring-loaded signal contact			
CC	Closing coil CC			
AX	Auxiliary contact - maximum 4 contacts signalling the circuit breaker open/closed status (4			
	contacts by default)			
12/vN	Neutral potential ENVA			

The cables (flexible or rigid) used must have a cross section between 0.6 mm² and 2.5 mm².

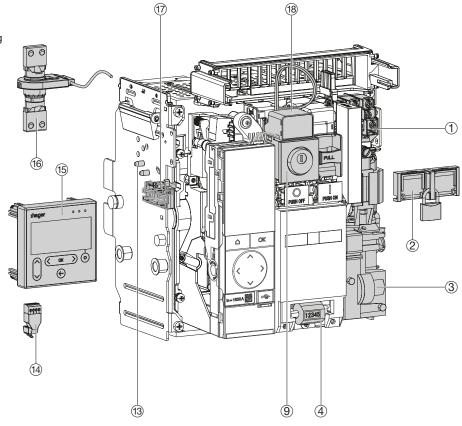

In order to be properly held in place in the terminals, the connected cables must first be stripped form 10 to 12 mm.

Flexible cables must not be twisted. Only one cable is authorised per terminal.

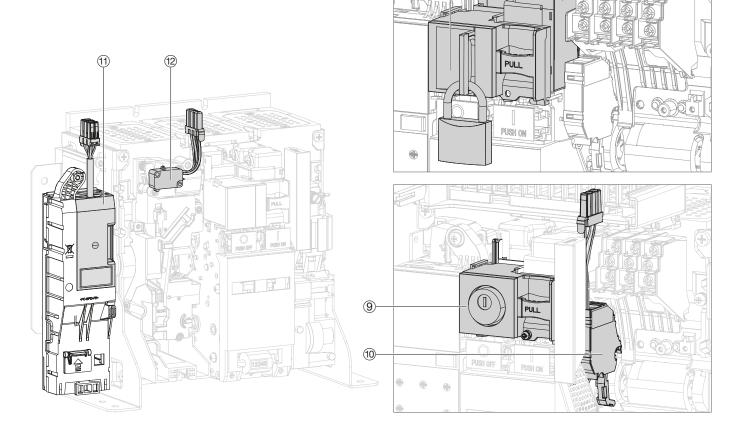
Second possibility



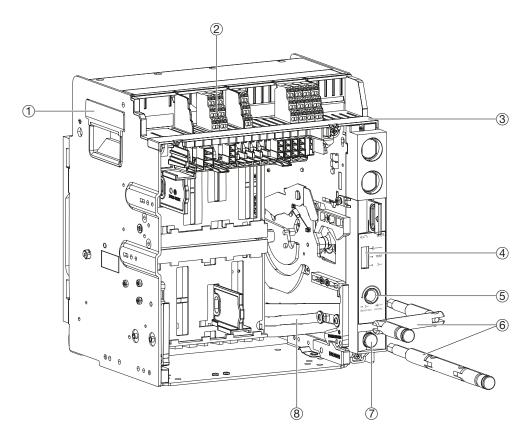
A drawout circuit breaker has two parts:

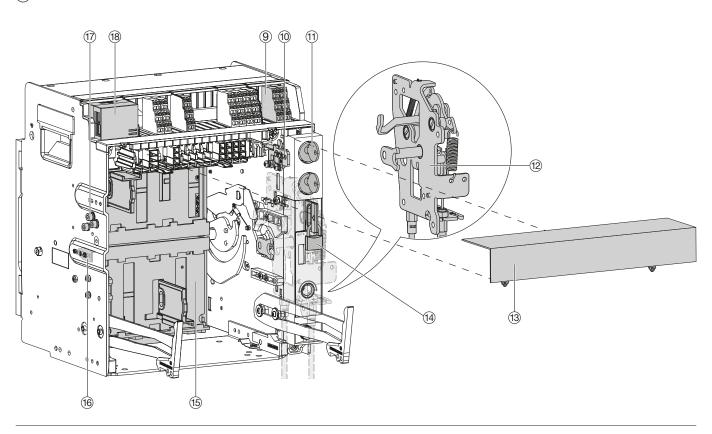

- A fixed part, the chassis.
- A mobile part, the circuit breaker itself which is inserted into the chassis.

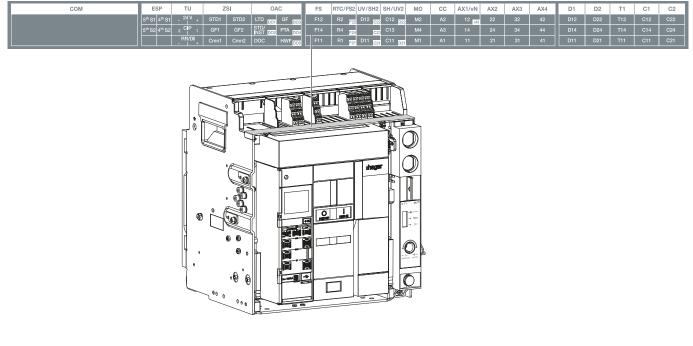
- 1 RESET button
- 2 Lifting handle
- Opening push button
- 4 Closing push button
- (5) Accessory connector cover
- 6 Charging handle
- 7 Circuit breaker rating label
- 8 Closing spring status indicator
- Ontact opening and closing indicator
- 10 Trip unit
- (11) Transparent cover of the trip unit

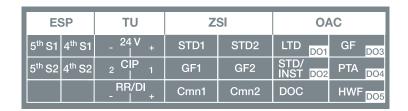

:hager

- 1 Auxiliary contacts AX
- Opening and closing push-button locking cover PBC
- MO charging Motor
- Q CYC Operation Cycle Counter
- (5) SH shunt trip coil or UV undervoltage release coil
- 6 CC closing coil
- UV undervoltage release coil or SH shunt trip coil
- 8 Locking the circuit breaker in open position using padlocks OLP
- Q Locking the circuit breaker in open position using key locks OLK
- 10 RTC Ready-to-Close contact
- (11) OAC Output alarm contact module
- (12) FS Fault trip contact
- WIP wrong insertion preventer chassis / circuit breaker
- (14) HWY210H adapter for panel display
- 15 HTD210H panel display
- 16 ENCT external neutral current sensor
- (17) Position sensor for COM (PSE)
- (18) INS insulation module


8


(5)


- 1 Lifting handle
- (2) Terminal blocks TB
- Terminal block label
- Mechanical position indicator of the moving part
- (5) Place to insert/withdraw the racking handle
- 6 Handle
- (7) Handle storage space
- (8) Guide rail
- 9 PS position contacts
- (10) RI open door racking interlock
- Locking of the position of the moving part using CL key locks
- (12) MI mechanical interlock
- 13 Terminal block protection cover
- (14) Locking of the position of the moving part by means of a padlock
- (15) Safety shutters
- (16) Position sensor for COM (PSE)
- (17) WIP chassis / WIP circuit breaker
- (18) Communication module


The chassis of the HW1 drawout circuit breakers is equipped with terminal blocks designed to connect the accessories. Some are provided as standard and always installed while others are installed according to the circuit breaker configuration.

COM	

Terminal	Description	Integrated or additional
blocks		
COM	Communication module	Additional
	Either 2 connections via RJ45 cable for connection to the Modbus-RTU HWY965H module.	
	Or 1 connection via RJ45 cable for connection to the Modbus-TCP HWY966H module.	

Terminal blocks	Description	Integrated or additional
ESP	External sensors 4th S1 and 4th S2: connection of an external ENCT neutral current sensor for 3-pole circuit breakers.	Additional
TU	Trip unit 24V + and -: an external 24V DC SELV power supply (Hager HTG911H recommended) is necessary to guarantee permanent operation of the trip unit. It is also necessary if the OAC output alarm contacts module or the HTD210H panel display is installed. CIP 1 and 2: connection to the HTD210H panel display. RR/DI + and -: the RR/DI digital input is used to remotely acknowledge the sentinel trip unit's trip alarms and to remotely reset the OAC alarm output contacts. It can be used for one of the following control functions on the sentinel Energy trip unit: - remote acknowledgement of the trip alarms on the trip unit and remote reset of the output alarm contacts, - switching between tariff meters T1 and T2, - inhibition of advanced protections, - switching between profile A and B.	Integrated
	It is configured by default for remote acknowledgement of the sentinel trip unit's trip alarms and the remote reset of the OAC alarm output contacts with the sentinel Energy trip unit.	
ZSI	Zone selectivity function Connection to downstream circuit breakers: STD1: selectivity on the Short time delay protection GF1: selectivity on the earth fault protection Cmn1: common Connection to the upstream circuit breaker: STD2: selectivity on the Short time delay protection GF2: selectivity on the earth fault protection Cmn2: common	Integrated terminal block but function deactivated
OAC	Output Alarm Contacts sentinel Energy trip unit DO1: LTD, tripping after Long Time Delay protection DO2: STD/INST, tripping after Short Time Delay, Instantaneous or MCR protection DO3: GF, tripping after earth fault protection DO4: PTA, Overload pre-alarm activation DO5: HWF, following a critical system alarm DOC: common sentinel Energy trip unit DO1: by default, tripping after Long Time Delay protection DO2: by default, Grouped Alarm (configured for Short Time Delay, Instantaneous or MCR tripping) DO3: by default, tripping after earth protection DO4: by default, activation of the PTA1 overload prealarm DO5: by default, tripping following a critical system alarm DOC: common	Additional

FS	RTC/FS2	UV/SH2	SH/UV2	МО	СС	AX1/vN	AX2	AX3	AX4
F12	R2 _{F22}	D12 C22	C12 D22	M2	A2	12 _{vN}	22	32	42
F14	R4 _{F24}	C23	C13	M4	A 3	14	24	34	44
F11	R1 _{F21}	D11 C21	C11 D21	M1	A1	11	21	31	41

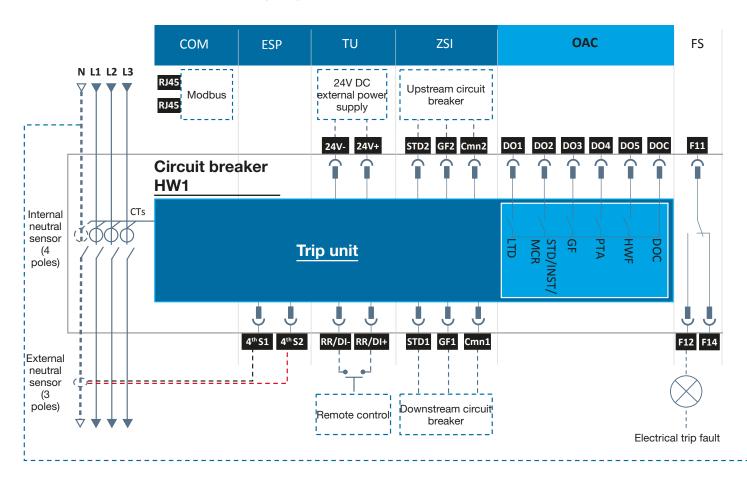
Terminal blocks	Description	Integrated or additional
FS	Fault trip contact General tripping information. It should be noted that this terminal block does not send information if the circuit breaker is opened manually using the push-button.	Integrated
RTC/FS2	RTC ready to close contact or Fault trip contact No. 2 FS2 These terminal blocks can be connected either to use an RTC ready to close contact or a 2nd FS2 Fault trip contact.	Additional
UV/SH2	These terminal blocks can be connected either to use a UV undervoltage release coil or an SH shunt trip coil.	Additional
SH/UV2	These terminal blocks can be connected either to use an SH shunt trip coil or a 2nd UV undervoltage release coil.	Additional
MO	Power supply of the MO charging motor. The connection terminals M1 and M2 power the drive mechanism of the MO motor. The M4 terminal is used to connect the SC "spring-charged" signalling contact. Note that the M4 terminal is at the same potential as the power supply of the drive mechanism.	Additional
CC	Connection of a closing coil CC	Additional
AX1/vN	Auxiliary contact No. 1 - Signals the open/closed status of the circuit breaker / vN connection to the neutral potential	Integrated
AX2	Auxiliary contact No. 2 - Signals the circuit breaker open/closed status	Integrated
AX3	Auxiliary contact No. 3 - Signals the circuit breaker open/closed status	Integrated
AX4	Auxiliary contact No. 4 - Signals the circuit breaker open/closed status	Integrated

ATTENTION

Terminal block vN

In the case of a 3-pole circuit breaker equipped with a sentinel Energy trip unit and installed in a earth fault protection system where the neutral is distributed, the vN terminal must be connected to the neutral potential.

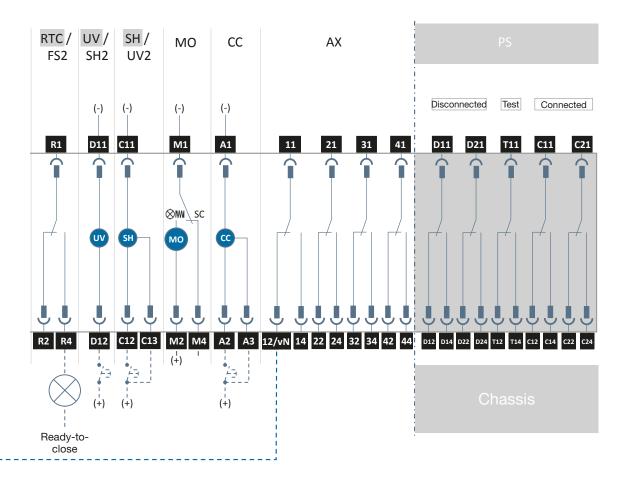
This connection is essential to obtain correct measurement of phase-neutral voltages V1N, V2N, V3N, powers per phase and for operation of the advanced protections against active power feedback and undervoltage or overvoltage.


The three-pole circuit breaker equipped with the sentinel Energy trip unit is delivered without the AX1 contact. Terminals 11 and 14 are inoperative.

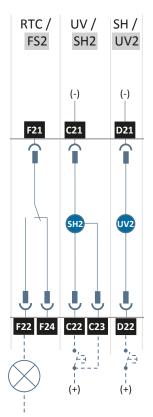
D1	D2	T1	C1	C2
D12	D22	T12	C12	C22
D14	D24	T14	C14	C24
D11	D21	T11	C11	C21

Terminal blocks	Description	Integrated or additional
D1 and D2	Contacts indicating the (Disconnected) position of the circuit breaker in the chassis	Additional
T1	Contact indicating the test position (Test) of the circuit breaker in the chassis	
C1 and C2	Contacts indicating the Connected position of the circuit breaker in the chassis	

Connecting diagram of the HW1 drawout circuit breakers

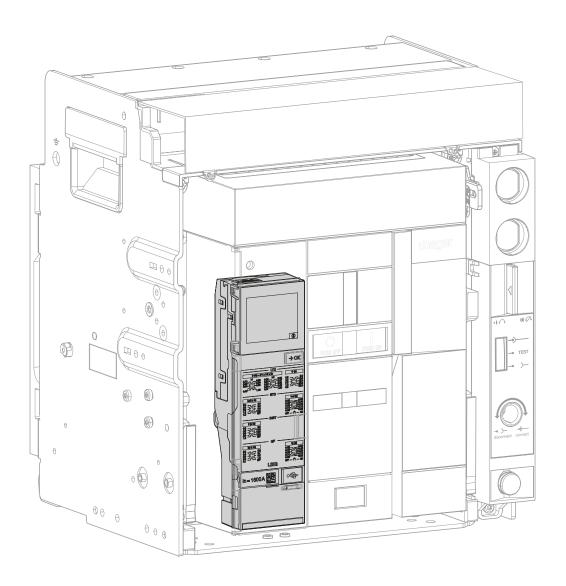


Terminal	Terminations
blocks	
COM	Communication module
ESP	External sensors
TU	External power supply for the trip unit
ZSI	Zone selectivity function
OAC	Output Alarm Contacts
FS	Fault trip contact
RTC/FS2	Contact ready to close or 2nd electrical fault trip contact
UV/SH2	UV undervoltage coil or 2nd SH shunt trip coil
SH/UV2	SH shunt trip coil or 2nd UV undervoltage coil
MO	MO charging motor and SC spring-loaded signal contact
CC	Closing coil CC
AX	Auxiliary contact - maximum 4 contacts signalling the circuit breaker open/closed status (4
	contacts by default)
PS	Position contacts - Up to 5 contacts indicating the position of the circuit breaker in the
	chassis.
12/vN	Neutral potential ENVA


The cables (flexible or rigid) used must have a cross section between 0.6 mm² and 2.5 mm².

In order to be properly held in place in the terminals, the connected cables must first be stripped form 10 to 12 mm.

The cables must not be twisted and only one cable is authorised per terminal.


Second possibility

Electrical trip fault

hw+ air circuit breakers are equipped with a sentinel or sentinel Energy electronic trip unit on the front to protect against overloads and short circuits.

The detailed description of the characteristics, functions and settings is available in the 6LE007969A user manual for hw+ sentinel electronic trip units and the 6LE008147A user manual for hw+ sentinel Energy electronic trip units.

Compliance with the standards

hw+ air circuit breakers and the related auxiliary devices comply with the following standards:

International standards

- IEC 60947-1: General rules
- IEC 60947-2: Circuit breakers
- IEC 60947-3: Switch disconnectors
- IEC 60947-5-1: Control circuit devices and switching elements

Pollution degree

hw+ air circuit breakers are certified for operation in pollution degree 3 environments as defined by IEC standard 60947-1.

Temperature

hw+ air circuit breakers can be used at temperatures between -25°C and 70 °C.

For temperatures above 65 °C, for 1600A rating, refer to the values indicated in Technical Catalogue 6LE007334A.

The acceptable storage temperature range in the original packing is from -40°C to 70°C.

Humidity

hw+ air circuit breakers can be used in an atmosphere with a relative humidity of 45 to 85% max.

Altitude

hw+ air circuit breakers can be used without derating up to an altitude of 2000 m. Above this, refer to the values provided in the Technical Catalogue 6LE007334A.

Vibrations

hw+ air circuit breakers can withstand mechanical vibrations.

They are compliant with the requirements of the standard IEC 60068-2-52:

- 2.0 to 13.2 Hz and amplitude +/- 1 mm.
- 13.2 to 100 Hz acceleration +/- 0.7 g.
- Resonance frequency (+/-1 mm / +/-0.7 g) for 90 min

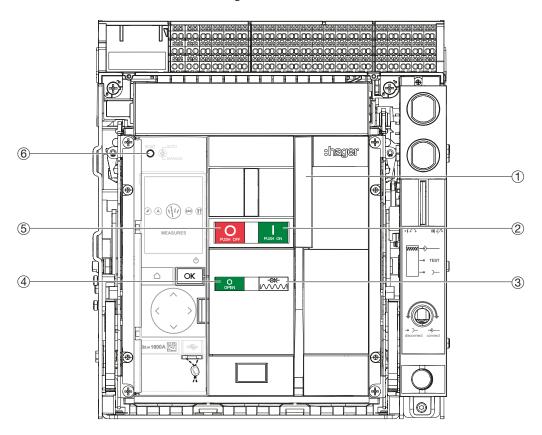
Excessive vibration may cause nuisance (false) tripping and/or damage to connections and/or mechanical parts.

Impacts

hw+ air circuit breakers can withstand impacts with an acceleration of 200 m/s² (20 g) max.

Environment

hw+ air circuit breakers must be used in an environment without excess water vapour, oil vapour, dust or corrosive gases.


Without sudden temperature fluctuations and without condensation.

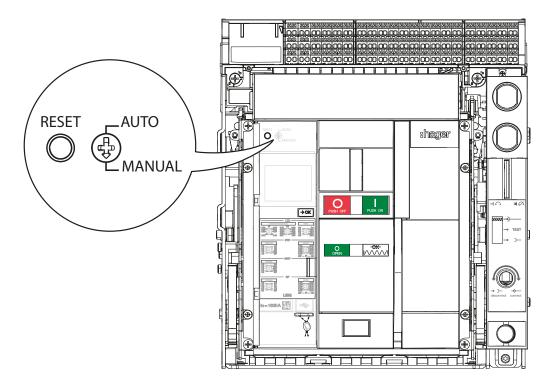
With the following levels of chemical compounds: Ammonia (NH3): 0.5 ppm max. Hydrogen sulphide (H2S)/sulphur dioxide (SO2)/hydrogen chloride (HCl): 0.1 ppm max. Chlorine (Cl2): 0.05 ppm max.

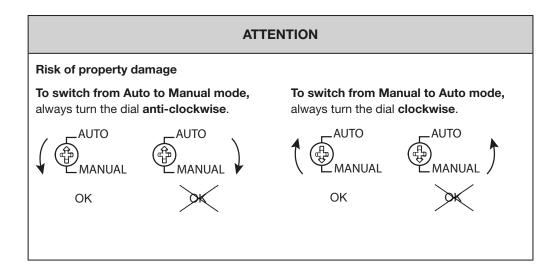
The HW1 circuit breaker has the following elements on the front:

- 1 Charging handle
- (2) Closing push button
- Closing spring status indicator
- 4 Contact opening and closing indicator
- 5 Opening push button
- 6 RESET re-arm button

Status indicators

The combination of the two indicators shows the status of the circuit breaker.

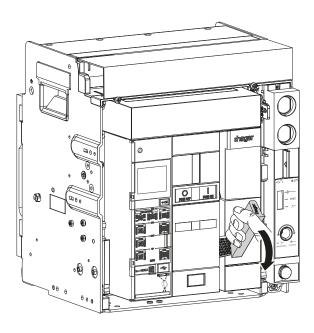

Opening and closing indicator	Closing spring status indicator	Circuit breaker status
O OPEN		Circuit breaker open. Closing spring discharged.
O OPEN	- OK	Air circuit breaker Closing spring loaded but not ready to close because: • Following tripping, the circuit breaker has not been reset via the acknowledgement procedure (see 6LE007331A user manual for HW1 air circuit breakers, Chapter 07 Closing the circuit breaker after a tripping). • The circuit breaker is mechanically locked in the open position using a lock or padlock.
O OPEN	M OK	Circuit breaker open. Closing spring charged. The circuit breaker is ready to be closed.
CLOSED	OK	Circuit breaker closed. Closing spring discharged.
CLOSED	- WI	Circuit breaker closed. Closing spring charged.


RESET re-arm button

The RESET re-arm button is used to reset the circuit breaker after tripping (see 6LE007331A user manual for HW1 air circuit breakers, Chapter 07 Closing the circuit breaker after a tripping).

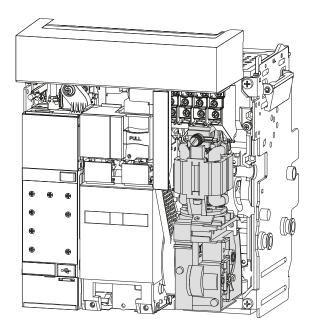
The operation of the RESET re-arm button depends on the Auto or Manual mode set using the adjustment dial on the right.

- **Auto mode**, in which it is not necessary to press the RESET re-arm button before closing the circuit breaker again after tripping.
 - This mode is usually used if the circuit breaker is remotely monitored, as it can be closed without requiring a person to perform the action on-site.
- **Manual mode**, in which the RESET re-arm button must be pressed in before closing the circuit breaker again after tripping.



Closing spring

The closing spring is used to mechanically close the circuit breaker. It must be charged first, and there are two procedures for this:

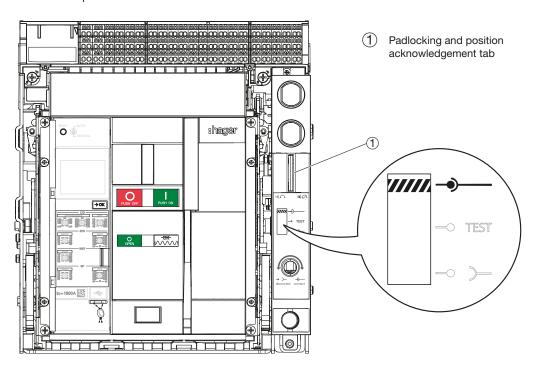

- Manual charging

Charge the spring using the charging handle until the status of the indicator changes.

- Automatic charging

If an MO charging motor is installed and powered, the closing spring charges automatically each time the circuit breaker closes.

Circuit breaker operation 6.2 Closing and opening the circuit breaker

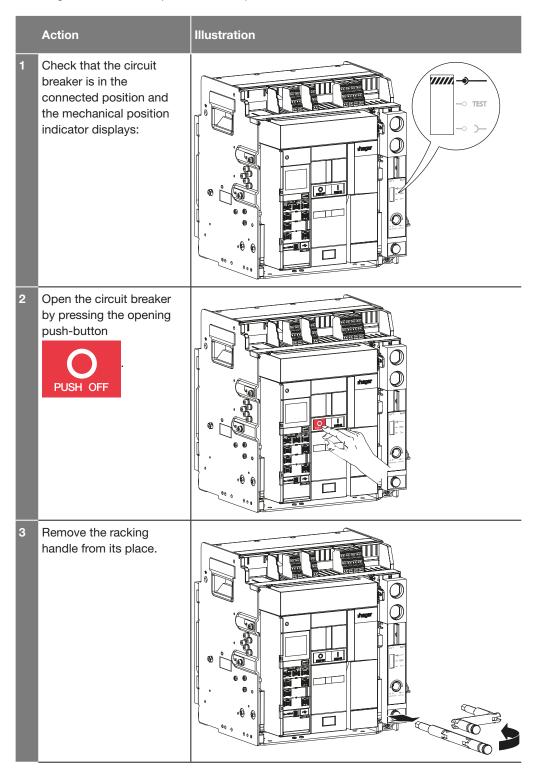

The detailed description of the circuit breaker closing and opening operations is available in the 6LE007331A user manual for HW1 air circuit breakers.

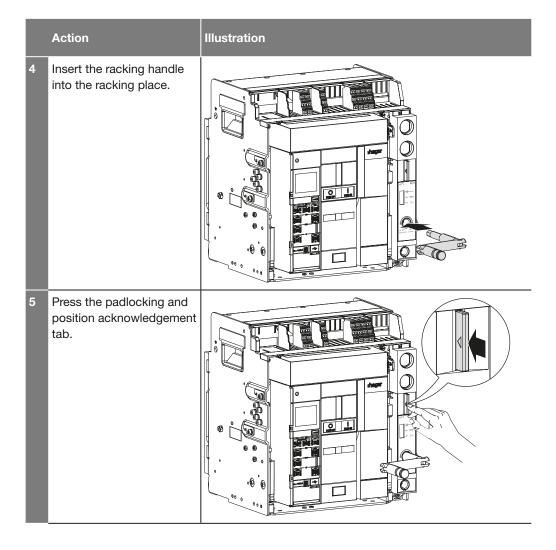
The position of the circuit breaker in the chassis is shown by the mechanical position indicator of the moving part on the front. There are three different positions, connected, test and disconnected

Changing from one position to another is done using a racking handle.

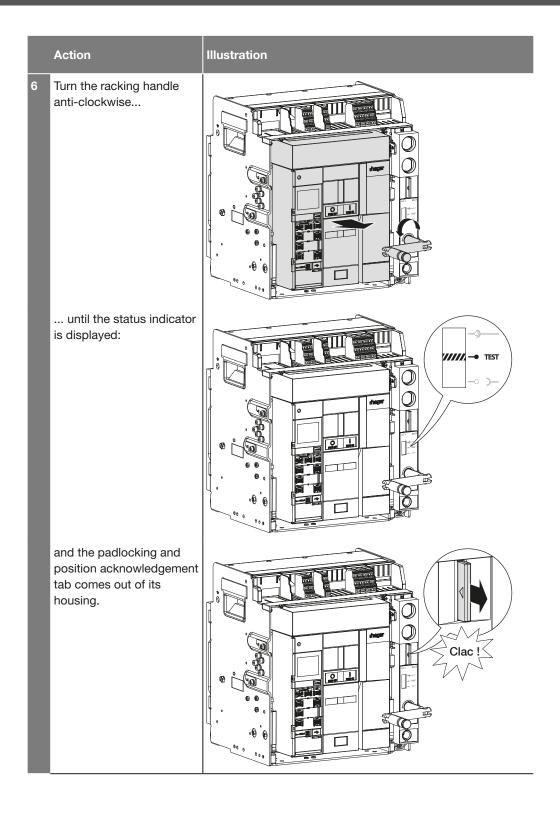
Before changing from one position to another, the padlocking and position acknowledgement tab must be pressed.

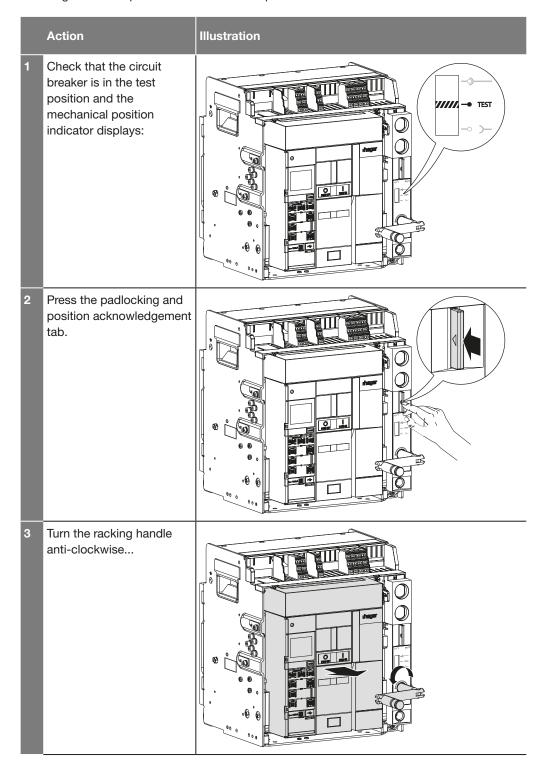
Circuit breaker position	Circuit breaker status	Mechanical position indicator of the moving part
Disconnected	The circuit breaker can be withdrawn from or inserted into the chassis.	
		→ TEST
		///// —)—
Test	The circuit breaker's power contacts are isolated. All of the auxiliaries remain electrically	
	connected so that they remain functional.	TEST
Connected	The connections on the circuit breaker are connected to the jaw contacts on the chassis.	
	The circuit breaker is ready for operation.	→ TEST



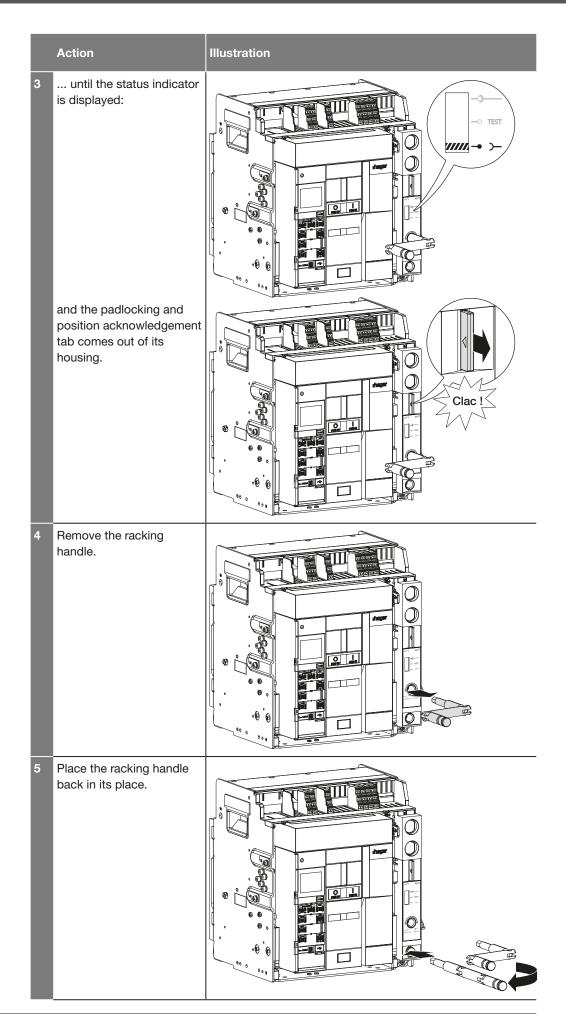

Risk of electric shock

Make sure that the device is only operated by qualified personnel in accordance with to the installation standards in force in the relevant country.


To change from connected position to test position:

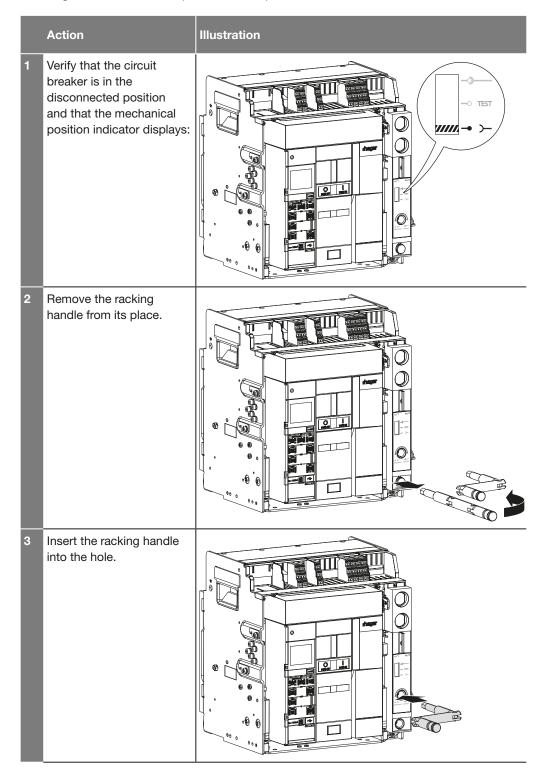


ATTENTION


Risk of property damage

If the chassis is not fitted in an electrical panel, ensure it is correctly fastened before changing position.

To change from test position to disconnected position:

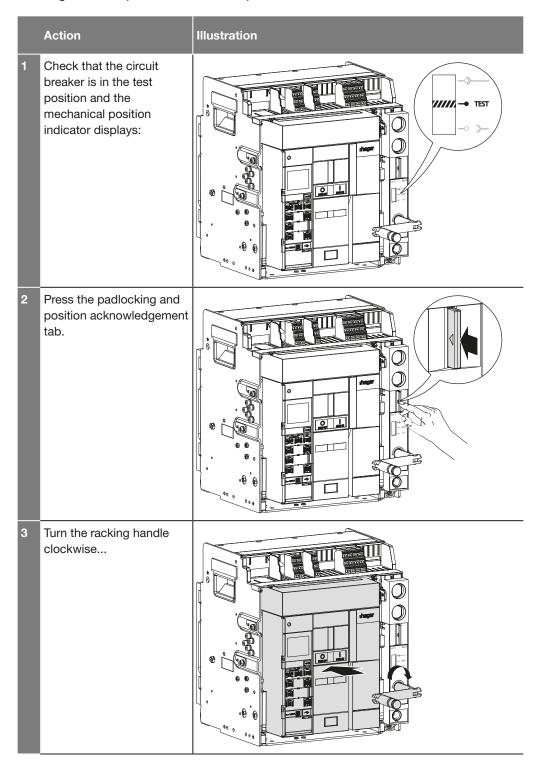


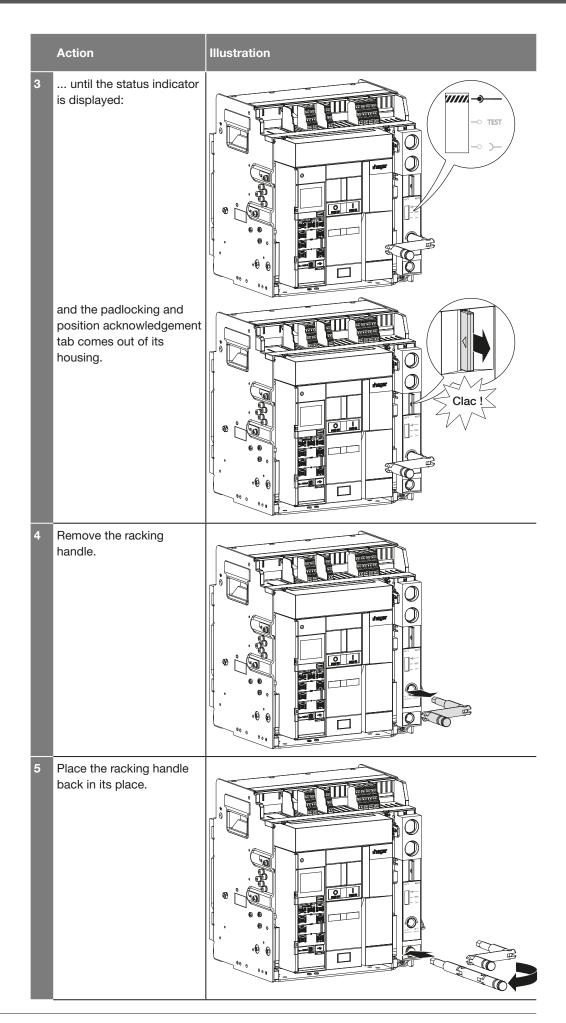
MARNING

Risk of electric shock

Make sure that the device is only operated by qualified personnel in accordance with to the installation standards in force in the relevant country.

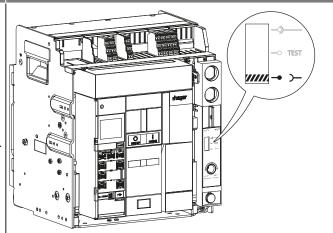
To change from disconnected position to test position:



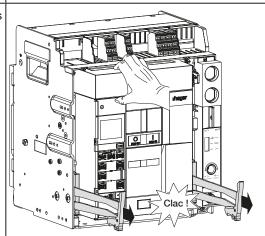

Illustration Action Press the padlocking and position acknowledgement Turn the racking handle clockwise... ... until the status indicator is displayed: ///// → TEST and the padlocking and position acknowledgement tab comes out of its housing.

To change from test position to connected position:

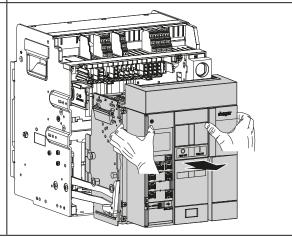
↑ CAUTION


Risk of the circuit breaker falling out Risk of injury by crushing.

Before handling the circuit breaker, ensure the chassis is fastened within the electrical distribution board. Ensure the device is only handled by qualified personnel equipped with lifting equipment and suitable safety equipment.


Action

Illustration


Check that the circuit breaker is in the disconnected position (cf. Chapters 8.1 Changing from the connected position to the test position and 8.2 Changing from the test position to the disconnected position).

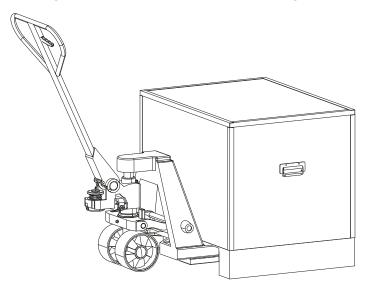
The circuit breaker remains in the chassis in the disconnected position. Pull the guide rails as far as possible while holding the upper part of the circuit breaker.

3 Slide the circuit breaker from the chassis on its guide rails.

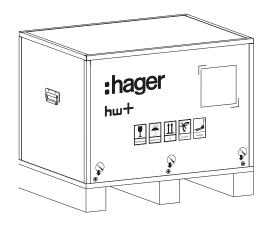
Action Illustration Remove the circuit breaker from the guide rails (see Chapter 14.2 Handling drawout circuit breakers).

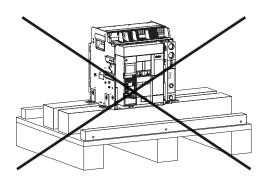
⚠ CAUTION

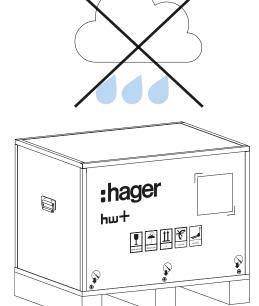
Risk of the circuit breaker falling out Risk of injury by crushing.


Before handling the circuit breaker, ensure the chassis is fastened within the electrical distribution board. Ensure the device is only handled by qualified personnel equipped with lifting equipment and suitable safety equipment.

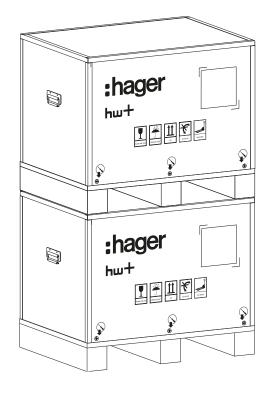
	Action	Illustration
1	Check that the chassis is in the disconnected position.	TEST O O O O O O O O O O O O O O O O O O O
2	Pull the guide rails as far as possible.	
3	Using suitable lifting equipment, position the circuit breaker on the guide rails.	

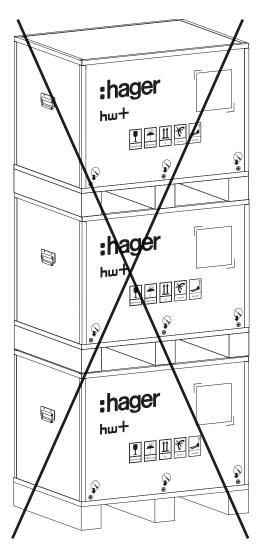

	Action	Illustration
4	Remove the lifting equipment.	
5	Push the circuit breaker to the back of the chassis without pushing on the guide rails.	
6	Push the guide rails to the back of the chassis.	


Use a pallet truck to move the hw+ transport box.


Store the circuit breaker:

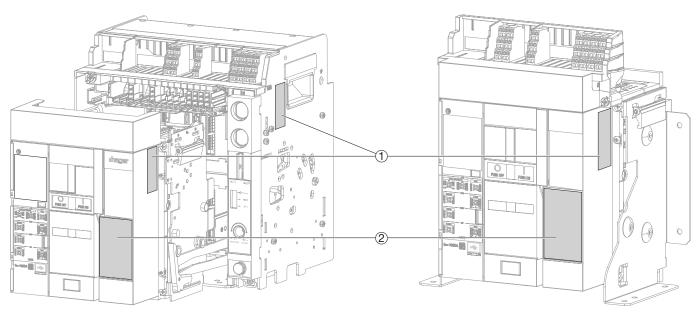
• in its original transport box,


• indoors only



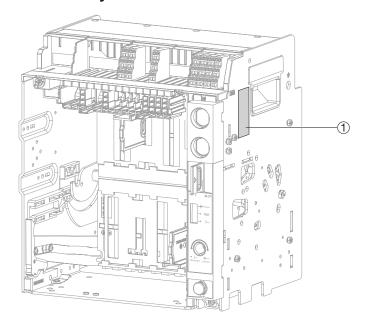
- At a temperature between -40 °C and 70 °C.
- In an environment as described in chapter
 Circuit breaker operating conditions.

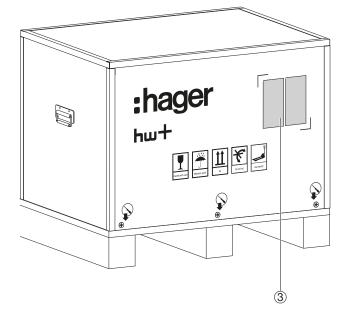
Do not store more than two circuit breakers in their original packaging one on top of the other.


HW1 air circuit breakers can be identified by means of the various labels affixed to the product or packaging.

ATTENTION

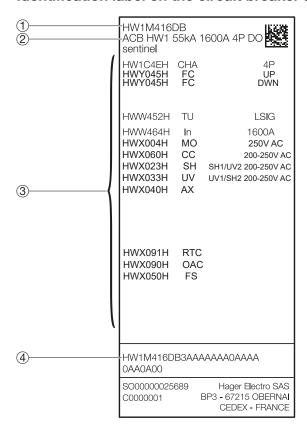
For more information on the codification and the references indicated on the labels, refer to the Technical Catalogue 6LE007334A.


Drawout circuit breaker


Fixed circuit breaker

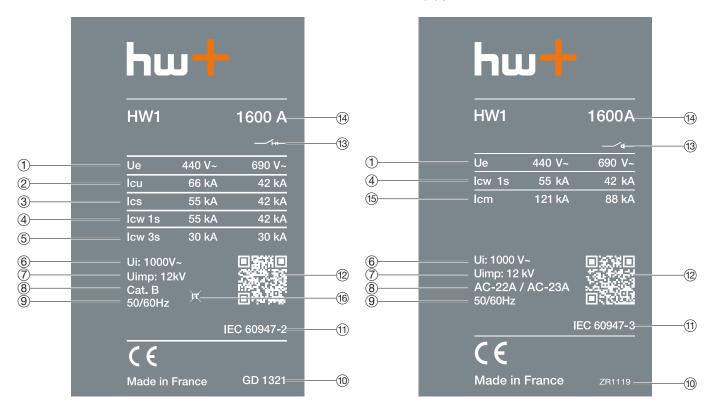
Chassis only

Packaging



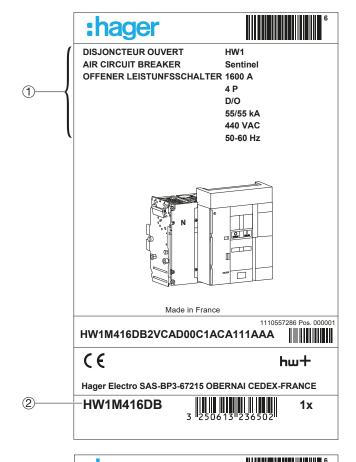
- (1) Identification label on the circuit breaker and the chassis
- 2 Circuit breaker rating label
- (3) Identification label on the packaging

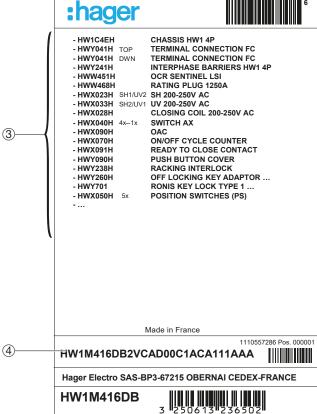
Identification label on the circuit breaker and the chassis



- 1 Circuit breaker reference
- 2 Circuit breaker designation
- 3 List of accessories mounted
- 4 Configuration identifier

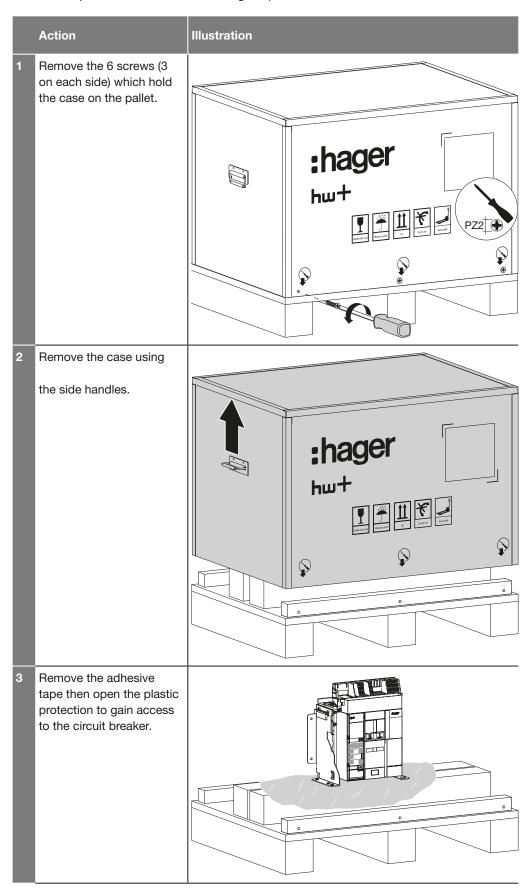
Circuit breaker technical description label


Switch-disconnector technical description label



- 1 Ue: Operating voltage
- (2) Icu: Rated ultimate short-circuit breaking capacity at the rated operating voltage Ue
- (3) Ics: Rated service short-circuit breaking capacity
- (4) Icw 1 s: Rated short-time withstand current for 1 second
- (5) Icw 3s: Rated short-time withstand current for 3 seconds
- 6 Ui: Rated insulation voltage
- (7) Uimp: Rated impulse withstand voltage
- 8 Category
- 9 Frequency
- (10) Manufacturing date code
- (11) Standards
- (12) QR code to access the documentation online
- (13) Symbol of a circuit breaker suitable for isolation or symbol of a switch-disconnector
- (14) Maximum rating of the circuit breaker
- (15) Icm: Rated short-circuit making capacity
- 16 Not suitable for protection in an IT earthing system

Identification label on the packaging

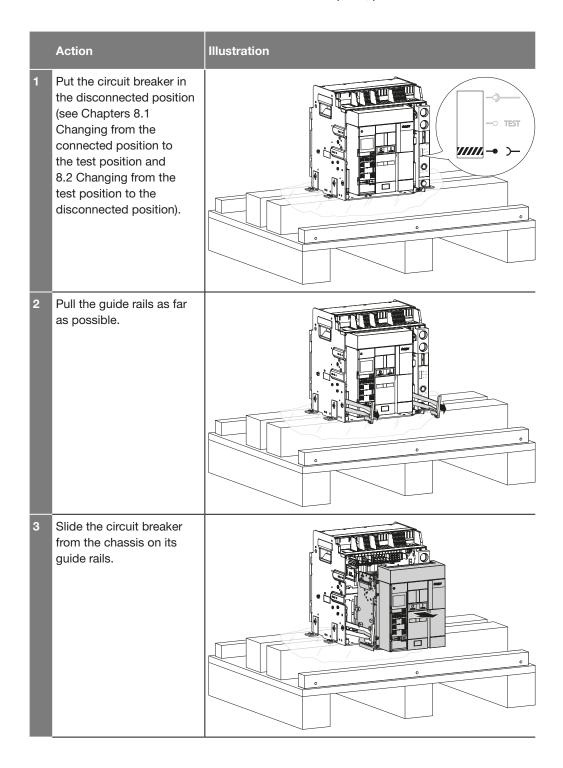


- Main characteristics of the circuit breaker
- (2) Circuit breaker reference
- 3 List of accessories mounted
- (4) Configuration identifier

Remove the product from its case following the procedure below:

To remove a fixed circuit breaker from its pallet, proceed as follows:

	Action	Illustration
1	Remove the 6 screws holding the circuit breaker in place.	PH2 Ph



♠ CAUTION

Risk of the circuit breaker falling out Risk of injury by crushing.

Ensure the device is only handled by qualified personnel equipped with lifting equipment and suitable safety equipment.

To remove a drawout circuit breaker with chassis from its pallet, proceed as follows:

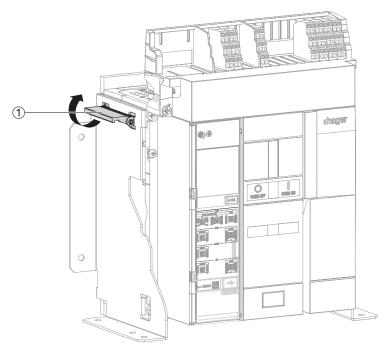
	Action	Illustration
4	Remove the circuit breaker from the guide rails using an appropriate lifting device.	
5	Remove the 4 screws attaching the chassis to the brackets.	
6	Remove the chassis from the pallet using the lifting handles and placing it in an appropriate place.	

↑ CAUTION

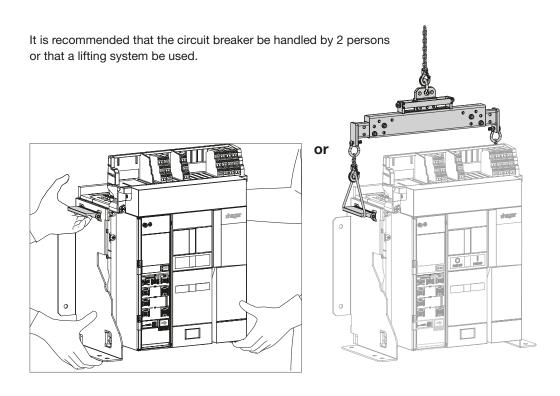
Risk of the circuit breaker falling out Risk of injury by crushing.

Ensure the device is only handled by qualified personnel equipped with lifting equipment and suitable safety equipment.

The fixed circuit breaker, drawout circuit breaker and chassis have lifting handles to be used for handling.


Ensure you have a lifting system corresponding to the weight of the circuit breaker or chassis to be moved.

Weight of the HW1 circuit breakers (without accessories)


Product	Number of poles	Weight
Fixed circuit breaker	3 poles	14 kg
Drawout circuit breaker (without chassis)		15 kg
Chassis		13 kg
Fixed circuit breaker	4 poles	18 kg
Drawout circuit breaker (without chassis)		19 kg
Chassis		15 kg

Use the lifting handles on the side of the circuit breaker.

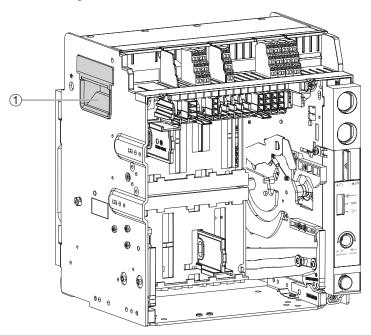
1 Lifting handle

ATTENTION

Risk of property damage

Never move a drawout circuit breaker in its chassis. Always move the two elements separately.

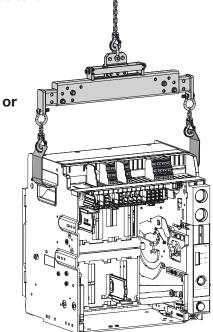
ATTENTION


Risk of the circuit breaker falling out

Risk of injury by crushing.

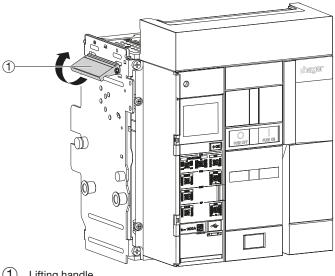
To handle circuit breakers, wear suitable personal protective equipment (PPE).

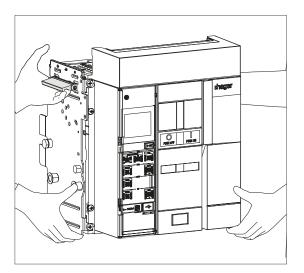
Handling the chassis

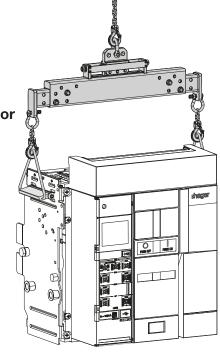

Use the lifting handles on the side of the circuit breaker.

It is recommended that the chassis be handled by 2 persons or that a lifting system be used.

1 Lifting handle

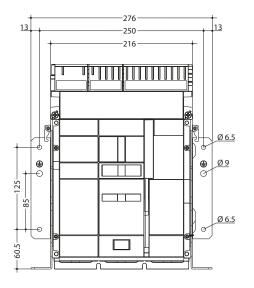


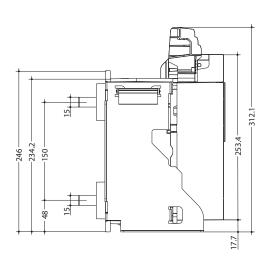

Handling the circuit breaker

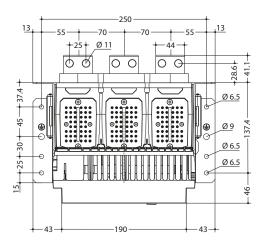

Use the lifting handles on the side of the circuit breaker.

Lifting handle

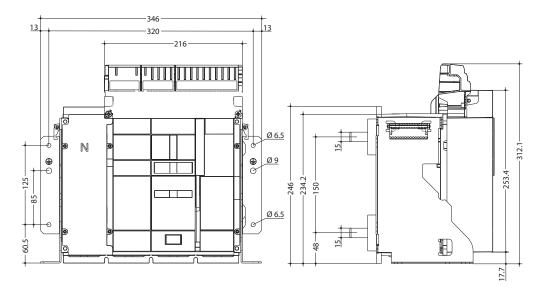
It is recommended that the circuit breaker be handled by 2 persons or that a lifting system be used.

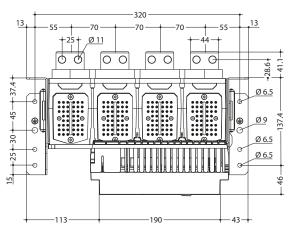


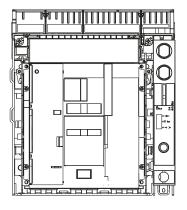


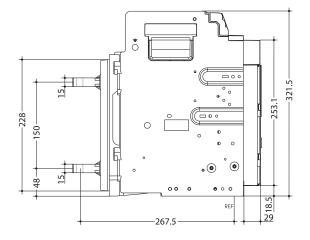


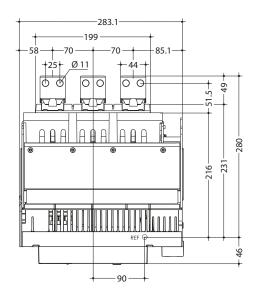
To install an HW1 circuit breaker, comply with the following dimensions for mounting:

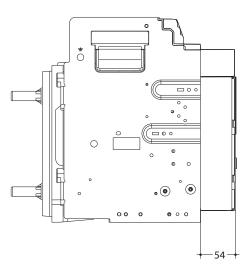

3 poles - Fixed version

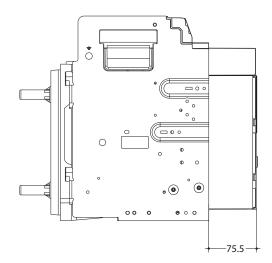




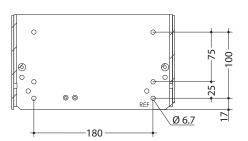

4 poles - Fixed version

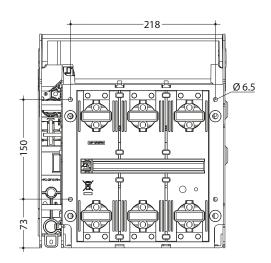



3 poles - Drawout version

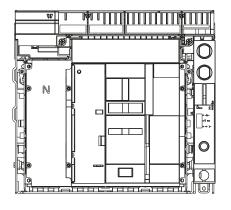


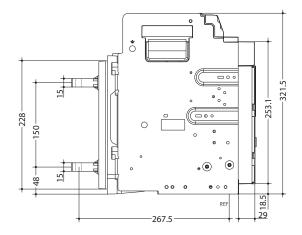
Test position

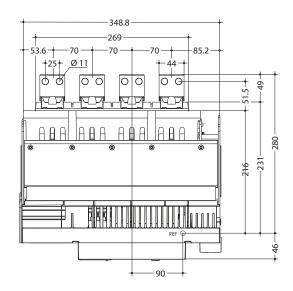

Disconnected position

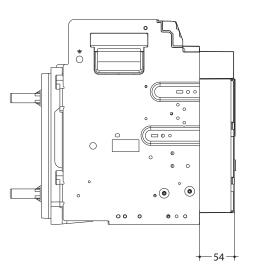


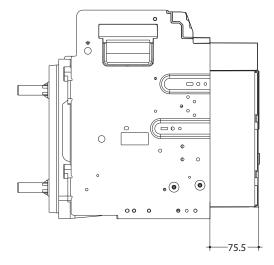
Chassis mounting


Bottom view



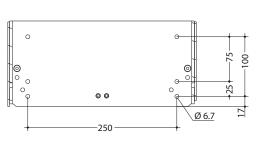

Rear view

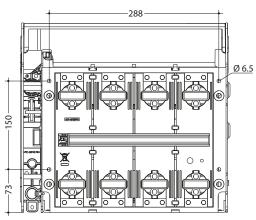

4 poles - Drawout version



Test position

Disconnected position

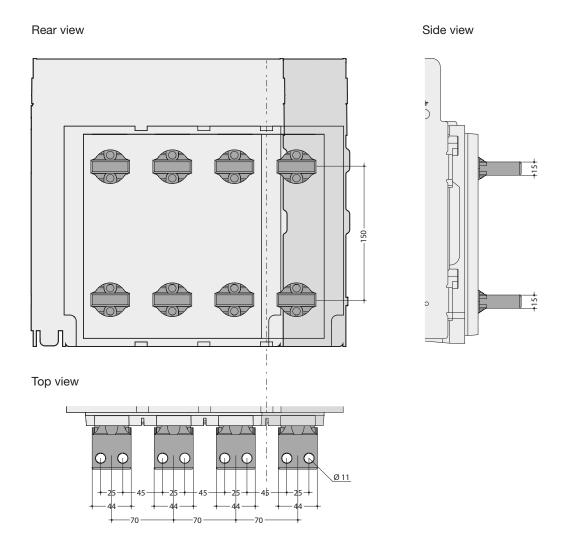




Chassis mounting

Bottom view

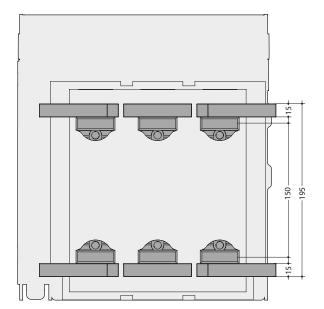
Rear view

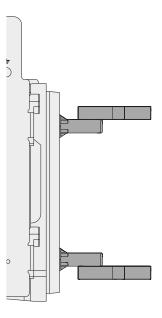


To connect an HW1 circuit breaker, comply with the following connection dimensions:

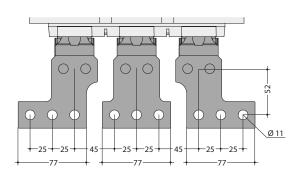
Rear horizontal RC connections

For fixed or drawout 3-pole or 4-pole version


The dimensions given are valid for the fixed and drawout versions.

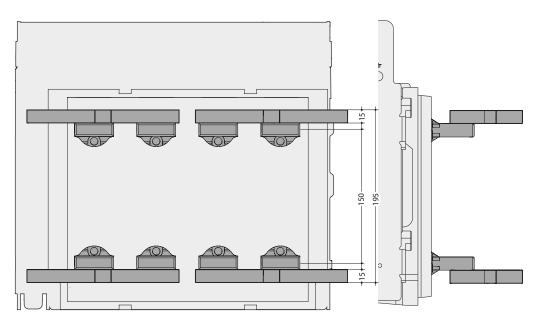

Rear horizontal RC connections

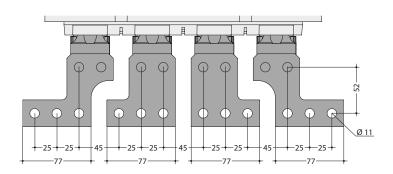
With SP spreaders for fixed or drawout 3-pole circuit breakers


Rear view

Side view

Top view

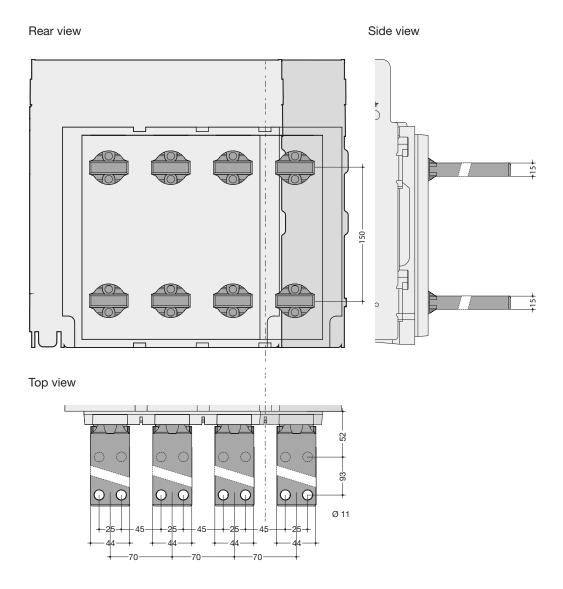

The dimensions given are valid for the fixed and drawout versions.


Rear horizontal RC connections

With SP spreaders for fixed or drawout 4-pole circuit breakers

Rear view Side view

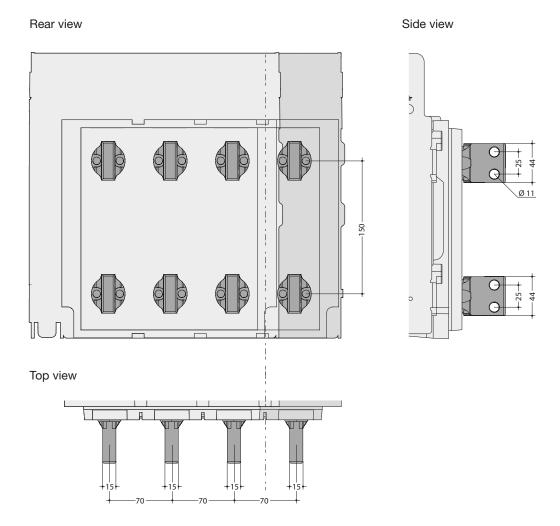
Top view


The illustration above shows a drawout version.

The dimensions given are valid for the fixed and drawout versions.

Rear horizontal RC connections

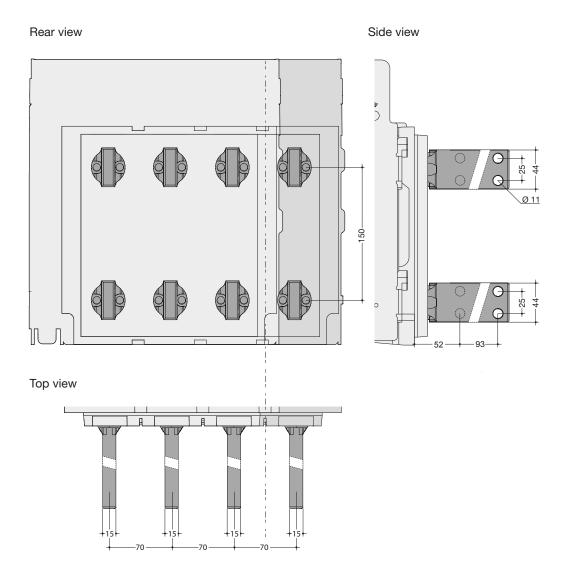
Long for UNIMES type distribution board for fixed or drawout 3-pole or 4-pole circuit breaker


The illustration above shows a drawout version.

The dimensions given are valid for the fixed and drawout versions.

Rear vertical RC connections

For fixed or drawout 3-pole or 4-pole version



The dimensions given are valid for the fixed and drawout versions.

Rear vertical RC connections

Long for UNIMES type distribution board for fixed or drawout 3-pole or 4-pole circuit breaker

The dimensions given are valid for the fixed and drawout versions.

FC front connections

Front connections for fixed 3-pole or 4-pole circuit breaker

Rear view Side view

Ø 11

-27.5+

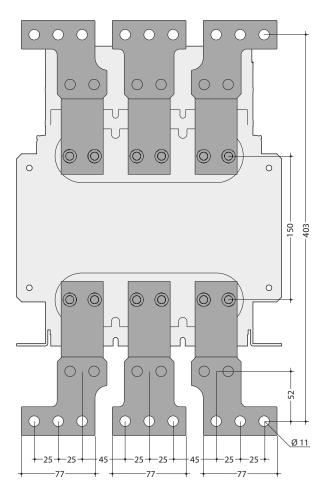
FC front connections

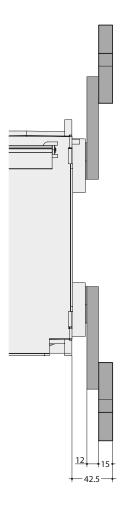
For drawout 3-pole or 4-pole circuit breaker

Rear view Side view

FC front connections

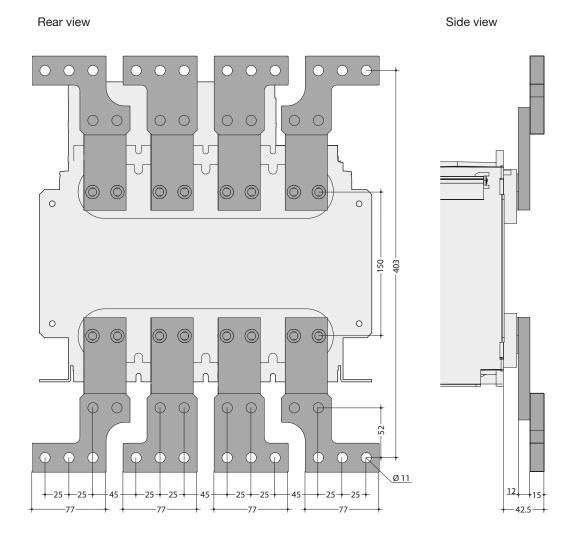
For drawout 3-pole or 4-pole circuit breaker with short terminal extensions in bottom position


Rear view Side view

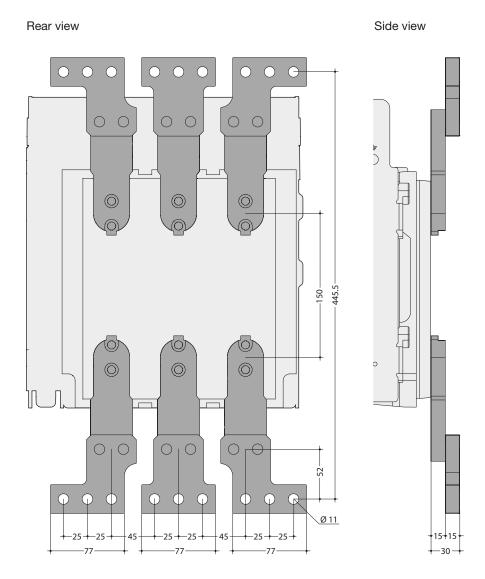

FC front connections with SP spreaders

For fixed 3 pole circuit breaker

Rear view

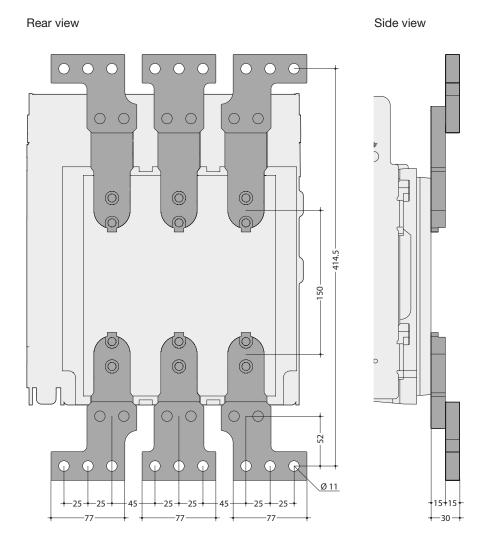


Side view



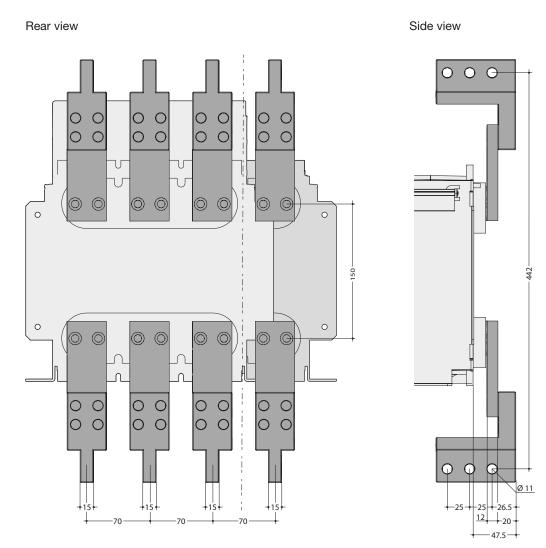
For fixed 4 pole circuit breaker

For drawout 3 pole circuit breaker



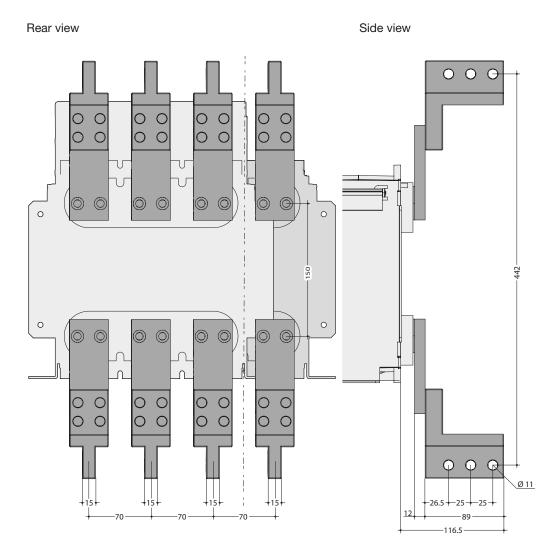
For drawout 4 pole circuit breaker

For drawout 3-pole circuit breaker with short terminal extensions in bottom position

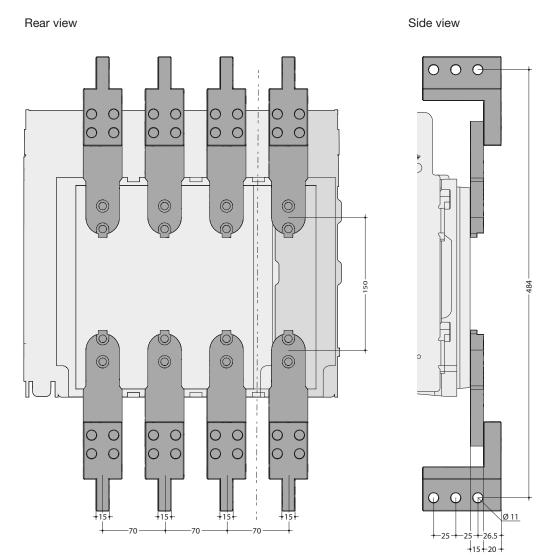

For drawout 4-pole circuit breaker with short terminal extensions in bottom position

Rear view Side view

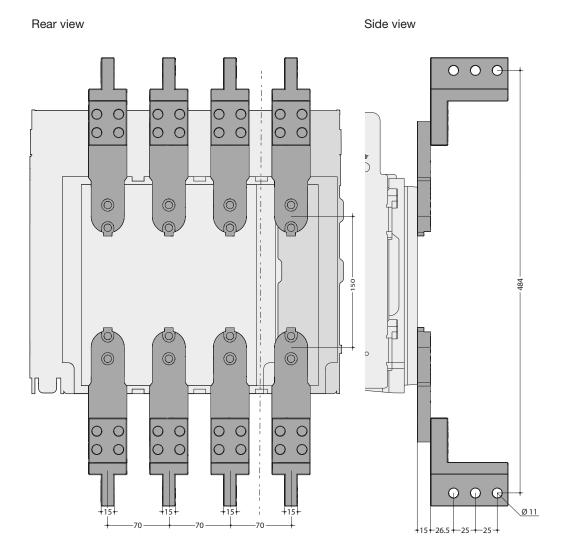
Side view



In front for fixed 3- or 4-pole circuit breaker

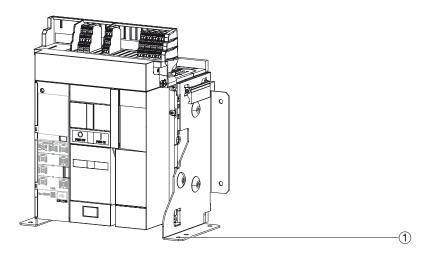


At rear for fixed 3- or 4-pole circuit breaker



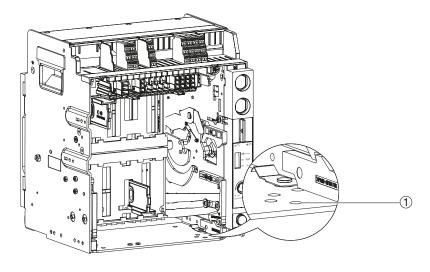
In front for drawout 3-pole or 4-pole circuit breaker

At rear for drawout 3- or 4-pole circuit breaker



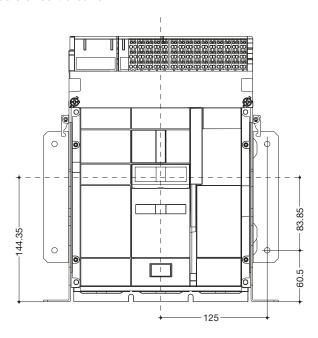
The door frame must be positioned in relation to the **reference point** between the circuit breaker and the distribution board door.

The **reference point** is one of the product's fastening holes.

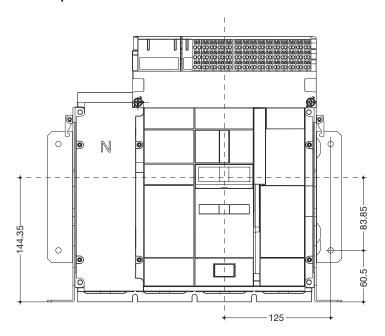

Fixed 3 and 4 pole circuit breaker, fastening on a plate or mounting rails.

Fixed 3 and 4 pole circuit breaker, mounting on a panel at the rear of the product.

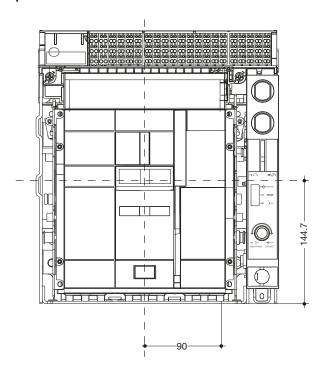
Drawout 3 and 4 pole circuit breaker, fastening on a plate or mounting rails.

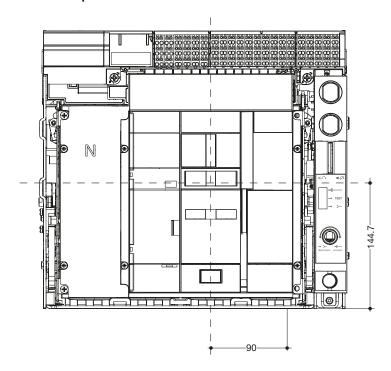


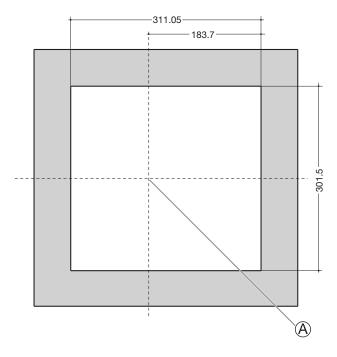
1 Reference point

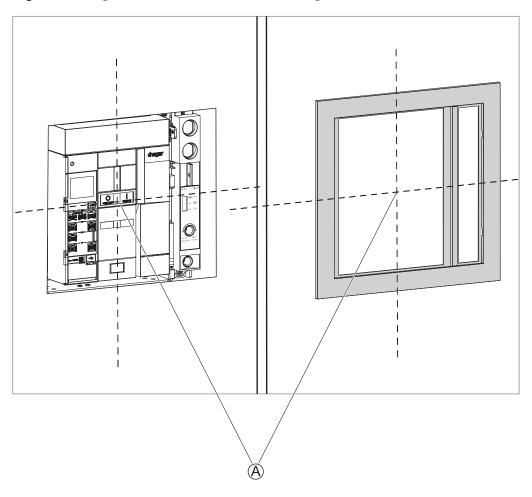


Comply with the following dimensions to install a door frame:

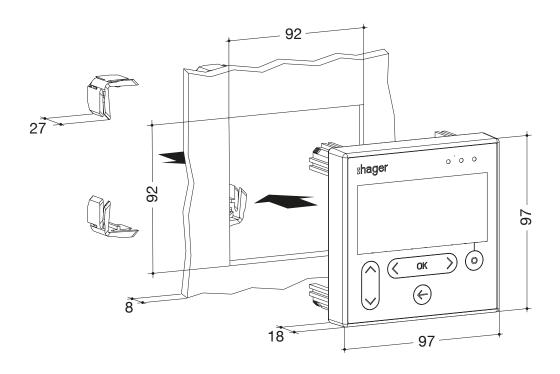

Fixed 3 pole circuit breaker


Fixed 4 pole circuit breaker


Drawout 3 pole circuit breaker


Drawout 4 pole circuit breaker

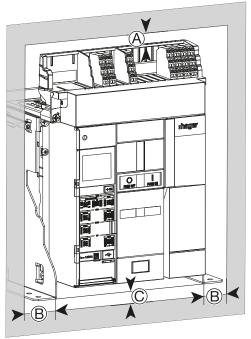
DF Door Frame

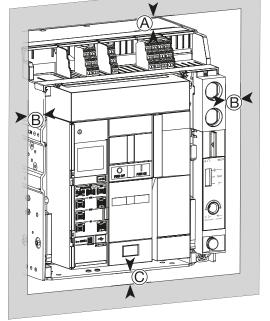


Align the centre $\ensuremath{\mbox{$\widehat{\triangle}$}}$ of the circuit breaker with the centre $\ensuremath{\mbox{$\widehat{\triangle}$}}$ of the door frame.

Comply with the following dimensions to install an HTD210H panel display:

Dimensions	Width (mm)	Height (mm)	Depth (mm)
HTD210H	97	97	18 (45 with fastening clips)
Panel cut-out	92	92	8 max.




Risk of electric shock

Danger to life, risk of injury due to electric shock, or risk of serious injury.

Make sure that the device is only operated by qualified personnel in accordance with to the installation standards in force in the relevant country.

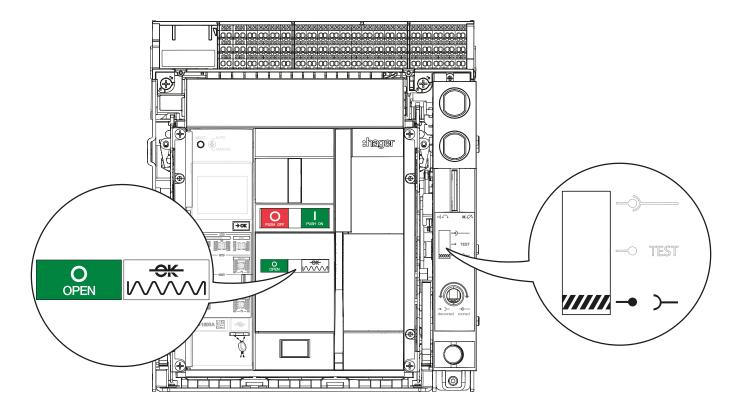
To ensure the safety of people and the installation, comply with the following safety clearances:

Fixed circuit breaker

Drawout circuit breaker

Circuit breaker	Distance	Insulating material	Metallic material	Circuit breaker live (mm)
Fixed	(A)	0	0	150
	B	0	0	60
	©	0	0	0
Drawout	(A)	0	0	0
	B	0	0	60
	©	0	0	0

M DANGER


Risk of electric shock, electrocution or electric arc

Danger to life, risk of injury due to electric shock, or risk of serious injury.

Ensure that the device is only installed by qualified personnel in accordance with the installation standards in force in the relevant country and that they are equipped with personal protective equipment (PPE).

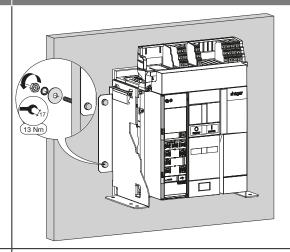
Before installing, ensure that:

All of the circuit breaker's power sources are shut off, the circuit breaker is open, closing spring discharged and in the disconnected position.

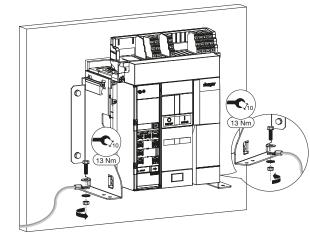
17.2.1 Fastening on a plate or mounting rails

To fasten a fixed circuit breaker on a horizontal support, proceed as follows:

	Action	Illustration
1	Be sure to mount the circuit breaker on a plate with sufficient resistance or on mounting supports that are stable enough.	
2	Identify at least 4 mounting holes (2 on each side) complying with the following dimensions. 3 poles	


17.2.1
Fastening on a panel at the rear of the product

To mount a fixed circuit breaker on a panel at the rear of the product, proceed as follows:

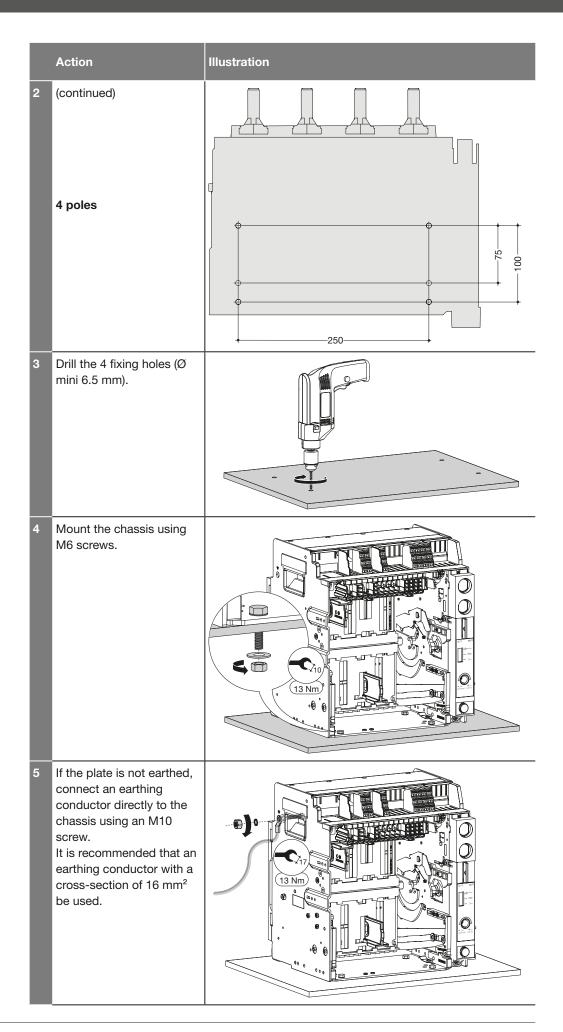

Action Illustration

Mount the circuit breaker using M6 screws.

If the panel is not earthed, connect an earthing cable to each side mounting plate using an M6 screw and an unused hole.

It is recommended that an earthing conductor with a cross-section of 16 mm² be used.

ATTENTION

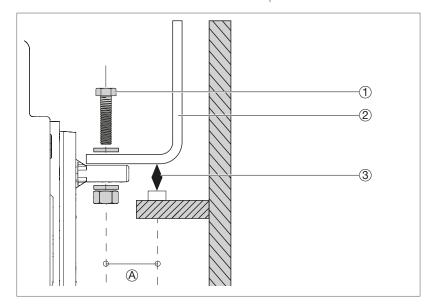

Risk of property damage

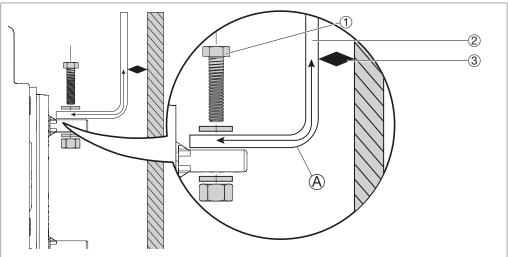
Always mount the chassis before racking in or racking out the circuit breaker.

To mount the chassis of a drawout circuit breaker, proceed as follows:

Action Illustration The circuit breaker must first be removed from the chassis. Be sure to mount the circuit breaker on a plate with sufficient resistance or on mounting supports that are stable enough. Identify at least 4 mounting holes (2 on each side) complying with the following dimensions. 3 poles

ATTENTION


Risk of property damage

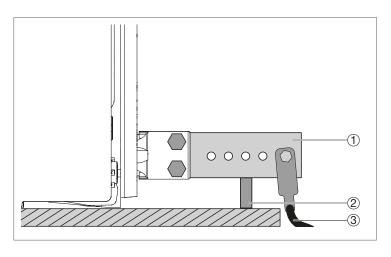

The connecting bars must be shaped and positioned so that they are perfectly adapted to the rear sockets before tightening using bolts.

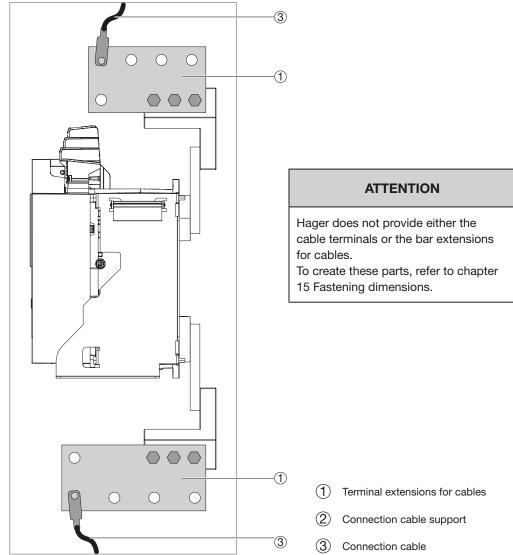
The connecting bars must be resting on a support attached to the electrical distribution board, not directly on the rear sockets.

If a short circuit occurs, the deformation of the connecting bars must not damage the fastening of the rear connections. To guarantee this, one of the connecting bar supports should be used at maximum distance, according to the short-circuit currents as indicated below:

Presumed short circuit current (kA)	Distance (A) (mm)
42	350
55	300
66	250

- 1 Tightening bolt
- Connecting bar
- 3 Connecting bars holder



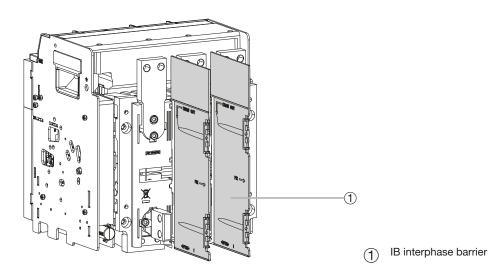

ATTENTION

Risk of property damage

The connecting cables must be fastened to the electrical cabinet to avoid dragging on the rear connections. Cable retaining bars are indicated for this.

If necessary, extend the rear sockets using terminal extensions for cables, then connect them to the connection cables.

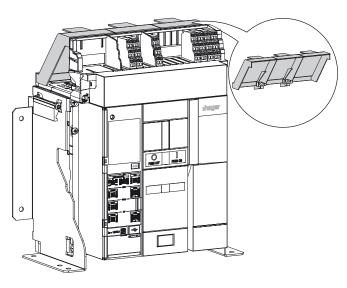
For the installation of protection accessories, refer to the following manuals:


Accessories	Instructions
IB interphase barrier	6LE007544A
Cut-off chamber cover	6LE007513A
DF Door Frame	6LE007512A
Terminal block protection cover	-

IB interphase barrier

The interphase barriers are safety accessories designed to strengthen the isolation between the phases at the rear connections.

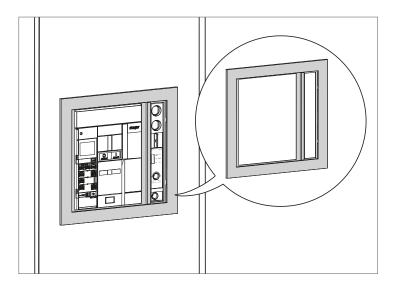
ATTENTION


- The use of interphase barriers is mandatory for supply voltages over 500 V AC.
- The use of interphase barriers is incompatible with the SP spreaders.

Cut-off chamber cover

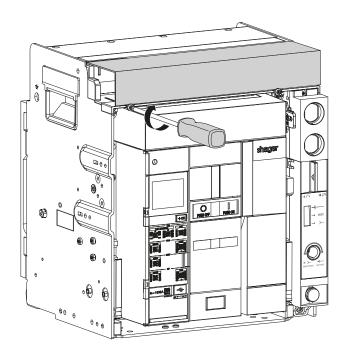
The cut-off chamber cover is an accessory mounted on fixed circuit breakers connected with front connections.

This cover prevents the ionized gases produced during trippings from reaching the connections and thus avoids electric arcing between the connections.



DF Door Frame

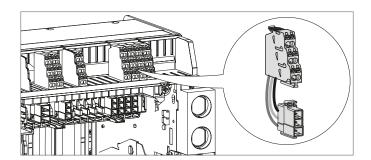
The door frame is fitted on the cut-out in the electrical distribution board door and raised the protection class to IP30.


It is used for a fixed or drawout circuit breaker.

For a drawout circuit breaker, the IP30 protection level is guaranteed in the connected position and in the test position.

Terminal block protection cover

The cover offers protection and prevents accidental access to the terminal blocks. Fasten the cover using the two screws supplied.

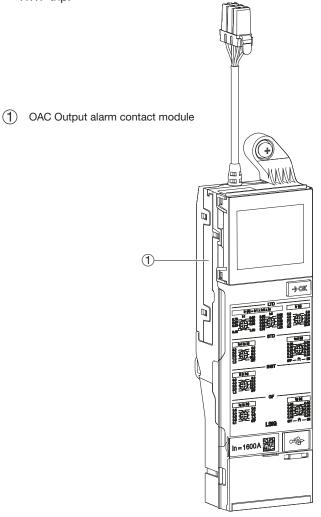

For the installation of accessories and auxiliaries, refer to the following instructions:

Accessories	Instructions
Terminal blocks TB	6LE007543A

Terminal blocks TB

The terminal blocks TB are used to connect to the various circuit breaker accessories and auxiliary devices. For a pre-configured circuit breaker, all the accessories, including terminal blocks TB, are delivered pre-fitted. If the accessories are installed later, the terminal blocks TB must be purchased separately.

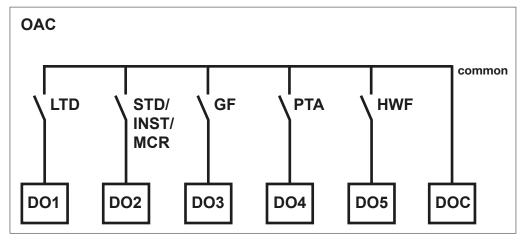
Care must then be taken to ensure they are fitted in the right place.



The OAC output alarm contacts module has 5 digital output contacts. By default, these contacts are pre-assigned to an alarm, trip or operating event. The assignment cannot be changed on the sentinel trip unit but it can be reprogrammed on the sentinel Energy trip unit. It is fitted behind the trip unit.

By default, it allows the following alarms to be signalled:

- with the sentinel trip unit:
 - LTD trips on one output, STD/INST/MCR on one output and GF on one output,
 - overload pre-alarm,
 - HWF trip.
- with the sentinel Energy trip unit
- LTD trip,
- grouped alarm (configured on Short Time Delay, Instantaneous or MCR),
- GF trip,
- PTA 1 overload prealarm,
- HWF trip.


ATTENTION

An external 24V DC SELV power supply (recommended reference Hager HTG911H) connected on the TU terminal blocks of the circuit breaker is necessary to use the OAC output alarm contacts module (see Chapter 17.9 Connecting the inputs).

ATTENTION

For installation of the OAC output alarm contacts module, refer to the 6LE007430A manual.

Output alarm contact OAC wiring diagram

Characteristics of the OAC output alarm contacts: 2 A/230V AC and 2 A/24V DC

ATTENTION

The OAC output alarm contacts retain their state even when the circuit breaker opens thanks to the external 24V DC power supply.

• LSIG tripping operations

	Contact No.	Not active	Active
LTD output contact	DO1	open	closed
STD/INST/MCR output contact or grouped alarm with the sentinel Energy trip unit	DO2	open	closed
GF output contact	DO3	open	closed

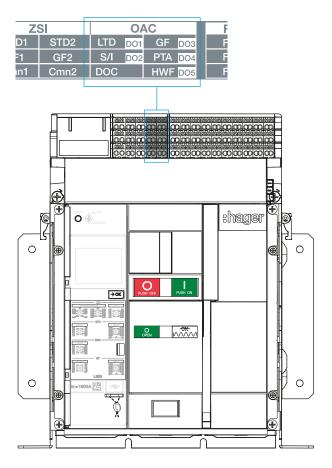
Overload pre-alarm

	Contact No.	Not active	Current level > 90 x Ir
PTA output contact	DO4	open	closed

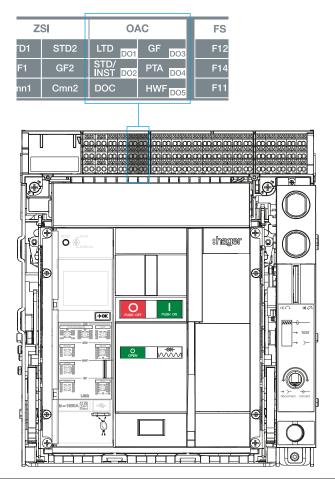
• Tripping due to a critical system alarm

	Contact No.	Not active	Active
HWF output contact	DO5	open	closed

ATTENTION

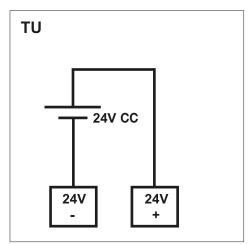

For programming the output contacts with the sentinel Energy trip unit, see the sentinel Energy hw+ 6LE008147A electronic trip unit user manual.

ATTENTION


The LTD, STD/INST/MCR, GF and HWF output contacts are acknowledged when the tripping screens on the trip unit are reset or during activation of the RR/DI input (see Chapter 17.9 Connecting the inputs).

Fixed circuit breaker

Drawout circuit breaker



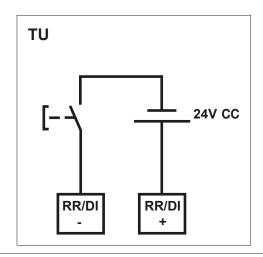
Several terminal block inputs can be connected to the circuit breaker:

Wiring diagram of the 24V DC external power supply

Wire an external 24V DC SELV power supply (recommended reference Hager HTG911H) to the 24V + and - terminals.

Take the power consumption of the following devices into account when dimensioning the external 24V DC power supply.

sentinel Energy trip unit	60 mA
HTD210H panel display	85 mA
Modbus RTU communication module	14 mA
Modbus TCP communication module	38 mA
OAC alarm output contacts module	34 mA


Wiring diagram of the RR/DI digital input

The RR/DI digital input is used to remotely acknowledge the sentinel trip unit's trip pop-ups and remotely reset the OAC alarm output contacts. It can be used for one of the following control functions on the sentinel Energy trip unit:

- remote acknowledgement of the trip alarms on the trip unit and remote reset of the output alarm contacts,
- switching between tariff meters T1 and T2,
- inhibition of advanced protections,
- switching between profile A and B.

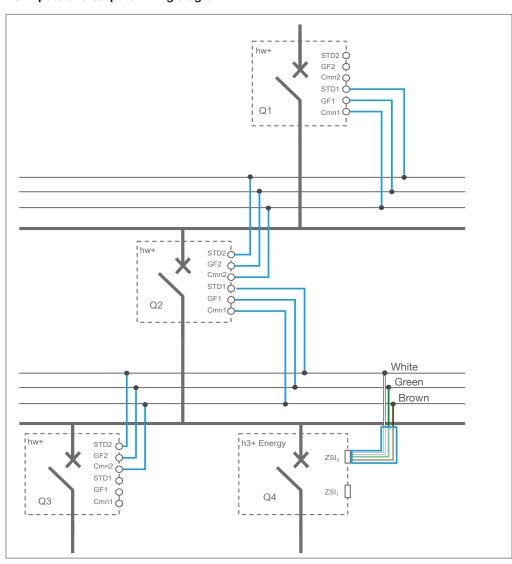
It is configured by default for remote acknowledgement of the sentinel trip unit's trip pop-ups and the remote reset of the OAC alarm output contacts with the sentinel Energy trip unit (refer to the 6LE008147A hw+ sentinel Energy electronic trip unit user manual).

The digital input must be powered with 24V DC in accordance with the following diagram.

The Zone Selective Interlocking (ZSI) function is designed to limit the electro-dynamic constraints on the installation in case of a short circuit fault or earth fault.

The devices, conductors, bar sheathing and busbars can thus benefit from this limitation.

The installed circuit breakers are linked together by cable to determine which circuit breaker should trip first. If an electrical fault appears between two linked circuit breakers connected together by the ZSI function, the downstream circuit breaker is unable to clear it. Thanks to zone selectivity, the circuit breaker upstream of the fault trips without waiting till the end of its time delay.


hw+ circuit breakers can be linked with h3+ Energy circuit breakers.

For zone selectivity to work correctly, the ZSI hw+ circuit breakers and the ZSI1/ZSI2 sockets of the Energy h3+ circuit breakers must be connected together.

The installation plan should also include one or more link terminals inside the electrical cabinet to allow:

- the linkage between several circuit breakers connected to a single upstream circuit breaker,
- the linkage between an hw+ circuit breaker and an Energy h3+ circuit breaker.

ZSI inputs and outputs wiring diagram

ATTENTION

Refer to the h3+ communication system manual for the connection of ZSI1/ZSI2 sockets and the use of associated accessories.

For zone selectivity on the STD protection and/or the earth fault protection:

Connection to downstream circuit breakers:

STD1: selectivity on the Short time delay protection

GF1: selectivity on the earth fault protection

Cmn1: common

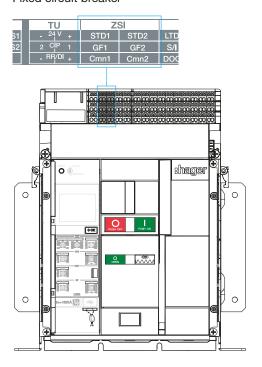
Connection to the upstream circuit breaker:

STD2: selectivity on the Short time delay protection

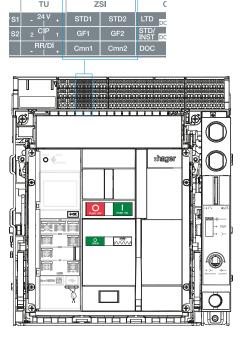
GF2: selectivity on the earth fault protection

Cmn2: common

hw+ air circuit breakers have 6 ZSI terminal blocks enabling the upstream or downstream circuit breakers to be connected to deploy zone selectivity (ZSI).


Type of connection	Total number of circuit breakers	Max. distance between 2 circuit breakers
Upstream	3	300 m
Downstream	7	300 m

Recommended connection cable: 1 to 1.5 mm² twisted cable.

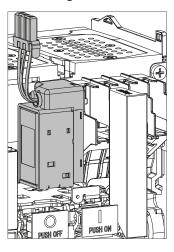

ATTENTION

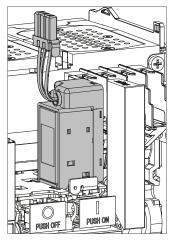
It is recommended that the Hager Power setup software be used to verify the wiring between the circuit breakers.

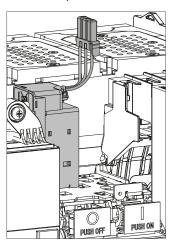
Fixed circuit breaker

Drawout circuit breaker

For the installation of control accessories, refer to the following manuals:


Accessories	Instructions
Coils	6LE007405A
MO charging Motor	6LE007406A


Coils


Three types of coils can be installed in the dedicated positions behind the front cover of the circuit breaker:

Shunt trip coil SH or Undervoltage release coil UV Closing coil CC

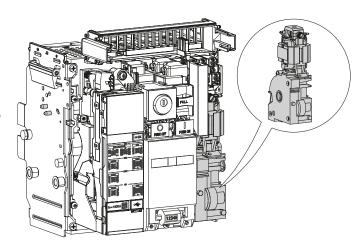
Undervoltage release coil UV or Shunt trip coil SH

The SH shunt trip coils and CC closing coils can be controlled by the sentinel Energy trip unit using the INS insulation module (See Chapter 17.14 Installation of the communication and display accessories).

ATTENTION

Connection of the coils for a sentinel Energy trip unit.

The length of the connection cables between:

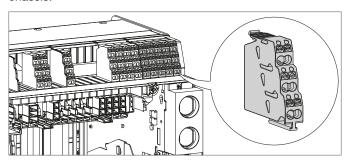

- the terminals A1/A2 and A3 of the CC closing coils,
- the terminals Cx1/Cx2 and Cx3 of the SH shunt trip coils,

is limited to 5 m for the 200-250 V coils (beyond that, an intermediate relay is necessary). A bridging must be performed between the closest terminal between A2 and A3 and/or Cx2 and Cx3 (less than 10 cm) in order to be able to use a shunt trip coil and/or CC closing coil of 380-480 V AC.

Remote control (via Modbus or Bluetooth) is therefore not possible with 380-480 V AC coils.

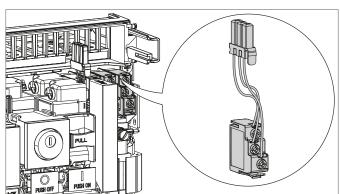
MO charging Motor

The MO charging motor is positioned on the right side of the charging handle and automatically charges the spring after each time the circuit breaker closes.



For the installation of signalling accessories, refer to the following manuals:

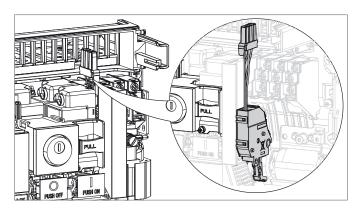
Accessories	Instructions
PS Position contact	6LE007542A
AX Auxiliary Contact	6LE007407A
RTC Ready-to-Close contact	6LE007623A
CYC Operation Cycle Counter	6LE007487A
OAC Output Alarm Contact module	6LE007430A
FS Fault trip contact	6LE007676A


PS Position contact

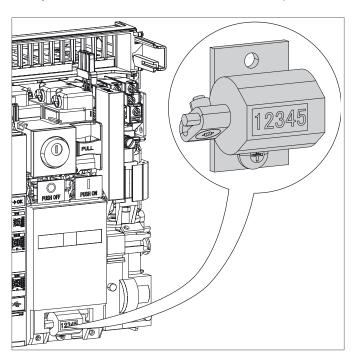
This contact indicates the connected, test or disconnected position of the circuit breaker in its chassis.

AX Auxiliary Contact

The auxiliary contacts indicate the open or closed position of the circuit breaker power contacts.


ATTENTION

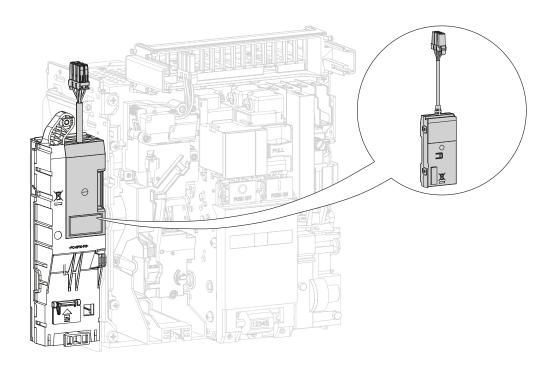
The contact AX1 is not available on the 3-pole circuit breaker with the sentinel Energy trip unit because of the voltage tap ν N.


RTC Ready-to-Close contact

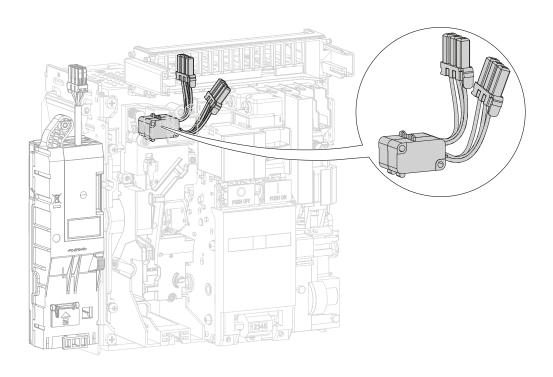
The ready-to-close contact gives the information that the circuit breaker is ready to be closed.

CYC Operation Cycle Counter

The cycle counter shows the number of ON-OFF operations completed by the circuit breaker.



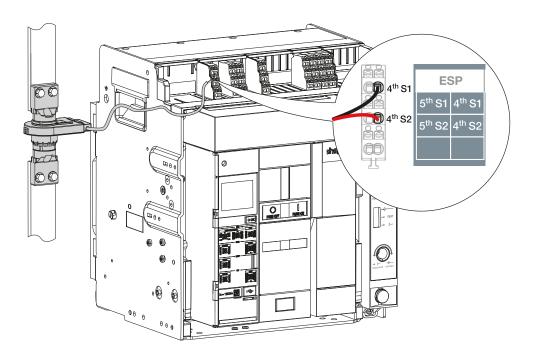
OAC Output Alarm Contact module


The OAC alarm output contacts module has 5 digital output contacts allowing alarm, trip or operating events to be signalled.

For more information, see chapter 17.8 Connecting the output contacts.

FS Fault trip contact

The trip unit's fault trip contact is used to remotely signal information about the tripped status of the circuit breaker. A second FS2 contact can be fitted.


For the installation of neutral protection accessories, refer to the following manuals:

Accessory	Manual
ENCT external neutral current sensor	6LE007514A

ENCT external neutral current sensor

The ENCT external neutral current sensor allows the circuit breaker to provide neutral protection on a 3-pole circuit breaker in a TN earthing system.

It is installed on the neutral distribution bar generally located on the left of the circuit breaker. It must be connected to the terminals marked ESP 4^{th} S1 (black wire) and 4^{th} S2 (red wire).

ATTENTION

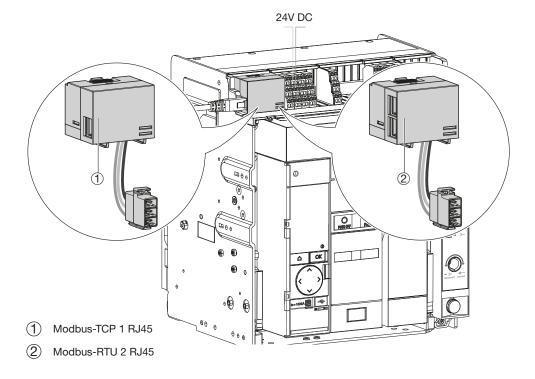
Terminal block vN

If the 3-pole circuit breaker is equipped with the sentinel Energy trip unit, it is also necessary to connect the vN terminal to the neutral potential.

This connection is essential to obtain correct measurement of phase-neutral voltages V1N, V2N, V3N, powers per phase and for operation of the advanced protections against active power feedback and undervoltage or overvoltage.

For the installation of communication and display accessories, refer to the following instructions:

Accessories	Instructions
Communication module	6LE009015A
INS insulation module	6LE008004A
Panel display	6LE002999A

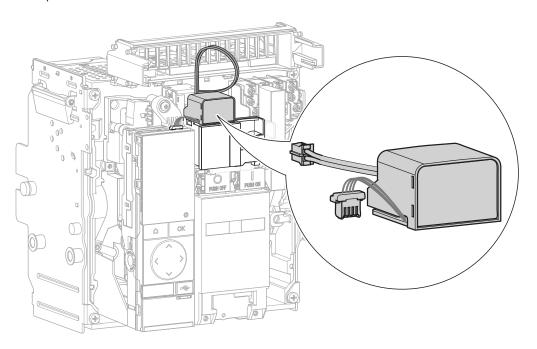

Communication module

The HW1 circuit breaker, equipped with a sentinel Energy trip unit can be connected to a Modbus communication network via a

Modbus-RTU communication module or a Modbus-TCP communication module.

This communication module allows the circuit breaker to be monitored remotely and status, alarm and measurement information to be sent back.

Only one communication module can be installed on an hw+ circuit breaker.



INS insulation module

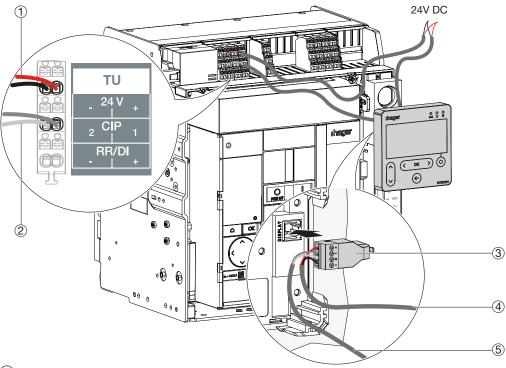
The INS insulation module must interface with the sentinel Energy trip unit if the remote opening and closing functions of the circuit breaker are to be used from the Bluetooth Hager Power touch application, via modbus if a communication module is installed or from Hager Power setup (USB-C).

This insulation module also prevents the overvoltage caused by the SH or CC coil affecting the trip unit.

ATTENTION

The terminals of the CC coils (A1 and A2), SH (C11 and C12) and SH2 (C21 and C22) must be powered for the remote commands to function.

The cable length between the PLC or the action button and the terminal of an SH shunt trip coil or a CC closing coil connected to the INS insulation module must be a maximum of 5 metres.



Panel display

The HTD210H panel display for h3+ Energy circuit breakers is also compatible with hw+ circuit breakers equipped with sentinel Energy trip units. It enables:

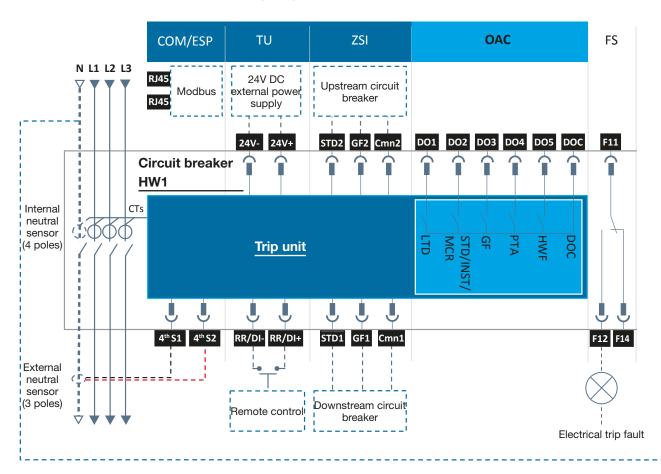
- the status, measurement and settings information for a door or panel in the electrical assembly to be displayed,
- the main protection and alarm settings to be modified.

The HWY210H adapter is necessary to connect the HTD210H panel display, a 24V DC power supply and the cables enabling the connection to the terminals CIP 1 and CIP 2.

- 1 To the 24 V DC power supply
- (2) To terminals 1 and 2 of the HWY210H adapter
- (3) HWY210H adapter
- (4) To the 24 V DC power supply
- (5) To terminals CIP 1 and CIP 2 on the TU terminal block

ATTENTION

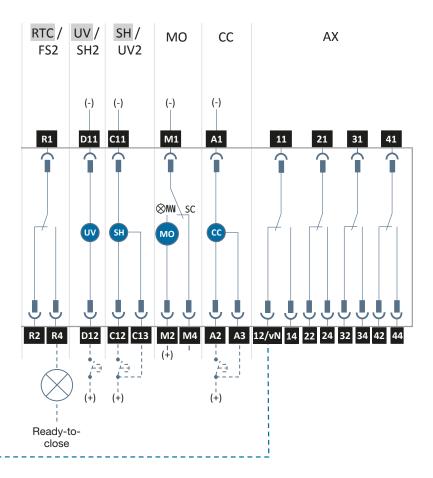
An external 24 V DC SELV power supply (recommended reference HTG911H) must be connected to the TU terminal of the circuit breaker and the HWY210H adapter to allow the panel display to operate correctly.


ATTENTION

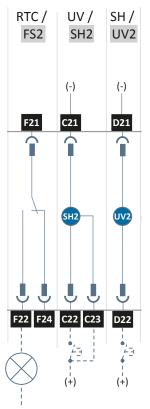
Use a twisted pair data bus cable with 0.75 mm² cross section, 18 AWG or 19 AWG (for example "FD CP (TP) plus" from LAPP) to connect the CIP terminals of the circuit breaker to terminals 1 and 2 of the HWY210H adapter.

Cables connected to the HWY210H adapter must be fastened to the door panel.

Connecting diagram of the HW1 fixed circuit breakers

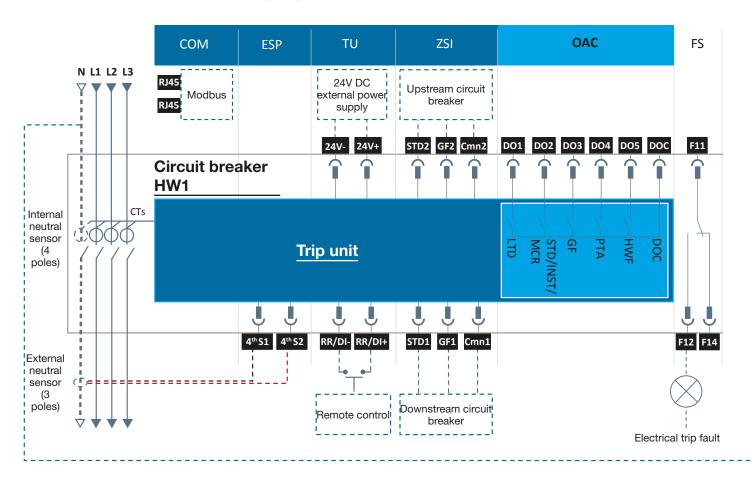


Terminal	Terminations
blocks	
COM	Communication module
ESP	External sensors
TU	External power supply for the trip unit
ZSI	Zone selectivity function
OAC	Output Alarm Contacts
FS	Fault trip contact
RTC/FS2	Contact ready to close or 2nd electrical fault trip contact
UV/SH2	UV undervoltage coil or 2nd SH shunt trip coil
SH/UV2	SH shunt trip coil or 2nd UV undervoltage coil
МО	MO charging motor and SC spring-loaded signal contact
CC	Closing coil CC
AX	Auxiliary contact - maximum 4 contacts signalling the circuit breaker open/closed status (4
	contacts by default)
12/vN	Neutral potential ENVA


The cables (flexible or rigid) used must have a cross section between 0.6 mm² and 2.5 mm².

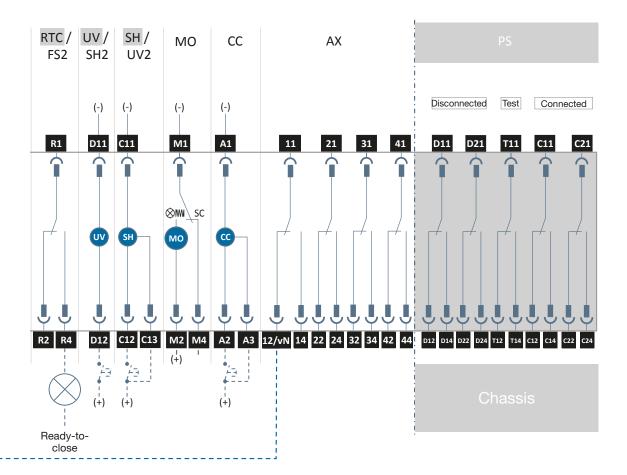
In order to be properly held in place in the terminals, the connected cables must first be stripped form 10 to 12 mm.

Flexible cables must not be twisted. Only one cable is authorised per terminal.

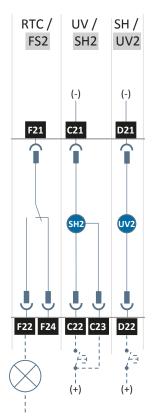

Second possibility

Electrical trip fault

Connecting diagram of the HW1 drawout circuit breakers


Terminal	Terminations
blocks	
COM	Communication module
ESP	External sensors
TU	External power supply for the trip unit
ZSI	Zone selectivity function
OAC	Output Alarm Contacts
FS	Fault trip contact
RTC/FS2	Contact ready to close or 2nd electrical fault trip contact
UV/SH2	UV undervoltage coil or 2nd SH shunt trip coil
SH/UV2	SH shunt trip coil or 2nd UV undervoltage coil
МО	MO charging motor and SC spring-loaded signal contact
CC	Closing coil CC
AX	Auxiliary contact - maximum 4 contacts signalling the circuit breaker open/closed status (4
	contacts by default)
PS	Position contacts - Up to 5 contacts indicating the position of the circuit breaker in the
	chassis.
12/vN	Neutral potential ENVA

The cables (flexible or rigid) used must have a cross section between 0.6 mm^2 and 2.5 $\text{mm}^2.$


In order to be properly held in place in the terminals, the connected cables must first be stripped form 10 to 12 mm.

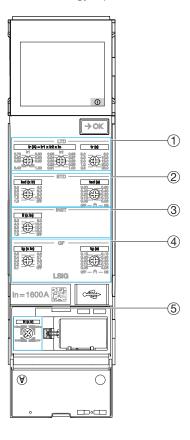
The cables must not be twisted and only one cable is authorised per terminal.

Second possibility

Electrical trip fault

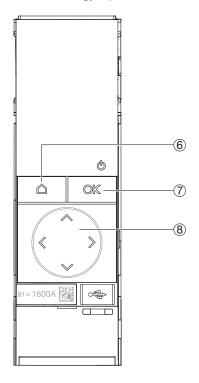
The protections settings are adjusted using the dials or the keyboard depending on the sentinel or sentinel Energy trip unit type.

A detailed description of the functions and settings is available in the user manuals for 6LE007969A hw+ sentinel electronic trip units and 6LE008147A hw+ sentinel Energy electronic trip units.


⚠ WARNING

Risk of inappropriate settings.

For safety reasons, the circuit breaker's factory default settings are for the lowest level of protection.


Adjust the protection settings in accordance with the short circuit and selectivity calculation performed by the installation designer.

sentinel Energy trip unit

- 1 LTD Long time delay protection setting
- 2 STD Short Time Delay protection setting
- (3) INST Instantaneous protection setting
- (4) GF earth fault protection setting
- (5) N neutral protection setting adjustment

sentinel Energy trip unit

- 6 Home button
- Acknowledgement and confirmation button
- 8 Navigation buttons

M DANGER

Risk of electric shock, electrocution or electric arc Danger to life, risk of injury due to electric shock, or risk of serious injury.

Ensure that the device is only commissioned by qualified personnel who are equipped with adequate safety equipment.

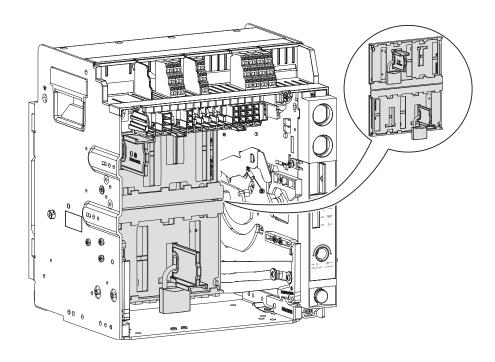
For commissioning, refer to the operations described in standard IEC 61439-1 and -2.

ATTENTION

For any further information about commissioning the circuit breaker, contact Hager Technical Support.

ATTENTION

The Hager Power setup tool is recommended in order to carry out the protection settings when commissioning the trip unit.


Refer to manual 6LE007545A to install this locking accessory.

The safety shutters cover the contacts of the main circuit in the chassis when the circuit breaker is in the disconnected or test position.

In this way it precludes accidental access to the connections.

The high and low shutters work independently. They can be padlocked separately to prevent them being opened or prevent the circuit breaker being racked in in the connected position.

Up to three Ø5-Ø8 mm padlocks can be installed.

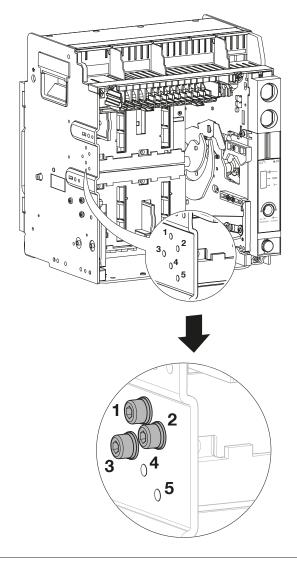
To install this accessory, refer to the 6LE007489A manual.

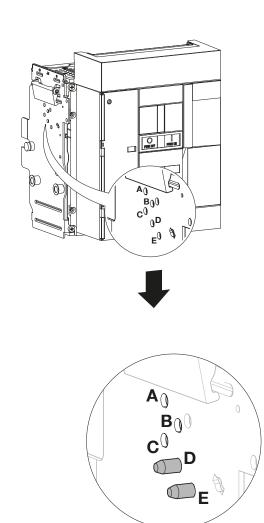
The WIP wrong insertion preventer is used when several circuit breakers of the same model are installed in an electrical panel and are configured differently. To prevent any confusion, all the circuit breakers and their chassis must be coded in such a way that each circuit breaker can be racked in in its corresponding chassis.

It is composed of screws and pins which must be installed on the chassis and circuit breaker in one of the following 10 combinations:

Chassis	Circuit breaker
123	DE
124	CE
125	CD
134	BE
135	BD

Chassis	Circuit breaker
145	BC
234	AE
235	AD
245	AC
345	AB

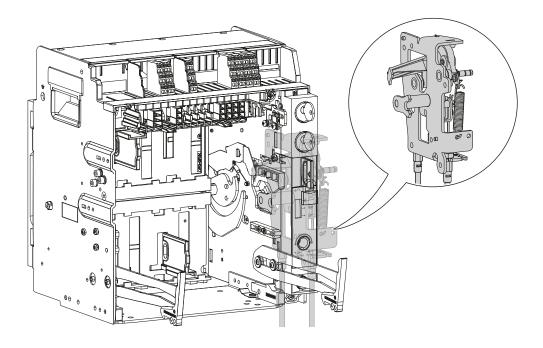

The combination chosen on the chassis must correspond to the combination of the circuit breaker in order for the 2 parts to be compatible.


On the chassis side, the wrong insertion preventer is numbered 1 to 5.

On the circuit breaker side, the wrong insertion preventers are marked A to D.

Example of installation with the combinations 123 and DE:

Chassis	Circuit breaker
123	DE



Refer to 6LE007624A and 6LE008138A manual for installation of this locking accessory.

The interlocking kit is used to interlock 2 circuit breakers installed vertically or horizontally in the electrical distribution board.

Hager Electro SAS 132 Boulevard d'Europe BP3 67210 OBERNAI CEDEX

www.hager.com