SIEMENS

ACVATIX™

Vanne intelligente – vanne de régulation 3 voies avec mesure d'énergie intégrée

EXG.., EXF..

Vanne de régulation 3 voies avec mesure des données d'énergie intégrée dans des installations de ventilation et climatisation ainsi que les circuits de prérégulation. Régulation dynamique du débit volumique pilotée par sonde.

- Vannes filetées EXG4U10E...
 - DN 15...50
 - Débit nominal 1,2...12 m³/h
 - Raccord fileté mâle, selon ISO 228
- Vannes à bride EXF4U20E...:
 - DN 65...100
 - Débit nominal 20...50 m³/h
 - Raccord à bride selon ISO 7005-1
- Intégration dans la gestion technique de bâtiment par BACnet IP
- Intégration dans la gestion technique de bâtiment via Modbus RTU
- Transfert direct des données dans l'application Building Operator de Siemens
- Mesure du débit volumique par ultrasons avec une précision de ± 2 %
- Mesure de la température via deux sondes de température à plongeur appairées

Domaines d'application

Les vannes intelligentes EXG.. et EXF.. sont des vannes à 3 voies avec mesure du débit volumique, de la température et de la puissance dans des installations de chauffage, ventilation et climatisation.

Pour ce faire, elles s'intègrent dans la boucle de réglage de la température en mode analogique (0/2...10 V- ou 4...20 mA-) ou numérique (BACnet IP / Modbus RTU). Même en cas d'intégration analogique, il est possible de lire toutes les données réglées (débit volumique, puissance, température de départ et de retour primaires, etc.) sous forme numérique.

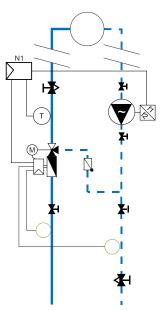
La vanne intelligente propose également des fonctions de limitation et d'optimisation locales pour contribuer à l'efficacité énergétique de l'installation.

En plus du système de gestion technique de bâtiment, la vanne peut aussi être intégrée dans l'application Building Operator de Siemens sur le cloud, qui permet d'améliorer l'exploitation et la supervision des installations et d'analyser les données de consommation d'énergie.

La vanne intelligente offre 3 fonctions de régulation possibles :

- Vanne de régulation dynamique
- Régulateur de température de départ
- Régulateur de température de départ en fonction de la température extérieure

La limitation du débit et la mesure des données d'énergie sont à tout moment possibles dans les 3 fonctions de régulation.


Vanne intelligente utilisée comme vanne trois voies dynamique

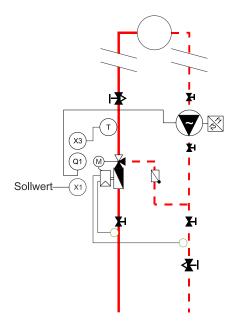
Dans cette configuration, la vanne intelligente fait partie d'une boucle de régulation de la température. Elle reçoit une consigne d'un contrôleur de niveau supérieur qu'elle interprète, selon le mode de régulation, comme une position, un débit volumique ou une puissance. Elle se positionne alors en conséquence.

Le schéma de droite illustre ce cas avec un circuit de prérégulation pour plafonds rafraîchissants.

Le contrôleur N1 règle la température de départ du circuit du plafond rafraîchissant en fonction des besoins et prescrit une consigne de 0...100 % à la vanne intelligente. Cette consigne peut être transmise en mode analogique (0...100 % = 0...10 V–) ou à distance via BACnet IP ou Modbus RTU.

La vanne intelligente adopte cette consigne et, en mode de régulation du débit par exemple, règle le débit volumique correspondant sur la voie A.

Vanne intelligente utilisée comme régulateur de température de départ sans sonde extérieure


Dans ce mode de fonctionnement, la vanne intelligente se comporte comme un contrôleur.

À l'aide d'une sonde de température secondaire [X3] supplémentaire placée sur le départ, elle mesure la température de départ et la règle sur la consigne prescrite en faisant varier le débit sur la voie A et B.

On peut raccorder en [X3] des sondes passives avec éléments de mesure LG-Ni-1000, DIN-Ni-1000 ou Pt1000 (385/EU).

La consigne de température peut être prescrite en externe, à distance via BACnet IP et Modbus RTU ou par connexion analogique sur [X1] (0...10 V = 0...100 °C).

La pompe du circuit secondaire est activée via le relais Q1 dès que la consigne de température de départ secondaire est > 0 °C.

Vanne intelligente utilisée comme régulateur de la température de départ en fonction de la température extérieure

La vanne intelligente peut réguler la température de départ d'un groupe de chauffe en fonction de la température extérieure. Dans ce mode de fonctionnement, la vanne intelligente se comporte comme un contrôleur.

La correspondance entre la température de départ [X3] et la température extérieure [X1] est définie par la courbe de chauffe.

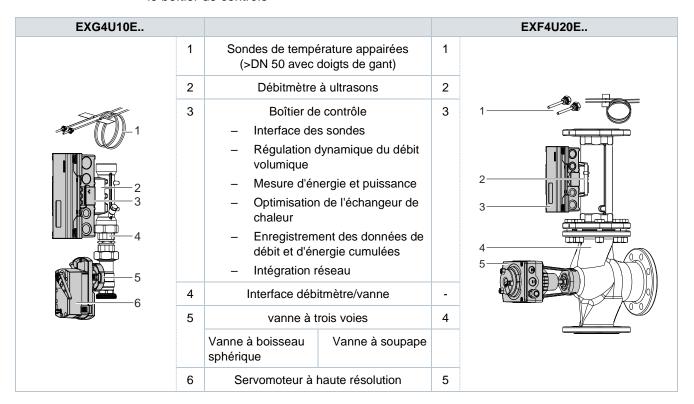
On peut raccorder en [X1] des sondes passives avec éléments de mesure LG-Ni-1000, DIN-Ni-1000 ou Pt1000 (385/EU) et des sondes actives (0...10 V = -50...50 °C).


La sonde de température secondaire [X3] placée sur le départ mesure la température de départ actuelle et la vanne intelligente la règle sur la consigne calculée en faisant varier le débit sur la voie A et B.

On peut raccorder en [X3] des sondes passives avec éléments de mesure LG-Ni-1000, DIN-Ni-1000 ou Pt1000 (385/EU).

Outre la courbe de chauffe, le régime d'ambiance (Confort, Préconfort, Économie, Protection) peut être prescrit via un programme hebdomadaire.

La courbe de chauffe et le programme hebdomadaire sont réglés dans ABT Go


La pompe du circuit de chauffage peut être libérée ou verrouillée à l'aide du relais [Q1].

Construction

La vanne intelligente regroupe quatre fonctions :

- Mesure précise et en continu du débit volumique au moyen d'un débitmètre à ultrasons
- Mesure précise de la température à l'aide de deux sondes PT1000 appairées
- Régulation fine du débit volumique au moyen d'une vanne de régulation commandée par un servomoteur à haute résolution
- Équilibrage hydraulique dynamique, calcul de puissance et de consommation, enregistrement des données de débit et d'énergie cumulées et intégration au réseau via le boîtier de contrôle

Le débitmètre à ultrasons mesure en continu le débit volumique et le transmet au boîtier de contrôle. Ce dernier agit alors sur la position de la vanne pour réguler ou limiter le débit à la consigne prescrite.

Modes de régulation en tant que vanne de régulation dynamique

Pour cette fonction, la vanne intelligente reconnaît 3 modes de régulation:

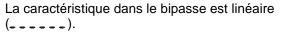
- Régulation du débit volumique
- Asservissement de position
- Régulation de puissance

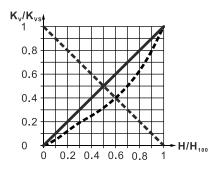
Une limitation du débit est active dans tous les modes de régulation.

Régulation du débit volumique

Dans sa configuration standard, la vanne intelligente fonctionne comme régulateur de débit dans la voie A. Ce mode de régulation est appelé régulation du débit volumique. Le signal de commande est proportionnel au débit à régler sur la voie A (consigne 0 % = fermé, consigne $100\% = \dot{V}_{100}$). Si une limitation du débit volumique (\dot{V}_{min} et/ou \dot{V}_{max}) est activée, la plage de consigne est alignée sur les nouvelles valeurs limites (consigne $0\% = \dot{V}_{min}$, consigne $100\% = \dot{V}_{max}$).

Il n'est pas pertinent d'adapter la caractéristique de régulation dans la voie A. Il faut donc la laisser sur le réglage usine "linéaire".


Asservissement de position


La position de la vanne de régulation est proportionnelle à la consigne (consigne 0 % = ferm'e, consigne $100 \% = H_{100}$) avec une limitation qui reste active sur le débit volumique maximum (\dot{V}_{100} ou \dot{V}_{max}) instantané.

Dans ce mode de régulation, la régulation dynamique du débit volumique est inactive et il n'y a pas d'adaptation électronique du coefficient kys.

La courbe caractéristique k_{VS} résulte de la combinaison des caractéristiques de la vanne de régulation et de la résistance du débitmètre.

Pour les vannes filetées EXG.., cela se manifeste par une courbe caractéristique exponentielle k_{VS} avec un ngl de 2,2 (_____). ; pour les vannes à bride EXF.., la courbe caractéristique k_{VS} est presque linéaire (_____).

Régulation de puissance

La puissance nominale sert de valeur de référence. Elle est définie par :

- le débit nominal V_{max}
- les températures nominales Tdépart, nominale et Tretour, nominale

Puissance nominale = c x débit nominal x différence des températures nominales

 $\dot{Q}_{nominale} \sim \dot{V}_{max} \times (T_{départ, nominale} - T_{retour, nominale})$

Q_{max} est la limitation de puissance en % par rapport à la puissance nominale des consommateurs (échangeur/circuit de régulation primaire).

La consigne est interprétée comme puissance à régler par rapport à la limitation de puissance (Y = 0...100% Q_{max}; 0% = fermé; 100% = \dot{Q}_{max}).

Le chapitre "Dimensionnement" fournit un tableau des valeurs de puissance pour l'eau avec des écarts de température type (Dimensionnement pour une utilisation comme vanne de régulation dynamique $[\rightarrow 7]$).

Même en régulation de puissance, la limitation maximale du débit volumique (\dot{V}_{100} ou \dot{V}_{max}) reste active. Dans ce mode de régulation, la régulation dynamique du débit volumique est désactivée, puisque chaque variation intempestive de débit entraı̂ne une modification de puissance, qui est de toute façon régulée.

La caractéristique de débit est sans objet pour la régulation de puissance.

Limites de fonctionnement

Débit volumique nominal et pression différentielle minimum requise

Comme toutes les vannes de régulation dynamiques, la vanne intelligente dispose d'un débit volumique nominal \dot{V}_{100} à ne pas dépasser en fonctionnement. Pour que ce débit nominal soit atteint, il faut une pression différentielle minimale (Δp_{min}), que l'on peut calculer à partir du k_{VS} de la vanne intelligente. Toutefois, contrairement aux vannes PICV mécaniques, la vanne intelligente assure toujours la régulation électronique du débit volumique en dessous de la pression différentielle minimum, contribuant à un équilibrage optimal du réseau.

La vanne intelligente prend en charge différentes fonctions de limitation:

- Limitation maximale du débit volumique dans la voie A
- Limitation minimale du débit volumique dans la voie A
- Limitation maximale de puissance
- Limitation min/max de la température de retour
- Limitation du ΔT limitation de la différence entre la température de départ et de retour

Limitation maximale du débit volumique

Si le débit nominal de la partie d'installation à réguler (batterie chaude/batterie froide/circuit de régulation primaire) est inférieur à celui de la vanne intelligente sélectionnée, il est recommandé d'activer la limitation maximale du débit. En mode régulation du débit volumique, la valeur de débit réglée \dot{V}_{max} – qui peut se situer entre 30 et 100 % du débit nominal - est interprétée comme consigne de 100%. Dans les autres modes de régulation, elle sert simplement de valeur de limitation.

Limitation minimale du débit volumique

Si l'on souhaite maintenir un débit continu minimal dans la partie d'installation réglée, il est possible d'y parvenir via la régulation minimale du débit volumique. La limitation s'effectue bien entendu sans incidence de la pression, de sorte que des fluctuations locales de la pression différentielle n'entraînent aucun sous- ou surrégime.

Limitation maximale de puissance

Contrairement à une limitation du débit volumique, la limitation de puissance s'adapte dynamiquement à la répartition de la température dans l'installation. Pour des consommateurs critiques, la limitation de puissance s'avère donc plus appropriée que la limitation du débit volumique.

Limitation min/max de la température de retour

Les générateurs de puissance modernes et performants nécessitent des températures de retour suffisamment basses/élevées pour atteindre un rendement optimal. Grâce à la vanne intelligente, ils peuvent limiter avec précision la température de retour en fonction des besoins de l'installation.

Si la vanne intelligente est utilisée pour une application de chauffage, elle assure la limitation maximale de la température de retour. Dans une installation de refroidissement, elle assure la limitation minimale de la température de retour.

Le réglage s'effectue en deux étapes:

- 1. Activation de la fonction
- 2. Détermination de la consigne de limitation
 - Réglage usine de la limitation maximale = 40 °C; plage de réglage = 0...100 °C
 - Réglage usine de la limitation minimale= 10 °C; plage de réglage = 0...100 °C

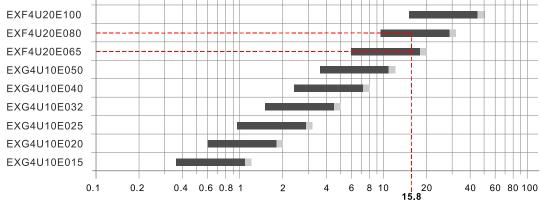
Limitation du ΔT

Dans les systèmes où la température de départ ne peut pas être maintenue constante — par exemple, à cause de fortes fluctuations de charge ou d'une capacité de production insuffisante — on peut utiliser la limitation de la différence entre la température de départ et la température de retour plutôt que la limitation absolue de la température de retour. Cette limitation du ΔT garantit que le consommateur ne dispose pas de plus de puissance qu'il ne peut en utiliser.

Le réglage s'effectue en deux étapes:

- 1. Activation de la fonction
- 2. Détermination de la consigne de limitation
 - Réglage usine de la limitation ΔT = 6 °C; plage de réglage = 0...40 °C

Toutes les limitations ne sont pas disponibles dans chaque mode de régulation. Leur répartition en fonction du mode de régulation est la suivante :


	Vanne o	de régulation dy	Régulateur de	Chauffage en			
	Asservissemen t de position	Régulation du débit volumique		gulation de uissance	température de départ	fonction de la température extérieure	
Consigne		Externe					
Limitation maximale du débit volumique	Toujours active						
Limitation minimale du débit volumique		Au choix					
Limitation maximale de puissance	Toujours active						
Limitation de température de retour	Au choix						
Limitation du ΔT		А	u choix	(-	

Dimensionnement

Dimensionnement pour une utilisation comme vanne de régulation dynamique

En principe, il est très facile de dimensionner la vanne intelligente, car elle offre un fonctionnement indépendant de la pression. Si l'on connaît déjà le débit volumique à réguler, on peut choisir tout simplement la vanne adéquate dans le diagramme suivant. Le régulateur électronique de débit garantit que les vannes atteignent toujours le débit volumique nominal spécifié. Ce dernier ne peut cependant en aucun cas être dépassé.

Il est recommandé de sélectionner les vannes de manière à ce que leur débit volumique maximal \dot{V}_{max} soit préréglé à une valeur de 30...90 %. Cela s'avère utile dans le cas où, pendant la phase de réalisation, un débit volumique légèrement supérieur à celui calculé initialement est nécessaire.

Débit volumique V [m³/h]

- Plage de dimensionnement recommandée, qui permet une augmentation ultérieure du débit volumique pendant la phase de réalisation = 30...90 % de V₁₀₀
- = Plage de dimensionnement maximale, si aucune marge pour une éventuelle augmentation du débit volumique n'est prévue = 90...100 % de \dot{V}_{100}

Exemple						
Débit volumique V _{max} nécessaire	Sélection de la vanne intelligente					
15.8 m³/h	EXF4U20E065: $\dot{V}_{100} = 20 \text{ m}^3/\text{h}$ $\Rightarrow \dot{V}_{max} = 79 \%$					
15,6 111711	EXF4U20E080: $\dot{V}_{100} = 32 \text{ m}^3/\text{h}$ $\Rightarrow \dot{V}_{max} = 49 \%$					

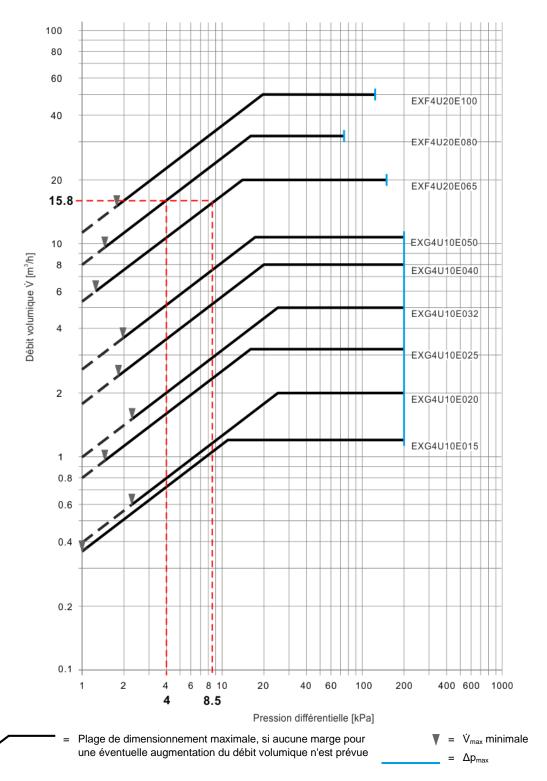
Plage de puissance maximale des consommateurs pour des écarts de température type :

Référence	Code article	DN	Ů₁00		Q [kW] pour			
			[m³/h]	ΔT 6 K	ΔT 10 K	ΔT 15 K	ΔT 20 K	
EXG4U10E015	S55300-M111	15	1,2	8,4	13,9	20,9	27,8	
EXG4U10E020	S55300-M112	20	2	13,9	23,2	34,8	46,4	
EXG4U10E025	S55300-M113	25	3,2	22,3	37,1	56	74	
EXG4U10E032	S55300-M114	32	5	34,8	58	87	116	
EXG4U10E040	S55300-M115	40	8	56	93	139	186	
EXG4U10E050	S55300-M116	50	12	70	116	174	232	
EXF4U20E065	S55300-M117	65	20	139	232	348	464	
EXF4U20E080	S55300-M118	80	32	223	371	557	742	
EXF4U20E100	S55300-M119	100	50	348	580	870	1160	

Dimensionnement pour une utilisation comme régulateur de température de départ

Dans ce mode de fonctionnement, la puissance à transmettre à des températures nominales primaires données est généralement fournie sous forme de grandeur de dimensionnement. Ces informations permettent de calculer le débit volumique requis pour le dimensionnement de l'installation, qui est ensuite utilisé pour sélectionner la vanne. Cf. Exemple d'ingénierie $[\rightarrow 8]$.

Exemple d'ingénierie


Principes de calcul

- 1. Déterminer la demande de chaud ou de froid Q [kW]
- 2. Déterminer la différence de température ΔT [K]
- 3. Calculer le débit volumique $\dot{V}[m^3/h] = \frac{Q[kW] \times 3600[s]}{4190[kJ/kgK] \times \Delta T[K]}$
- 4. Choisir la vanne intelligente EX.. appropriée

Exemple

1.	Puissance calorifique/frigorifique	Q = 110 kW			
2.	Différence de température	ΔT = 6 K			
3.	Débit volumique $\dot{V}[m^3/h] = \frac{110 \text{ kW} \times 3600 \text{ s}}{4190 \text{ kJ/kgK} \times 6 \text{ K}} = 15.8 \text{ m}^3/h$ Conseil: Le débit volumique peut aussi être conseil.	léterminé avec la règle de calcul de vanne.			
4.	Choisir la vanne EX La vanne intelligente doit être choisie de sorte à fonctionner à 90 % du débit nominal. On dispose ainsi d'une marge pour délivrer une puissance calorifique ou frigorifique plus importante.				
	Sélection :	EXG4U20E065 $\Delta p_{min} = 8,5 \text{ kPa}$ EXF4U20E080 $\Delta p_{min} = 4 \text{ kPa}$			
5.	Estimer le préréglage				
	EXG4U20E065: 15,8 / 20 = 79 %	Sélection optimale			
	EXF4U20E080: 15,8 / 32 = 49 %				

Pour estimer la perte de charge pour le débit maximal exigé, on peut recourir à la valeur du k_{VS} dans la section Références et désignations [\rightarrow 10].

Débit volumique V calculé	Sélection de la vanne intelligente	Pression différentielle [kPa]
15,8 m³/h	EXF4U20E065	8,5
	EXF4U20E080	4

Vanne intelligente avec raccord fileté EXG4U10E..

Référence	Code article	DN	V ₁₀₀	<i>min</i> V _{max}	Δp _{V100}	Δp _{V50}	Δp_{max}	k _{VS, A-AB}	k _{VS, B-AB}
			[m	³ /h]		[kPa]		[m	³/h]
EXG4U10E015	S55300-M111	15	1,2	0,36	11	3		3,7	4
EXG4U10E020	S55300-M112	20	2	0,6	25	6		4	5
EXG4U10E025	S55300-M113	25	3,2	0,96	16	4		8	8
EXG4U10E032	S55300-M114	32	5	1,5	25	6	200	10	12
EXG4U10E040	S55300-M115	40	8	2,4	20	5		18	18
EXG4U10E050	S55300-M116	50	12	3,6	15	4		26	30

		Alimentation	Signal de commande	Temps de course	Fonction de retour à zéro
EXG4U10E015	S55300-M111				
EXG4U10E020	S55300-M112				
EXG4U10E025	S55300-M113	0414.4	010 V– 210 V– 420 mA	90 s	
EXG4U10E032	S55300-M114	24 V–/~			-
EXG4U10E040	S55300-M115				
EXG4U10E050	S55300-M116				

Vanne intelligente avec raccord à bride EXF4U20E..

Référence	Code article	DN	V ₁₀₀	min V _{max}	Δp _{V100}	Δp _{V50}	Δp_{max}	ps	k _{VS, A-AB}	k _{VS, B-AB}
			[1	m³/h]		[k	Pa]		[m	³/h]
EXF4U20E065	S55300-M117	65	20	6	14	3	150	1500	55	63
EXF4U20E080	S55300-M118	80	32	9,6	16	4	75	1200	80	100
EXF4U20E100	S55300-M119	100	50	15	19	5	125	1600	113	160

		Alimentation	Signal de commande	Temps de course	Fonction de retour à zéro
EXF4U20E065	S55300-M117		010 V-	20.0	
EXF4U20E080	S55300-M118	24 V-/~	210 V-	30 s	-
EXF4U20E100	S55300-M119		420 mA	120 s	

DN = Diamètre nominal

 \dot{V}_{100} = Débit volumique parcourant la vanne entièrement ouverte

 $min \dot{V}_{max}$ = Plus petit débit volumique minimal préréglable parcourant la vanne entièrement ouverte

 Δp_{V100} = Pression différentielle minimale requise pour garantir le débit nominal \dot{V}_{100} Δp_{V50} = Perte de charge sur la vanne entièrement ouverte à 50 % du débit nominal

 Δp_{max} = Pression différentielle maximale admissible sur la voie de régulation de la vanne par rapport à la

plage de réglage totale de l'ensemble vanne/servomoteur

p_s = Pression de fonctionnement admissible

k_{VS} = Débit nominal d'eau froide (5...30 °C) dans la vanne entièrement ouverte, pour une pression

différentielle de 100 kPa (1 bar)

Livraison

La vanne intelligente est livrée avec un kit complet comprenant :

EXG avec raccord fileté	EXF avec raccord à bride		
Boîtier de	e contrôle		
Servo	moteur		
Section mesure de débit (vanne de régulation VBG61	Débitmètre AVF4E		
et débitmètre prémontés)	Vanne de régulation VXF42		
Sondes de température appairées pour montage direct (possibilité de commander les doigts de gant séparément)	Sondes de température appairées avec doigts de gant		

L'appareil est livré sans raccords à vis, contre-brides et joints.

Les manchons à souder, par exemple WZT-G12, pour les doigts de gant doivent être commandés séparément !

Accessoires/pièces de rechange

Accessoires

Référence	Code article	Description	
EZT-M40	S55845-Z231	Doigts de gant en laiton pour DN 1550	Les DN 65125 contiennent des doigts de gant!
EZU-WA	S55845-Z234	Support mural pour le boîtier de contrôle	Pour des températures de fluide élevées (>90°C)
EZU-WB	S55845-Z236	Entretoise pour le boîtier de contrôle	En cas de risque de condensation causée par des températures de fluide basses
EZU10-10060	S55845-Z237	Sondes de température à plongeur appairées Pt1000	PL Ø 6 x 105 mm, longueur de câble 6 m
ALX15	S55845-Z174	Filtre avec filet intérieur, DN 15	
ALX20	S55845-Z175	Filtre avec filet intérieur, DN 20	
ALX25	S55845-Z176	Filtre avec filet intérieur, DN 25	Filtre à tamis
ALX32	S55845-Z177	Filtre avec filet intérieur, DN 32	Filtre a tarriis
ALX40	S55845-Z178	Filtre avec filet intérieur, DN 40	
ALX50	S55845-Z179	Filtre avec filet intérieur, DN 50	
QAC22		Sonde de température extérieure LG-Ni1000	Sonde de température pour les fonctions de régulation
QAD22		Sonde d'applique LGNi1000	Régulation de la température de
QAE2120		Sonde de température à plongeur LGNi1000 avec doigt de gant	 départ Régulation de la température de départ en fonction de la température extérieure

Raccords à vis

Référence	Code article	Description	
ALG3		Lot de 3 raccords pour vannes à 3 voies	 3 écrous-chapeau 3 inserts 3 joints d'étanchéité plats
ALG3B	S55846-Z1	Raccords à vis en laiton	Pour des températures de fluide jusqu'à 100 °C

Pièces de rechange

Référence	Code article	Description	
ASE4U10E	S55845-Z205	Boîtier de contrôle de vanne intelligente pour vannes à 3 voies des séries EXG4U et EXF4U	
AVG4E015VBG	S55845-Z250	Vanne à trois voies section PN 16 (vanne de régulation à boisseau sphérique + débitmètre prémontés) pour vanne intelligente EXG4U10E015, DN 15 avec raccord fileté, k_{VS} 3,7 m³/h	
AVG4E020VBG	S55845-Z245	Vanne à trois voies section PN 16 (vanne de régulation à boisseau sphérique + débitmètre prémontés) pour vanne intelligente EXG4U10E020, DN 20 avec raccord fileté, k_{VS} 4 m³/h	
AVG4E025VBG	S55845-Z246	Vanne à trois voies section PN 16 (vanne de régulation à boisseau sphérique + débitmètre prémontés) pour vanne intelligente EXG4U10E025, DN 25 avec raccord fileté, k_{VS} 8 m³/h	
AVG4E032VBG	S55845-Z247	Vanne à trois voies section PN 16 (vanne de régulation à boisseau sphérique + débitmètre prémontés) pour vanne intelligente EXG4U10E032, DN 32 avec raccord fileté, k _{VS} 10 m³/h	
AVG4E040VBG	S55845-Z248	Vanne à trois voies section PN 16 (vanne de régulation à boisseau sphérique + débitmètre prémontés) pour vanne intelligente EXG4U10E040, DN 40 avec raccord fileté, k_{VS} 18 m^3/h	
AVG4E050VBG	S55845-Z249	Vanne à trois voies section PN 16 (vanne de régulation à boisseau sphérique + débitmètre prémontés) pour vanne intelligente EXG4U10E050, DN 50 avec raccord fileté, k _{VS} 26 m³/h	
AVF4E065	S55845-Z213	Débitmètre à ultrasons pour vanne intelligente DN 65 Longueur de montage 300 mm avec raccord à bride DN 65, PN 16	
AVF4E080	S55845-Z214	Débitmètre à ultrasons pour vanne intelligente DN 80 Longueur de montage 300 mm avec raccord à bride DN 80, PN 16	
AVF4E100	S55845-Z215	Débitmètre à ultrasons pour vanne intelligente DN 100 Longueur de montage 360 mm avec raccord à bride DN 100, PN 16	
ALF4E065	S55845-Z218	Kit de montage de vanne de régulation PN16 pour vanne intelligente DN 65 (EXF4U20E065) avec raccord à bride	
ALF4E080	S55845-Z219	Kit de montage de vanne de régulation PN16 pour vanne intelligente DN 80 (EXF4U20E080) avec raccord à bride	
ALF4E100	S55845-Z220	Kit de montage de vanne de régulation PN16 pour vanne intelligente DN 100 (EXF4U20E100) avec raccord à bride	
EZU10-2615	S55845-Z229	Sondes de température appairées Pt1000, DS M10x1, Ø 5,2 x 26 mm, longueur de câble 1,5 m	
EZU10-10025	S55845-Z230	Sondes de température appairées Pt1000, PL Ø 6 x 105 mm, longueur de câble 2,5 m	
EZT-S100	S55845-Z232	Doigt de gant G ½ B", G ¼ B", acier inoxydable, Ø 6,2 x 92,5 mm, pour sondes de température Ø 6 x 105 mm	
VXF42.65-63	S55204-V139	Vanne à trois voies DN 65 avec raccord à bride PN16 pour vanne intelligente EXF4U20E65, k_{VS} 63	
VXF42.80-100	S55204-V141	Vanne à trois voies DN 80 avec raccord à bride PN16 pour vanne intelligente EXF4U20E80, $k_{\rm VS}$ 100	
VXF42.100-160	S55204-V143	Vanne à trois voies DN 100 avec raccord à bride PN16 pour vanne intelligente EXF4U20E100, $k_{\rm VS}$ 160	
GLA161.9E/HR	S55499-D444	Servomoteur rotatif pour vannes à boisseau sphérique, 24 V~/-, 10 Nm, DE 010 V progressif Résolution élevée du signal de commande, pour utilisation avec la vanne intelligente EXG4U10E uniquement	
SAX61.03/HR	S55150-A142	Servomoteur de vanne 800 N, course 20 mm, 24 V~/-, 010 V progressif Résolution élevée du signal de commande, pour utilisation avec la vanne intelligente EXF4U20E uniquement, DN 65 et DN 80	
SAV61.00/HR	S55150-A146	Servomoteur de vanne 1600 N, course 40 mm, 24 V~/-, 010 V progressif Résolution élevée du signal de commande, pour utilisation avec la vanne intelligente EXF4U20E uniquement, DN 100	

Documentation produit

Titre	Contenu		Référence
Vanne intelligente - vanne de régulation avec mesure de données d'énergie intégrée	Fiche produit : Description des EXG, EXF		A6V12028437
Servomoteur rotatif pour vannes à boisseau sphérique en association avec le boîtier de contrôle de la vanne intelligente	Fiche produit : Description du GLA161.9E/HR		A6V11418678
Servomoteur électrique en association avec le boîtier de contrôle de la vanne intelligente	Fiche produit : Description des SAX61.03/HR, SAV61.	00/HR	A6V11418660
Servomoteurs SAX, SAY, SAV, SAL pour vannes	Manuel technique Informations complètes sur les servomo de nouvelle génération SAX, SAV	oteurs	P4040
EVG/EXG/EVF/EXF	Instructions de montage		A6V11449479
GLA161.9E/HR	Instructions de montage		A6V11418688
AVG4VAG, AVG4VBG	Instructions de montage		A6V11449852
AVF4	Instructions de montage		A6V11478285
Vanne intelligente – Mise en service avec ABT Go	Instructions de mise en service: Description pas à pas de la configuration et de la mise en service avec ABT Go		A6V11422293
Vanne intelligente – ingénierie/mise en service dans Desigo	Manuel d'ingénierie: Description pas à pas de l'intégration dans une installation Desigo PX		A6V11572317
Vanne intelligente – registres Modbus	Description des registres Modbus pour vanne intelligente		A6V12547886
Vanne intelligente – objets BACnet	Liste des objets BACnet pour vanne intelligente		A6V11757108
Vanne intelligente – intégration dans Building Operator	Manuel d'ingénierie: Description pas à pas de l'intégration dans Siemens Building Operator		A6V11999683
Readme OSS "Intelligent Valve"	Document OSS		A6V11676101
	Composants logiciels Open Source, Copyrights, accords de licence (en anglais)	V2.0	A6V12343374

Vous pouvez télécharger les documents apparentés comme les déclarations relatives à l'environnement et les déclarations CE, entre autres, à l'adresse Internet suivante : http://siemens.com/bt/download

Remarques

Consignes de sécurité

Les consignes de sécurité doivent être respectées afin d'assurer la protection des personnes et des biens.

Les consignes de sécurité contenues dans ce document comportent les éléments suivants :

- Symbole de danger
- Mention d'avertissement
- Nature et origine du danger
- Risques encourus
- Mesures ou interdictions pour la prévention des risques

Symbole de danger

Ce symbole signale un danger. Il avertit de risques de blessures.

Il est nécessaire de respecter toutes les mesures associées à ce symbole pour éviter des blessures ou la mort.

Symboles de danger supplémentaires

Ces symboles signalent un danger général, le type de danger ou ses conséquences possibles, des consignes ou des interdictions, comme illustré dans le tableau ci-dessous :

Danger général

Atmosphère explosive

Tension/Risque d'électrocution

Lumière laser

Batterie

Chaleur

Mention d'avertissement

La mention d'avertissement classifie le danger comme défini dans le tableau ci-dessous :

Mention d'avertissement	Niveau de danger
DANGER	'DANGER' signale une situation dangereuse qui causerait immédiatement la mort ou des blessures graves si elle n'est pas évitée.
AVERTISSEMEN T	'AVERTISSEMENT' signale une situation dangereuse qui peut causer la mort ou des blessures graves si elle n'est pas évitée.
ATTENTION	'ATTENTION' signale une situation dangereuse qui peut causer des blessures légères à moyennement graves si elle n'est pas évitée.
IMPORTANT	'IMPORTANT' signale des instructions dont le non-respect peut entraîner une situation préjudiciable ou des dégâts matériels.
	'IMPORTANT' n'a aucune connexion avec un risque de dommages corporels.

Représentation d'un risque de blessure

L'indication d'un risque de blessure est fournie sous la forme suivante :

\mathbf{A}

AVERTISSEMENT

Nature et origine du danger

Risques encourus

• Mesures/interdictions pour la prévention du danger

Représentation des dégâts matériels possibles

L'indication de dégâts matériels possibles est fournie sous la forme suivante :

IMPORTANT

Nature et origine du danger

Risques encourus

Mesures/interdictions pour la prévention du danger

A ATTENTION

Consignes de sécurité spécifiques aux pays

Le non-respect des consignes de sécurité nationales peut entraîner un danger pour les personnes et les biens.

 Veuillez respecter les dispositions spécifiques en vigueur dans votre pays et les directives de sécurité appropriées.

Personnel qualifié

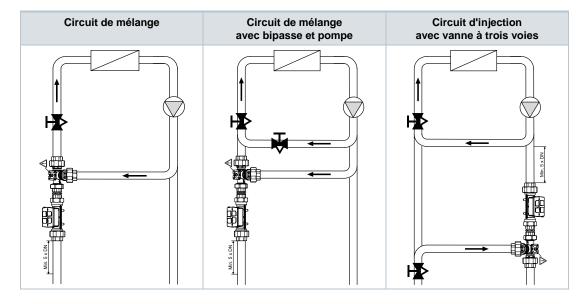
IMPORTANT

Professionnel qualifié!

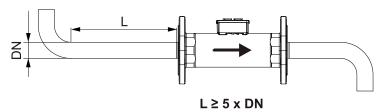
Une mauvaise installation peut altérer les mesures de sécurité à l'insu d'un utilisateur non averti.

- L'installation nécessite des connaissances spécialisées en matière d'installation de chauffage ou de refroidissement.
- Seule une personne qualifiée peut effectuer l'installation.
- Interdire l'accès à des particuliers, et plus spécialement aux enfants.

Ne confier les travaux qu'à des personnes qui en ont les compétences. Les personnes dont la vigilance est altérée par l'utilisation de drogues, d'alcool ou de médicaments ne doivent pas être admises.


Spécialistes en CVC

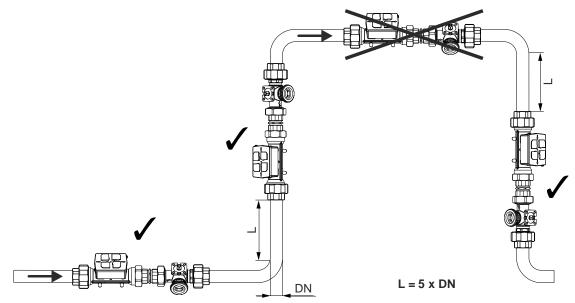
De par leur formation, savoir-faire, expérience et connaissance des normes et réglementations en vigueur, les spécialistes en CVC sont en mesure d'effectuer des travaux mécaniques sur les installations de chauffage ou de refroidissement. Ils savent aussi identifier et éviter les risques possibles.


Les spécialistes en CVC sont spécialement formés dans leur domaine d'intervention, et connaissent les normes et réglementations appropriées.

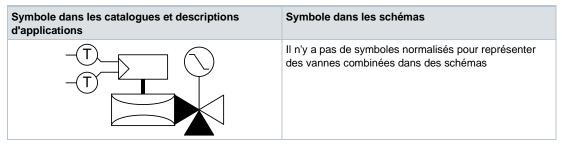
Ingénierie

Les vannes intelligentes EXG.. et EXF.. peuvent être utilisées dans 3 circuits hydrauliques :

Prévoir en amont du débitmètre un tronçon de canalisation d'une longueur égale à cinq fois le DN, exempt de perturbation, pour garantir la précision de mesure et de régulation spécifiée.

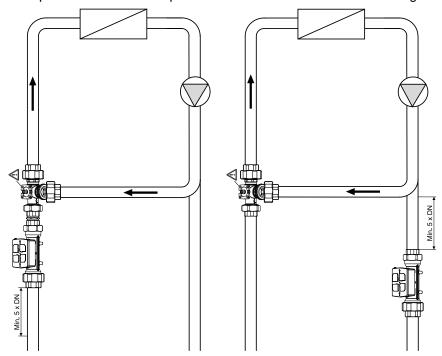


Vanne	Symboles / sens	Débit en mode régulation		Axe de la vanne	
	d'écoulement EXG / EXF		Sortie AB	SAX / SAV: Rentre	SAX / SAV: Sort
				GLA: tourne dans le sens des aiguilles d'une montre	GLA: tourne dans le sens contraire des aiguilles d'une montre
Vanne intelligente	Flow direction	Variable	Constante	La voie A se ferme	La voie A s'ouvre

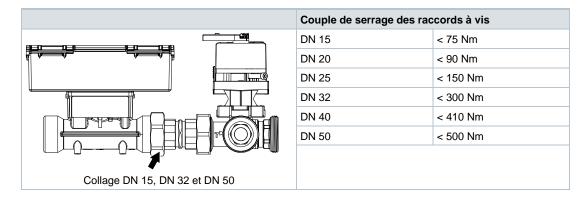


Respecter impérativement le sens d'écoulement indiqué (flèche sur le débitmètre et le corps de vanne) ; sinon la vanne intelligente ne peut pas fonctionner.

Il faut éviter un montage au point le plus haut de l'installation, sinon des bulles d'air peuvent s'accumuler dans le débitmètre.



La séquence de fonctionnement commence toujours par la mesure, suivie de la régulation en elle-même. Le débitmètre doit donc être monté systématiquement avant la vanne de régulation dans une installation compacte.

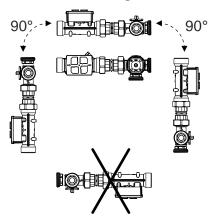


Il est conseillé d'installer un filtre à tamis ou un pot de boue dans le départ vers l'échangeur, un ALX.. par exemple. Ceci permet d'augmenter la fiabilité et la durée de vie de la vanne intelligente.

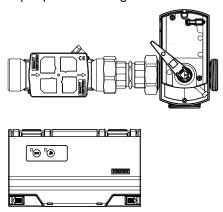
Il est possible de monter séparément le débitmètre et la vanne de régulation :

Modèles avec filetage : En général, veuillez noter que les couples de serrage des raccords à vis sont très élevés (75...500 Nm).

IMPORTANT


DN 15, DN 32 et DN 50

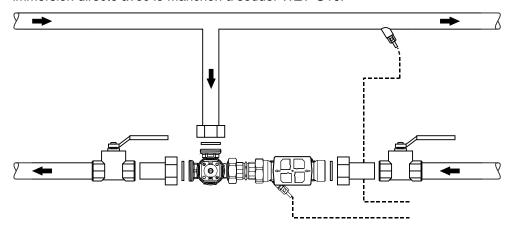
Veuillez noter que l'insert du raccord à vis est collé au débitmètre et ne peut pas être détaché!


• Le raccord à vis doit donc rester sur le débitmètre.

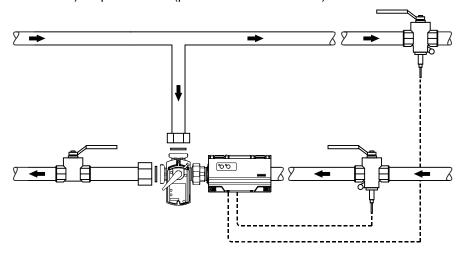
La vanne intelligente est assemblée sur le lieu de montage. À l'exception du paramétrage avec l'application ABT Go (cf. Mise en service [\rightarrow 20]), aucun réglage et outillage spécifique ne sont nécessaires. La vanne et le débitmètre sont fournis avec leurs instructions de montage respectives.

Position de montage

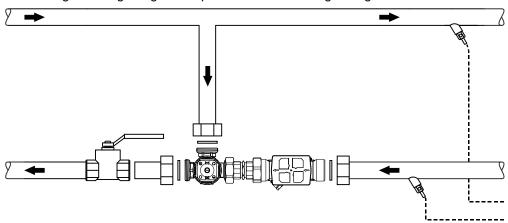
En cas de températures de fluide élevées (>90 °C), le débitmètre doit être installé de préférence dans le retour. Si ce n'est pas possible, déporter le boîtier de contrôle en utilisant la plaque de montage mural EZU-WA.



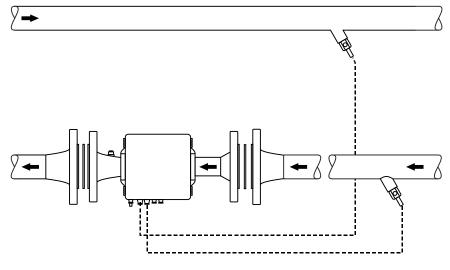
Montage des sondes de température


Vannes filetées EXG4U10E..

Les vannes filetées EXG.. sont livrées avec des sondes de température à plongeur à immersion directe EZU10-2615.


Ces sondes avec raccords filetés M10x1 peuvent être immergées directement dans le débitmètre. La deuxième sonde de température est dans ce cas montée également en immersion directe avec le manchon à souder WZT-G10.

On peut sinon monter les sondes à immersion directe dans des vannes à boisseau sphérique du commerce avec prise de mesure intégrée (par ex. Siemens WZT-K.. / Jumo 902442/11) ou pièces en T (par ex. Jumo 902442/31).


Un montage en doigt de gant est possible avec les doigts de gant en laiton EZT-M40.

Vannes à bride EXF4U20E..

Les vannes à bride EXF.. sont livrées avec des sondes de température EZU10-10025 et les doigts de gant correspondants EZT-S100.

Prévoir des manchons à souder en option (par ex. WZT-G12) – Exemple de montage avec doigt de gant.

L'appareil en lui-même ne dispose que d'une simple interface. La mise en service effective s'effectue avec l'application ABT Go.

Application mobile ABT Go (version 3.3.1 ou ultérieure)

L'application ABT Go de Siemens est disponible pour iOS et Android dans les magasins respectifs et peut être installée sur des smartphones ou des tablettes. La liaison s'effectue directement en WLAN. Le point d'accès W-LAN propre à la vanne intelligente est activé via la touche WLAN.

Voici les principaux paramètres de mise en service de la vanne intelligente :

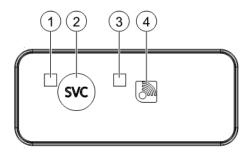
Paramètres	Plage de valeurs	Description	Réglage usine	Niveau d'accès
Conception de la vanne	Vanne deux voiesVanne trois voies	Choix de l'organe à commander : vanne deux voies ou vannes trois voies. Avec une EXG4U10E ou EXF4U20E, modifier impérativement ce réglage!	vanne deux voies	Technicien de CVC
Fonction de régulation	 Vanne de régulation dynamique Régulateur de température de départ Régulateur de température de départ en fonction de la température extérieure 	Cf. Application [→ 2]	Vanne de régulation dynamique	Technicien de CVC
Mode de régulation	 Régulation du débit volumique Asservissement de position Régulation de puissance 	Cf. Modes de régulation en tant que vanne de régulation dynamique [→ 4]	Régulation du débit volumique	Technicien de CVC
\dot{V}_{max}	30100 %	Débit volumique maximal à ne pas dépasser quel que soit le mode de régulation. Sert à l'équilibrage hydraulique du consommateur. Peut être réglé dans ABT Go en m³/h, l/h, l/min ou l/s.	Actif 100 %	Installateur
V _{min}	2,520 %	Débit volumique minimal à ne pas dépasser quel que soit le mode de régulation. Peut être réglé dans ABT Go en m³/h, l/h, l/min ou l/s.	Inactif	Installateur
Source de la consigne	BorneBACnet IP (à distance)Modbus RTULocale	Détermine la provenance de la consigne : borne d'entrée X1, réseau BACnet ou Modbus RTU ou réglage en local (par exemple en cas de régulation de pression différentielle).	Borne	Technicien de CVC
Nature du signal de consigne	010 V210 V420 mA	Type de signal sur l'entrée X1	010 V	Technicien de CVC
Valeur mesurée	 Position Débit volumique 0V₁₀₀ Puissance Température de départ primaire Température de retour primaire Différence de température départ/retour 	Détermine si le signal analogique de la sortie X2 représente la position de la vanne ou le débit. S'il représente le débit, 0V ₁₀₀ = 0100 %	Désactivé	Technicien de CVC
Nature du signal de valeur mesurée	• 010 V • 210 V • 420 mA	Type de signal en sortie X2	-	Technicien de CVC
Caractéristiq ue de débit	LinéaireExponentielleOptimisée pour les échangeurs de chaleur	On peut choisir la caractéristique de débit dans le mode de régulation débit volumique.	Linéaire	Technicien de CVC

Interface utilisateur sur l'appareil

LED de service [1]

• Indique l'état de fonctionnement (cf. tableau suivant)

Touche de service [2]


- Déclenche la reconnaissance
- Force la consigne et règle V_{max} pendant 10 min (maintenir appuyée 3...6 s)
- Démarre le test de débit (maintenir appuyée 6...8 s)

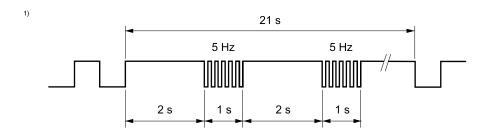
LED de communication [3]

Indique l'état de communication (cf. tableau suivant)

Touche WLAN [4]

 Active le point d'accès WLAN intégré pendant 10 min (maintenir appuyée pendant env. 0,5 s)

- Réinitialisation des réglages usine de l'appareil
 - Appuyer simultanément sur les deux touches ([2], [4]) pendant 10...15 s : les LED ([1], [3]) clignotent lentement en orange pendant 10 s
 Pendant ces 10 s, le processus peut être interrompu en relâchant les touches.
 - Après 10 s, les LED clignotent rapidement pendant env. 5 s et la réinitialisation est effective lorsque les touches sont relâchées.
 - Si l'on continue d'appuyer sur les touches, le boîtier de contrôle repasse en fonctionnement normal sans effectuer la réinitialisation.

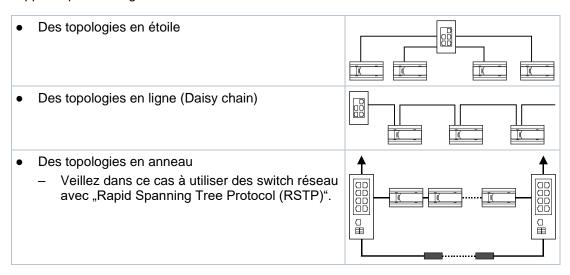

Į

IMPORTANT

L'ensemble de la configuration, les réglages réseau, les paramètres de mise en service et les mots de passe sont réinitialisés à leurs valeurs d'usine!

• Cette action ne peut pas être interrompue et est irréversible.

LED de ser	vice			SVC
Couleur	Signalisation	on lumineuse	Description	
	allumée	éteinte		
Blanc	en continu	-	L'appareil démarre	
Vert	0,5 s	0,5 s	Appareil en mode de configuration	
	4,75 s	0,25 s	Fonctionnement normal	
	0,25 s	0,25 s	Arrêt de la commande forcée locale	
Bleu	0,5 s	0,5 s	Commande forcée locale - test de débit	
Jaune	0,5 s	0,5 s	Commande forcée locale – débit volumique V _{max.} permanent	
Rouge	0,5 s	0,5 s	Défaut d'entrée/sortie ou d'un composant : Débitmètre Sens d'écoulement incorrect Air dans le capteur Raccordement défectueux Sondes de température Coupure de câble Court-circuit Servomoteur Bloqué Raccordement défectueux Borne d'entrée consigne Raccordement défectueux Signal incorrect	
	2 s / 5 Hz	- / 5 Hz	Clignote au rythme des commandes de reconnaissance pour identification physique de l'appareil 1)	
	en continu	-	Erreur système	
Orange	0,5 s	0,5 s	Préparation de la réinitialisation des réglages usine	
	0,1 s	0,1 s	Activation de la réinitialisation des réglages usine	
-	-	-	Sous-tension	

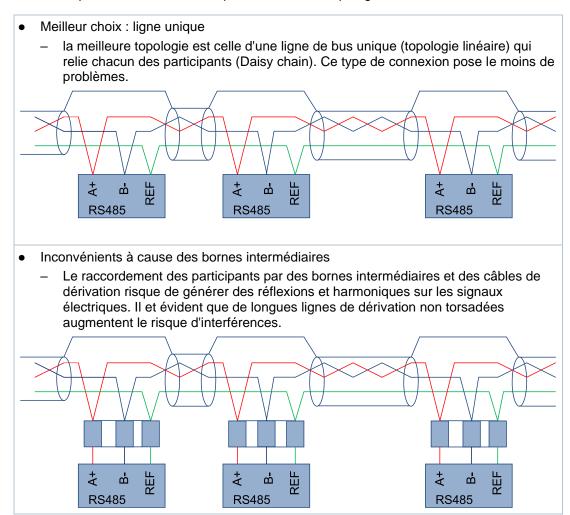


LED de communication			<u>হ</u>
Couleur	Signalisatio	n lumineuse	Description
	allumée	éteinte	
-	-	-	 Pas de communication Câble Ethernet débranché L'appareil démarre
Bleu	0,5 s	0,5 s	WLAN activé
	en continu	-	Transmission de données WLAN
Vert	0,5 s	0,5 s	Erreur de communication TCP/IP – Aucune adresse IP disponible
	en continu	-	Transmission des données TCP/IP 1)
Violet	0,5 s	0,5 s	Transmission des données TCP/IP avec l'application Building Operator de Siemens (Cloud)
Orange	en continu	-	Modbus connecté et configuré – aucune transmission de données via EIA-485
	0,5 s	0,5 s	Communication active via EIA-485
	0,5 s	0,5 s	Préparation de la réinitialisation des réglages usine 2)
	0,1 s	0,1 s	Activation de la réinitialisation des réglages usine

Dans une topologie en ligne, chaque appareil vérifie uniquement si son voisin communique ; la chaîne de la communication jusqu'au routeur n'est pas garantie et peut même être interrompue.

Intégration réseau BACnet IP

La vanne intelligente peut être intégrée dans un réseau BACnet IP via TCP/IP. L'appareil peut s'intégrer dans :


On peut intégrer jusqu'à 20 vannes intelligentes dans un segment BACnet.

Le document "Vanne intelligente - objets BACnet" livre une liste complète des points BACnet pris en charge (documentation produit [→ 13]).

Les paramètres réseau (adresse IP, sous-segment, etc.) sont également configurés avec l'application mobile ABT Go.

²⁾ Ne s'applique que si la LED SVC clignote aussi de façon synchrone.

La vanne intelligente peut être intégrée dans un réseau Modbus RTU via EIA-485. Même si l'interface RS-485 est simple et éprouvée, il est important de connaître certains principes et retours d'expérience. A commencer par le choix de la topologie :

Maintenance

Les vannes de régulation EXF.. et EXG.. sont sans entretien.

Recyclage

L'appareil est à considérer comme un produit électronique au sens de la directive européenne, et ne doit pas être éliminé comme un déchet domestique.

- Recyclez l'appareil selon les circuits prévus à cet effet.
- Respectez la législation locale en vigueur.

Conformité de l'utilisation

AVERTISSEMENT

Conformité de l'utilisation

Une utilisation inappropriée peut provoquer des blessures et endommager le produit ou l'installation.

- Les produits Siemens ne doivent être utilisés que dans le cadre des applications spécifiées dans le catalogue et la documentation technique.
- Les caractéristiques techniques relatives à l'utilisation du produit ne s'appliquent exclusivement qu'aux produits Siemens mentionnés dans ce document. L'utilisation de produits tiers annule de facto la garantie accordée par Siemens.
- Le fonctionnement irréprochable et sûr des produits suppose que toutes les phases de transport, stockage, mise en place, montage, installation, mise en service, exploitation et maintenance soient réalisées dans les règles de l'art.
- Respecter les conditions ambiantes autorisées. Tenir compte des indications fournies dans la documentation correspondante.

Exonération de responsabilité

La conformité de ce document avec le matériel et le firmware décrits a été vérifiée. Toutefois, des écarts ne sont pas exclus. Nous ne pouvons donc pas garantir une adéquation complète entre le document et les matériels/logiciels décrits. Les informations fournies dans ce document sont vérifiées régulièrement, et les corrections nécessaires apportées dans l'édition suivante. Nous accueillons volontiers toute suggestion d'amélioration.

Directive sur les équipements radio-électriques

L'appareil utilise une fréquence harmonisée en Europe et se conforme aussi à la directive sur les équipements radio-électriques (2014/53/EU, anciennement 1999/5/EC).

Aperçu du système de licence

Ces appareils utilisent du code Open Source (OSS) ; voir le document OSS relatif au modèle de régulateur spécifique et au VVS.

Tous les composants en code Open Source de ce produit (y compris les copyrights et accords de licence) sont répertoriés sous http://siemens.com/bt/download.

Version du	Document OSS	Boîtier de	
firmware	Référence	Titre	contrôle
FW01.18.xxxxx	A6V12343374	Readme OSS "Intelligent Valve", V2.0	ASE4U10E
FW01.17.xxxxx	A0V12343374		
FW01.16.xxxxx		Readme OSS "Intelligent Valve", V1.2	
FW01.15.xxxxx	A6V/11676101		
FW01.14.xxxxx	A6V11676101		
FW01.13.xxxxx	-		

Clause de non-responsabilité cyber sécurité

Les produits, solutions, systèmes et services de Siemens offrent des fonctions spécifiques destinées à assurer un fonctionnement sûr des installations, systèmes, machines et réseaux. Dans le cadre de la technique de bâtiments, ces fonctions concernent des systèmes de gestion technique, de protection incendie, de la gestion de la sûreté ainsi que de sûreté physique.

Pour protéger les installations, machines et réseaux des menaces en ligne, il est nécessaire de mettre en œuvre - et de maintenir à jour - une stratégie de sécurité cohérente et moderne. L'offre de Siemens ne constitue qu'une partie de cette stratégie.

Il vous revient d'interdire l'accès non autorisé à vos installations, systèmes machines et réseaux. Ceux-ci doivent ne doivent être connectés à un réseau ou à internet que si et dans la mesure où cette connexion est nécessaire et que des mesures de sécurité sont en place (pare-feux, segmentation du réseau, etc.) Il faut en outre tenir compte des recommandations de Siemens en matière de sécurité. Pour en savoir plus, veuillez contacter votre correspondant Siemens ou consultez notre page internet

 $\underline{https://www.siemens.com/global/de/home/unternehmen/themenfelder/zukunft-derindustrie/industrial-security.html.}$

Siemens perfectionne constamment son offre pour la rendre plus sûre. Siemens préconise d'installer les mises à jour dès qu'elles sont disponibles, et d'utiliser systématiquement les versions les plus récentes des produits. Si vous utilisez des versions qui ne sont plus prises en charge, ou n'installez pas les dernières mises à jour, vous vous exposez à des menaces en ligne. Siemens conseille vivement de prendre connaissance des dernières recommandations sur les menaces, d'installer les correctifs et de suivre les mesures qui leurs sont associées. Toutes ces informations sont consultables sur https://www.siemens.com/cert/fr/cert-sécurité-advisories.htm.

Dimensions et poids

cf. "Encombrements [\rightarrow 37]

Alimentation		EXG4U10E	EXF4U20E DN 6580	EXF4U20E DN 100
Alimentation		24 V~ ±20 % (19,228,8 V~) 24 V ~ = ±20 % (19,228,8 V =)		
Fréquence		50 Hz / 60 Hz		
Consommation,	y compris périphériques raccordés			
	Fonctionnement	5 W	6,25 W	8 W
	Position de repos	2,7 W	3,5 W	3,5 W
	Dimensionnement	8,5 VA	14 VA	16 VA
Puissance cons	ommée ASE4U10E			
	Fonctionnement	3,5 W		
	Position de repos	2 W		
	Dimensionnement	6 VA (boîtier de contrôle sans servomoteur)		
Fusible interne		irréversible		
Fusible externe de la ligne d'alimentation		 Fusible 610 A à fusion lente Disjoncteur 13 A max., caractéristique de réponse B, C, D selon EN 60898 Alimentation avec limitation du courant de 10 A max. 		

Interfaces	
Ethernet	Prise : 2 x RJ45, blindées Type d'interface : 100BASE-TX, compatible IEEE 802.3 Débit binaire : 10 / 100 Mbits/s, détection auto Protocole : BACnet sur UDP/IP
USB (2.0)	Prise : Type micro B Débit binaire : 1,5 Mbit/s et 12 Mbit/s Aucune isolation galvanique à la terre.
L-Bus	Débit en bauds : 2,4 kBaud Alimentation du bus : 10 mA Protection contre les courts-circuits. protégé contre les erreurs de câblage 24 V~ maximum

Interface Mo	odbus RTU		
Type d'interface		EIA-485, séparé galvaniquement	
vitesses de transmission		9600 / 19200 / 38400 / 57600 / 76800 / 115200	
	Réglage usine	19200	
Terminaison interne	du bus	120 Ω, activable avec ABT Go	
Polarisation interne	du bus	270 Ω / 270 Ω – NON commutable !	
Câblage (uniquement du bâtiment)		Câble à 3 fils	
	Longueur de câble	1000 m (3300 ft) maximum	
	IMPORTA NT	La vitesse doit être adaptée à la longueur du câble.	
Protection		Protection contre les courts-circuits: protégé contre les erreurs de câblage 24 V~	
Nombre maximum d'appareils (nœuds) par segment de bus		31	

Données de fonctionnement

Vanne de régulation		EXG4U10E	EXF4U20E		
Débit nominal		cf. Références et d	cf. Références et désignations [→ 10]		
Débit volumique réglable [%] de V ₁₀₀		30	100 %		
Précision de réglage		±ŧ	±5 %		
Fluides admissibles		Eau chau	de et froide		
Température du fluide		11	20 °C		
Pression de fonctionnement p _s		1600 kPa	cf. Références et désignations [→ 10]		
Pression différentielle	$\Delta p_{\text{max}} / \Delta p_{\text{s}}$	cf. Références et d	désignations [→ 10]		
Caractéristique de débit (mode "régulation du débit volumique")		Line	Linéaire		
Taux de fuite					
	2 voies	"Étanche à l'eau" selon EN 60534-4 L/1, supérieur à classe 4	00,03 % du k _{VS}		
	bipasse	< 1 % du k _{VS}	0,52 % du k _{VS}		
Position de montage		Verticale à	horizontale		
Corps de la vanne		Laiton	Conto arias		
Bride pleine		-	Fonte grise		
Axe, siège, clapet		Laiton	Acier inoxydable		
Joint d'étanchéité de l'axe		EF	EPDM		

Servomoteur	EXG4U10E	EXF4U20E DN 6580	EXF4U20E DN 100
	GLA161.9E/HR	SAX61.03/HR	SAV61.00/HR
Temps de positionnement (pour la course nominale indiquée)	90 s	30 s	120 s
Force de positionnement	-	800 N	1600 N
Couple nominal	10 Nm		
Angle de rotation nominal	90°		-
Course nominale	-	20 mm	40 mm

Mesure de débit		EXG4U10E	EXF4U20E
Mesure du débit volumique par ultrasons		Oui	
Précision de mesure		±2 % de la valeur mesurée	entre 25 % et 100 % de V ₁₀₀
Mesure de débit minir	nale	1 % d	le V ₁₀₀
Matériau du tuyau de	mesure		
	DN 1550	Laiton	-
	DN 65		Laiton
	DN 80	-	Fonte à graphite sphéroïdal EN-GJS-500
	DN 100125		Laiton

Mesure de la température		EXG4U10E	EXF4U20E
Précision de mesure température absolue		±0,6 C à 20 °C	
		,	à 60 °C
		(PT1000 EN60751, classe B)	
Précision de mesure p	oour la différence de température	±0,2 K pou	r ΔT = 20 K
Résolution		0,08	5 °C
Attestation d'examen de type module B selon MID		A0445/2112/2007	DE-06-MI004-PTB011
Pression de fonctionnement admissible sonde immersion directe		PN 16	-
Boîtier sonde immersion directe DS M10x1; Ø 5,2 x 26 mm, longueur de câble 1,5 m		Acier inoxydable	-
Doigt de gant G ½ B", pour sondes de tempe			
	Pression de fonctionnement admissible	PN 25	
	Matériau	Laiton	Acier inoxydable

Entrées

Les entrées sont protégées contre les erreurs de câblage en 24 V-/~.

Entrée de consigne, analogique (entrée X1) représente 0100 % dans la fonction "Vanne de régulation dynamique" représente 3100 °C dans la fonction "régulateur de température de départ"					
Référence Plage (limite min./max.) Résolution Résistance d'entrée (R _{in})					
AI 010 V	010 V (-111 V)	1 mV	100 kΩ		
AI 210 V	210 V (111 V)	1 mV	100 kΩ		
AI 420 mA 420 mA (222 mA) 2,3 μ A < 460 Ω					
Si connexion ouverte : tension négative –3,1 V (détection de coupure de conducteur)					

Entrée de signal, analogique (entrée X1) dans la fonction "régulateur de température de départ en fonction de la température extérieure"				
Référence	éférence Plage (limite min./max.) Résolution Résistance d'entrée (R _{in})			
AI (LG-)Ni1000		55 mK 0,099 °F 85 mK (CIOR -50400 °C) 0,153 °F		-
AI Pt1000 (385/EU)	-40150 °C (-45160 °C) -40302 °F (-49320 °F)			-
AI Ni1000 DIN		45 mK 0,081 °F		-
AI 010 V	010 V (-111 V)	1 mV 0,310 V- = -47	.50 °C	100 kΩ

Recopie de position du servomoteur, analogique (entrée U)				
Référence Plage (limite min./max.) Résolution Résistance d'entrée (R _{in})				
Al 010 V				
Si connexion ouverte : tension négative –3,1 V (détection de coupure de conducteur)				

Mesure de la température pour la mesure de puissance, analogique (entrées B7, B26)			
Référence Plage (limite min./max.) Résolution			
AI Pt1000 (385/EU)	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	85 mK 0,153 °F	

Mesure de la température, analogique (Entrée X3)

dans la fonction "régulateur de la température de départ" et "régulateur de température de départ en fonction de la température extérieure"

Référence	Plage (limite min./max.)	Résolution
AI Pt1000 (385/EU)		85 mK 0,153 °F
AI (LG-)Ni1000	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	55 mK 0,099 °F
AI Ni1000 DIN		45 mK 0,081 °F

Mesure de tension, analogique (entrée X3) dans la fonction "régulateur de pression différentielle"				
Référence Plage (limite min./max.) Résolution				
AI 010 V				
Al 010 V normalisé 0100 % (-10110 %) 1 mV				
Si connexion ouverte : tension négative –1,5 V, 8 µA (détection de coupure de conducteur)				

Mesure de flux, numérique (entrée DU)

À utiliser uniquement avec les débitmètres mentionnés dans la fiche produit.

Sorties

Les sorties sont protégées contre les courts-circuits et les erreurs de câblage en 24 V-/~.

Recopie, analogique (sortie X2)			
Référence	Plage (limite min./max.)	Résolution	Courant / impédance de sortie
AO 010 V	010 V (010,5 V)	11 mV	max.1 mA
AO 210 V	010 V (110,5 V)	11 mV	max.1 mA
AO 420 mA	420 mA (420 mA)	22 μΑ	< 650 Ω

Sortie de signal du servomoteur, analogique (sortie Y)			
Référence Plage (limite min./max.) Résolution Courant de sortie			
AO 0-10 V	010 V (010,5 V)	11 mV	max.1 mA

Sortie de commutation relais Q1 (bornes de raccordement Q13, Q14)		
Référence Relais		
Tension de commutation 24 V~ / 30 V-		
Courant de charge admis 100 mA		

Alimentation pour les produits périphériques (sorties V ≂)								
Tension de sortie	24 V~/-							
Courant de charge admis	10 A							
Protection contre la surcharge	Sans							

Interface WLAN							
Type d'interface		Poi	nt d'accès sans fil				
Normes reconnues		IEEE 802.11b/g/n					
Bande de fréquence		2,4 GHz					
Canaux WLAN		3					
puissance d'émission		17 (dBm				
Portée (champ libre)		Min	. 5 m (16 ft)				
Appairage d'appareils		Dés	vation/désactivation avec sactivation automatique au un client n'est connecté au	ı bout de 10 minutes si			
SSID et mot de passe WLAI	N standard						
	SSID	<a5< td=""><td>SN>_<n° de="" série=""></n°></td><td></td></a5<>	SN>_ <n° de="" série=""></n°>				
	SSID		SIEMENS Siemens Switzerland I ASE 4U10E S55845-2205 Country of Origin: Swit Date/Series: 20181204 Mac address: 00A003 Activation Key: P2TK44-ALONC-3V808	A0000001000 Indoor Use 0 162868 Hex			
			Date / lettre de la série	20181204A 0000001000			
			/ N° de série	20101204A 0000001000			
			SSID	ASE4U10E_0000001000			
	Mot de passe	12345678 Le mot de passe est prédéfini et ne peut par modifié.					

Conformité

Classe de protection								
Protection mécanique du boîtier en position verticale à horizontale (voir Montage [→ 18])		IP 54 selon EN 60529						
Classe d'isolement		selon EN 60730						
	24 V~/-	III						

Conditions ambiantes						
Fonctionnemer	nt	selon EN 60721-3-3				
	Conditions climatiques	Classe 3K5				
	Lieu de montage	à l'intérieur, à l'abri des intempéries				
	Température générale	-5< 55 °C				
	Humidité (sans condensation)	595 % H.r.				
Transport		Selon EN 60721_3_2				
	Conditions climatiques	Classe 2K3				
	Température	-2570 °C				
	Humidité	< 95 % h.r.				
Stockage		CEI 60721-3-1				
	Conditions climatiques	Classe 1K5				
	Température	-555 °C				
	Humidité	595 % h.r.				
Température m	nax. du fluide sur la vanne assemblée	120 °C				

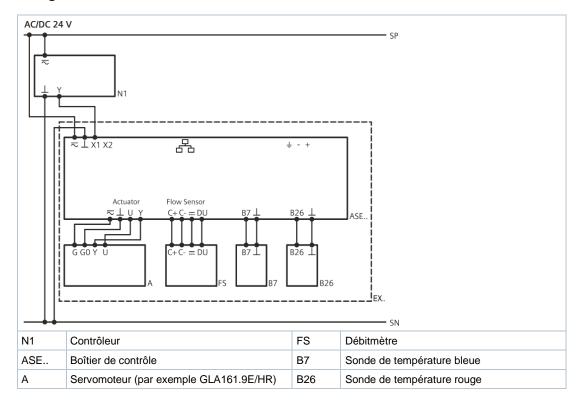
Directives, normes et homologations							
Norme des produits		EN 60730-x					
Compatibilité électromagnétique (plage d'utilisation)		pour un environnement résidentiel, commercial et industriel					
Conformité UE (CE)							
	EXG / EXF	A6V11692721 1)					
	ASE4U10E	A6V11664685 1)					
	AVG4EVBG / AVF4E	A6V11692707 1)					
	GLA161.9E/HR	A6V101082021 1)					
	SAV61.00/HR	A6V10455624 1)					
	SAX61.03/HR	A6V10321559 1)					
	EZU10	A6V11692688 1)					
Conformité RMC							
	EXG / EXF	A6V11694334 ¹⁾					
	ASE4U10E	A6V11692702 ¹⁾					
	AVG4EVAG / AVF4E	A6V11692730 ¹⁾					
	GLA161.9E/HR	A6V101082027 ¹⁾					
	SAV61.00/HR	A6V10455626 ¹⁾					
	SAX61.03/HR	A6V10402431 ¹⁾					
WiFi							
	Chine	CMIIT ID 2020 DJ 3810					
	Corée	KC R-R-S7M-ASE4U10E					
	Singapour	Conforme aux normes IMDA DB01752					

Respect de l'environnement

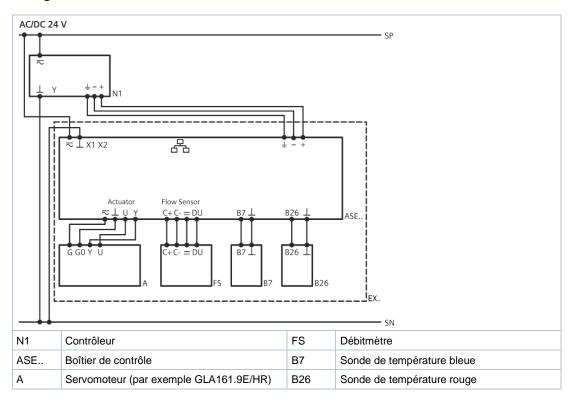
Les déclarations environnementales suivantes précisent les caractéristiques du produit liées au respect de l'environnement (conformité à la directive RoHS, composition des matériaux, emballage, bénéfice pour l'environnement, recyclage).

ASE4U10E	A6V11684717 1)
AVG4EVBG	A6V11654066 ¹⁾
AVF4E	A6V11654064 1)
ALF4E	A6V11654081 1)
EZU10	A6V11684742 1)
GLA161.9E/HR	A6V101033533 ¹⁾
SAV61.00/HR	A6V10450170 1)
SAX61.03/HR	A6V10691442 1)
VXF42	CE1E4403en03 ¹⁾
EZT	A6V11684744 ¹⁾
EZU-WA, EZU-WB	A6V11654200 ¹⁾

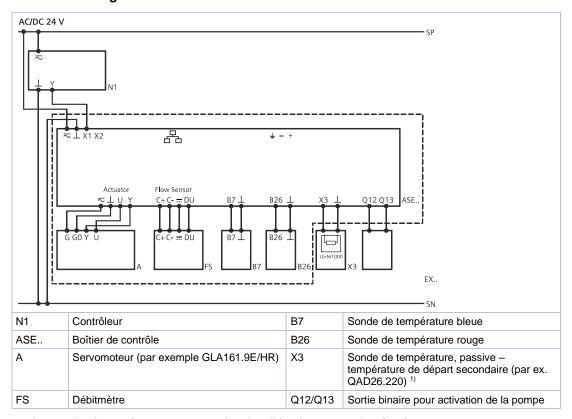
¹⁾ Ces documents sont téléchargeables sur http://www.siemens.com/bt/download.


Schémas des connexions

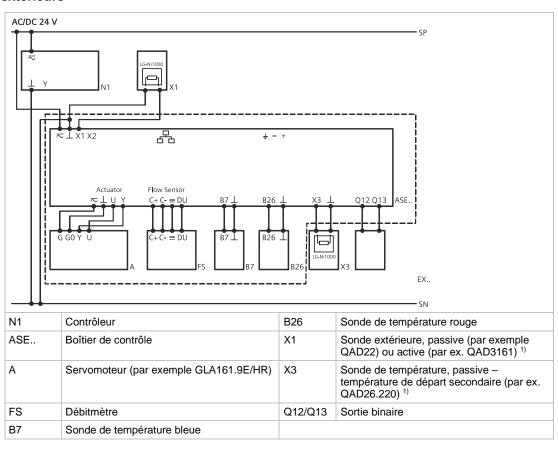
Bornes de raccordement



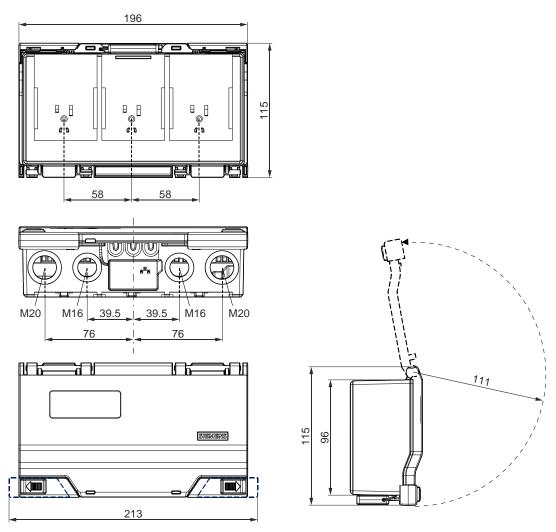
Raccordement	Description	Borne
1, 2 Ethernet	2 x prises RJ45 pour switch Ethernet 2 ports	
	Alimentation TBTS/TBTP 24V-/~	≂
	Référence du système	Т
	Entrée consigne vanne intelligente 0/210 V-; 420 mA (Sonde de température passive ou active dans la fonction "régulateur de température de départ en fonction de la température extérieure")	X1
	Sortie valeur mesurée vanne intelligente : 0/210 V- ; 420 mA	X2
USB	Port USB	•~
Servomoteur (Actuator)	Alimentation 24 V~ du servomoteur	≂
	Référence du système	
	Recopie de position du servomoteur 010 V-	U
	Signal de commande du servomoteur 010 V-	Υ
Débitmètre (<i>Flow</i>	Potentiel L-Bus	C+
Sensor)	Neutre L-Bus (isolé galvaniquement)	C-
	Alimentation débitmètre (4,5 V–)	
	Impulsion	DU
Entrées analogiques	Entrée sonde de température passive	В7
	Référence du système	
	Entrée sonde de température passive	B26
	Référence du système	
	Entrée universelle (010 V- / entrée sonde de température passive)	Х3
	Référence du système	
Sorties	Sortie de commutation 24 V~, 30 V-, 0,1 A	Q13
		Q14
RS485	Interface EIA-485 (Modbus RTU)	÷
	Reconnue à partir de la version du logiciel 1.18.xxxxx	-
		+
Service	Touche de service	6)/6
Affichage	LED de fonctionnement	SVC
Com/WLAN	Touche WLAN	
Affichage	LED de communication	<u></u>


Pour la fonction "Vanne de régulation dynamique" – borne d'entrée comme source de consigne

Pour la fonction "Vanne de régulation dynamique" – Modbus comme source de consigne

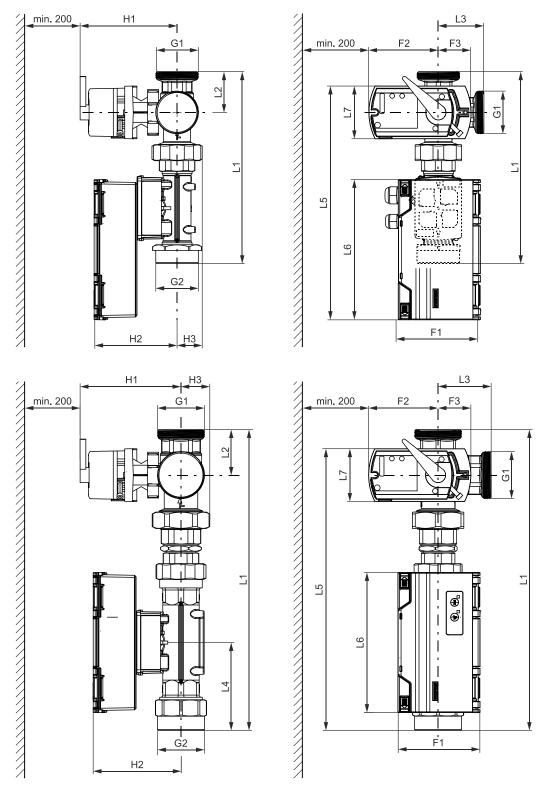


Pour la fonction "régulateur de température de départ" – borne d'entrée comme source de consigne

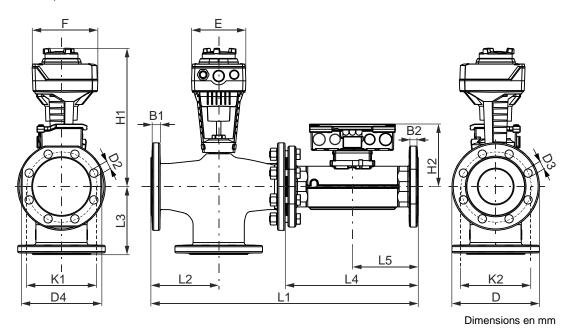

¹⁾ Les sondes de température ne sont pas fournies ; il faut les commander séparément.

Pour la fonction "régulateur de température de départ en fonction de la température extérieure"

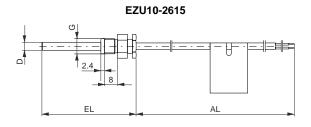
1) Les sondes de température ne sont pas fournies ; il faut les commander séparément.

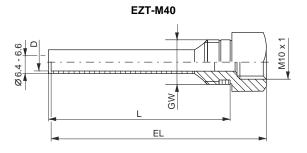

Boîtier de contrôle de la vanne intelligente, ASE4U10E

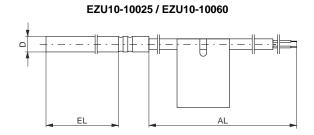
Dimensions en mm

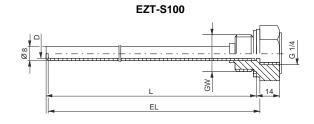

Avec filetage, EXG4U10E..

Dimensions en mm

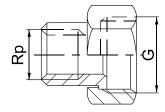

Référence de vanne	F1	F2	F3	G1	G2	H1	H2	Н3	L1	L2	L3	L4	L5	L6	L7	kg
EXG4U10E015				G 1	ΙВ	120	110	21,5	232,5	43,5	44,15	115	321			2,5
EXG4U10E020				G 1	¼ B	130	112	26	273	45	44,7	130	291			2,9
EXG4U10E025	115	98	46	G 1	½ B	132,5	116	29	302	45	49,5	150	317	106	70.5	3,5
EXG4U10E032	115	90	46	G 2	2 B	136	110	35	254,5	50	63,7	145	320	196	78,5	3,7
EXG4U10E040				G 2	¼ B	142	400	40,5	410	58	74,3	000	394,1			6,3
EXG4U10E050				G 2	¾ B	155	123	49	358,5	62,5	82,1	223	340		ļ	7,0


A bride, EXF4U20E..




Référence de vanne	B1	B2	D	D2	D3	D4	E	F	H1	H2	K 1	K2	L1	L2	L3	L4	L5	kg
EXF4U20E065	17	19	184	18 (4x)	19 (4x)	170			240	136	145	145	591	145	145	200	450	30
EXF4U20E080	19	18	200	19 (8x)	40 (0.4)	185	124	150	316	143	160	160	611	155	155	300	150	37,4
EXF4U20E100	20	23	220	19 (8x)	19 (8x)	216			375	154	180	180	711	175	175	360	180	55,9

Sondes de température EZU.., doigts de gant EZT..



Dimensions en mm

Sondes de température										
Référence	D	EL	G	AL						
EZU10-2615	5,2	26,5	M10x1	1500						
EZU10-10025	6	00.5		2500						
EZU10-10060	6	92,5	-	6000						

Doigts de gant											
Référence	D	EL	L	GW	sw						
EZT-M40	5,2	50	40	G 1/4	17						
EZT-S100	6,2	100	92,5	G ½	27						

Raccords à vis

Pour vannes 3 voies EXC	64U10E (lot de 3)	G	Rp	
Référence	Référence de vanne	Pouces		
ALG153 / ALG153B	EXG4U10E015	G 1 B	Rp ⅓	
ALG203 / ALG203B	EXG4U10E020	G 1¼ B	Rp ¾	
ALG253 / ALG253B	EXG4U10E025	G 1½ B	Rp 1	
ALG323 / ALG323B	EXG4U10E032	G 2 B	Rp 1¼	
ALG403 / ALG403B	EXG4U10E040	G 2¼ B	Rp 1½	
ALG503 / ALG503B	EXG4U10E050	G 2¾ B	Rp 2	

- Côté vanne, filetage cylindrique selon ISO 228-1
- Côté tuyau, filetage cylindrique selon ISO 7-1
- Raccords à vis ALG..B pour des températures de fluide jusqu'à 100 °C

Numéros de série

Référence	Valable à partir du N° de série	Référence	Valable à partir du N° de série
EXG4U10E015 S55300-M111	A	EXF4U20E065 S55300-M117	A
EXG4U10E020 S55300-M112	A	EXF4U20E080 S55300-M118	A
EXG4U10E025 S55300-M113	A	EXF4U20E100 S55300-M119	A
EXG4U10E032 S55300-M114	A		
EXG4U10E040 S55300-M115	A		
EXG4U10E050 S55300-M116	A		

Info sur le modèle	ASN=ASE4U10E; HW=0210
Version du firmware	09.54.12.07; APP=1.18.6462; SVS-300.6.SBC=15.00; ISC=01.00
Version du logiciel d'application	AAS-20:SU=SiUn; APT=HvacFnct34; APTV=2.111; APS=1

Publié par Siemens Schweiz AG Smart Infrastructure Global Headquarters Theilerstrasse 1a CH-6300 Zoug Tél. +41 58 724 2424

www.siemens.com/buildingtechnologies

© Siemens Schweiz AG, 2020 Sous réserve de modifications techniques et des modalités de livraison.