

PROFIL ENVIRONNEMENTAL PRODUIT

Vérification indépendante de la déclaration et des données conforme à la norme ISO 14025 : 2006

LEDVANCE HIGH BAY DALI GEN 3

Produit de référence : HB DALI 155W 4000K 110DEG IP65

N° d'enregistrement	LEDV-00021-V01.01-FR	Règles de rédac- tion	PEP-PCR-ED4-EN-2021 09 06
N° d'habilitation du vérifica- teur	VH08	Complété par	PSR-0014-ED2.0-EN-2023 07 13
Date d'édition	04-2024	Durée de validité	5 ans
PEP préparé par	LEDVANCE GmbH		
Vérification indépendante de la dé	clarations et des données utilisé	es selon la norme ISO	14025:2006
Vérification interne		Vérification externe	Х
Revue critique du PCR conduite p main)	ar un panel d'experts présidé pa	r Julie Orgelet (DDe-	
Les PEP sont conformes à la norme XP C08-100-1:2016 ou EN 50693:2019			PEP
Les éléments du PEP ne peuvent être comparés avec les éléments issus d'un autre programme			PASS PORT _®
Document conforme à la norme ISO 14025 : 2006 « Marquage et déclarations environnementales. Déclarations environnementales de type III »			

1. Informations Générales

1.1 Informations relatives à la société

Plus d'informations peuvent être obtenues en contactant :

- LEDVANCE GmbH, Parkring 1-5, 85748 Garching, Allemagne
- ou sur le site web : www.ledvance.com
- ou par E-Mail LCA@ledvance.com.

1.2 Informations relatives au produit

Le nom du produit étudié est « HB DALI 155W 4000K 110DEG IP65 » avec la description du produit suivante :

Avantages du produit

- Haute compatibilité grâce à la certification DALI-2
- Interface DALI 2.0
- Faible scintillement grâce à un ballast électronique spécial
- Efficacité lumineuse élevée
- Économies d'énergie jusqu'à 90 % par rapport aux luminaires conventionnels pour grandes hauteurs
- 5 ans de garantie

Zones d'application

- Remplace les luminaires High Bay pour lampes à décharge
- Entrepôts
- Halls logistiques
- Industrie
- Haut plafond (par exemple, dans les centres commerciaux, les aéroports, les immeubles commerciaux, les halls)

Caractéristiques du produit

- Convertisseur DALI préconfiguré inclus
- Efficacité lumineuse : jusqu'à 140 lm/W
- Indice de protection : IP65
- Fourchette de variation (DALI): 10...100 %

Technique / Accessoires

- Crochet de montage et supports inclus
- Réflecteurs et réfracteurs disponibles séparément

Durée de vie

LEDVANCE déclare pour le luminaire les durées de vie suivantes :

- Durée de vie L70/B50 à 25 °C : 80 000 h
- Durée de vie L80/B10 à 25 °C : 50 000 h
- Durée de vie L90/B10 à 25 °C : 30 000 h

Les données clés du produit sont résumées sous forme de tableau ci-après.

Tableau1 : Données techniques clés

Information	
Type de luminaire	High Bay
Désignation courte	HB DALI 155W 4000K 110DEG IP65
Mode de fonctionnement	Driver LED intégré
Type de source	LED intégrées, non échangeable
Température de couleur	4000K
Puissance nominale	155W
Flux lumineux	22 000 lm
Indice de rendu des couleurs Ra	≥ 80
Indice de protection IK	IK08
Indice de protection IP	IP65
Tension nominale	220240 V
Durée de vie nominale (L70/B50)	80 000 h
Hauteur	163,00 mm
Largeur	321,00 mm
Domaines d'application	Intérieur - Industrie
LOR (rapport de sortie lumineuse)	$\eta = 88,1\%$

Sur la base de la durée de vie assignée selon EN 15193-1:2017 :

Tableau2 : Durée de vie calculée en années par type de bâtiment

Type d'application	Heures de fonctionnement annuelles par défaut [h]	Durée de vie opérationnelle (années)
Industrie	4 000	20

Conformément aux exigences du PSR, la durée de vie opérationnelle du luminaire ici étudié est de 20 ans.

1.3 Vue d'ensemble

Les informations générales utilisées pour ce PEP sont répertoriées ci-dessous :

Tableau3: Informations de base

Information	
Unité fonctionnelle	Fournir un éclairage artificiel dont le flux lumineux sortant est de 1000 lumen pendant une durée de vie de référence de 35 000h.
Le produit de référence ²	0,02 produit
Étapes du cycle de vie couvertes (selon l'EN 15804+A2)	Du berceau à la tombe et Module D
Catégorie de produit selon le PSR	Luminaires
Nom de la famille de produits (dans le d'un PEP couvrant une famille de produ	

^{*} Le produit de référence est calculé comme suit :

$$\frac{1,000 \ lm}{\textit{Outgoing Luminous Flux of the Analyzed Product (lm)}} \times \frac{35,000 \ h}{\textit{Declared Product Lifetime of the Analyzed Product (h)}}$$

Par conséquent, pour le produit concerné :

$$\frac{1,000}{22,000} \times \frac{35,000}{80,000} = 0.02$$

1.4 Famille homogène

Le produit de référence représente la famille HIGH BAY DALI GEN 3, qui se différencie en termes de puissance (W), de flux utile (Im) des LED intégrées, de poids et de dimensions (diamètre et hauteur).

Les variations entre les produits de cette famille évoluent dans les gammes suivantes :

Tableau4 : Gammes de variations des produits pour une famille homogène

Critère	Unité	Valeur pour le produit de référence	Valeur minimale dans la famille	Valeur maximale dans la famille
Puissance	W	155	93	210
Flux sortant	lm	22 000	13 000	30 000
Poids (Produit)	kg	3,491	2,814	3,866
Diamètre	mm	321	280	321
Hauteur	mm	163	160	168

La présente déclaration PEP est valable pour tous les produits de la famille homogène décrite. La feuille de calcul fournie au paragraphe5Extrapolation de ce document doit être utilisée par l'utilisateur du PEP pour extrapoler l'impact des autres produits de la famille HIGH BAY DALI GEN 3, sur la base des paramètres techniques du produit considéré, comme demandé par le PSR.

2 Composition

2.1 Vue d'ensemble

Tableau5 : Composition d'ensemble

Information	Poids (kg]	Part [%]
Poids total	4,515	100
Produit	3,491	77,3
Emballage	1,024	22,7

2.2 Produit

Tableau6: Composition produit

Information	Poids (kg]	Somme du poids [kg]	Part [%]
TOTAL		3,491	100
Métaux		1,811	51,9
- Acier	0,523	·	15,0
- Aluminium	1,288		36,9
Plastiques		0,983	28,2
- Colle Silicone	0,743		21,3
- Polycarbonate (PC)	0,217		6,2
- Autres	0,023		<10 %
Autres		0,697	19,9
- Electronique	0,425		12,2
- Câbles internes et externes	0,272		7,7

2.3 Emballage

Tableau7 : Composition de l'emballage

Information	Poids (kg]	Part [%]	
TOTAL	1,024	100	
Papier / Carton	0,941	91,9	
Bois	0,005	0,5	
Plastiques	0,078	7,6	

Des palettes en contreplaqué et d'autres emballages secondaires contenant du carton sont utilisés pour l'expédition. De plus, la palette en contreplaqué est réutilisée 28 fois et l'emballage des matières premières et des composants est considéré comme une quantité moyenne de 5 % en masse du luminaire selon /PSR-0014-ED2.0-EN-2023 07 13/. Cet emballage supplémentaire n'est pas pris en compte dans le tableau Tableau7 car il s'agit d'une hypothèse supplémentaire.

3 Les différentes étapes du Cycle de vie

3.1 Fabrication

Le fabricant s'approvisionne en toutes pièces auprès de fournisseurs internationaux. Sur le site de fabrication en Chine, le produit est assemblé en utilisant de l'énergie et des auxiliaires. Le produit est ensuite emballé et distribué au client.

Le site de production dispose d'un système de gestion environnementale certifié selon la norme ISO 14001:2015.

3.2 Distribution

Le principal marché est l'Europe. Ainsi, le présent modèle intègre un transport intercontinental selon les règle du PEP-PCR-ed4-EN-2021 09 06 :

Bateau : 19 000 kmCamion : 1 000 km

Les hypothèses de base pour le transport sont listées ci-dessous.

Tableau8 : Hypothèses de base pour la Distribution

Information	Unité	Camion	Bateau
Type de carburant	-	Diesel	Fioul lourd
Consommation carburant	l/(kg*km)	2.80E-03	2.30E-04
Distance totale	kilomètres	1 000	19 000
Utilisation des capacités (y compris les parcours à vide)	%	85	48
Densité des produits transportés	kg/m³	n.a.	n.a.
Facteur d'utilisation de la capacité en volume	-	n.a.	n.a.

3.3 Installation

Le produit est installé avec un étrier de montage inclus. Aucun apport d'énergie ou de matériel supplémentaire n'est requis. Lors de l'installation, le produit est déballé. Les matériaux d'emballage sont traités en appliquant les valeurs par défaut selon les règles du PSR-0014-ED2.0-EN-2023 07 13.

Tableau9 : Données Europe sur la fin de vie des emballages

Scenario de traitement	Métaux	Papier & Papier carton	Bois	Plastiques
Incinération sans récupération d'énergie	0%	0%	0%	0%
Incinération avec récupération d'énergie	2%	9%	31%	37%
Décharge	21%	9%	38%	23%
Recyclage	77%	82%	31%	41%

Numéro d'enregistrement : LEDV-00021-V01.01-FR- PEP ecopassport®

3.4 Phase d'utilisation

Le produit ne génère pas d'émissions directes (B1) et est conçu de telle sorte qu'aucune maintenance n'est requise (B2) et qu'aucune pièce ne doive être remplacée (B4). De plus, aucune réparation standard (B3) ou remise à neuf (B5) n'est prévue. L'utilisation du produit consomme de l'électricité (B6), mais pas d'eau (B7).

Le principal marché est l'Europe. C'est donc le mix énergétique européen qui a ici été utilisé. De plus, le produit fonctionne avec un driver DALI, capable de communiquer avec un système externe de gestion de l'éclairage. Par conséquent, la consommation totale d'énergie en B6 est calculée avec un coefficient d'économie d'énergie de 0,5 selon /PSR-0014-ED2.0-EN-2023 07 13/.

3.5 Fin de vie

Le produit relève de la directive 2012/19/UE relative aux déchets d'équipements électriques et électroniques (DEEE) et son marché principal est l'Europe. Par conséquent, les statistiques européennes sur le traitement des équipements d'éclairage en tant que sous-catégorie des DEEE à partir de 2018 ont été utilisées. Le scénario EoL ("Enf of Life") affiche les moyennes européennes suivantes :

Incinération sans récupération d'énergie 6,5%

Incinération avec récupération d'énergie 7,6%

Décharge : 6,5%Recyclage 79,4%

3.6 Bénéfices et charges au-delà du cycle de vie (Module D)

L'incinération avec récupération d'énergie et recyclage du produit (y compris l'emballage) génère des bénéfices environnementaux en évitant la production de matières premières et d'énergie. Les quantités et types de flux de matières utilisés pour le calcul des avantages sont répertoriés dans Tableau 10.

Tableau10 : Flux de matières pour les bénéfices et charges au-delà des limites du système

Information	Unité	Valeur
Poids total pour réutilisation	kg/unité fonctionnelle	0
Poids total pour recyclage	kg/unité fonctionnelle	0,055
- Part des métaux	%	50,6
- Part des plastiques	%	7,2
- Part autres	%	42,2
Poids total pour incinération avec récupération d'énergie	kg/unité fonctionnelle	0,026
- Part du papier	%	73,0
- Part autres	%	27,0

4 Impacts Environnementaux

4.1 Introduction

Les tableaux suivants regroupent les informations clé servant au calcul des impacts environnementaux.

Tableau11 : Informations de base pour l'analyse du cycle de vie (Modèle LCA)

Information	Valeur
Logiciel LCA	GaBi / LCA for experts 10
Base de données LCI	GaBi Professional 2023.1 + Electronics Extension 2023.1
Version PCR	PEP-PCR-ED4-EN-2021 09 06
Version PSR	PEP-PSR
Unité fonctionnelle	Fournir un éclairage artificiel dont le flux lumineux sortant est de 1000 lumen pendant une durée de vie de référence de 35 000h.

4.2 Résultat par unité fonctionnelle

Les résultats suivants ont été développés en considérant un flux lumineux artificiel sortant de 1 000 lumens sur une durée de vie de référence de 35 000 heures. Ils se réfèrent aux principaux indicateurs d'impacts environnementaux et aux indicateurs décrivant l'utilisation des ressources, les catégories de déchets et les flux extrants conformément à la norme EN 15804:2012+A2:2019.

Tableau12: Résultats des principaux indicateurs d'impacts environnementaux par unité fonctionnelle

	Total (hors D)			Fabrica- tion	Distribu- tion	Installa- tion	Usage	Fin de vie			Bénéfices et charges au- delà du cycle de vie
		A1	A2	А3	A4	A5	B6	C2	C3	C4	D
GWP - total [kg CO2 eq.]	4.11E+01	8.54E-01	5.07E-03	2.18E-02	2.33E-02	1.65E-02	4.01E+01	4.76E-03	3.11E-02	3.31E-03	-2.11E-01
GWP - fossil [kg CO2 eq.]	4.08E+01	8.56E-01	5.01E-03	4.71E-02	2.32E-02	1.01E-02	3.98E+01	4.71E-03	3.10E-02	3.31E-03	-2.33E-01
GWP - biogenic [kg CO2 eq.]	3.24E-01	-2.61E-03	1.15E-05	-2.54E-02	3.00E-05	6.37E-03	3.46E-01	1.08E-05	2.84E-05	8.91E-07	2.26E-02
GWP - luluc [kg CO2 eq.]	5.18E-03	5.73E-04	4.70E-05	1.05E-04	5.74E-05	2.73E-05	4.32E-03	4.42E-05	9.74E-07	2.71E-07	-1.42E-04
ODP [kg CFC-11 eq.]	7.38E-10	4.09E-12	6.61E-16	1.66E-13	1.97E-15	1.83E-14	7.34E-10	6.21E-16	6.55E-14	2.69E-15	-4.13E-13
AP [Mole of H+ eq.]	8.95E-02	3.96E-03	8.14E-06	1.48E-04	4.05E-04	1.61E-05	8.50E-02	7.65E-06	2.05E-05	2.80E-06	-1.23E-03
EP - freshwater [kg P eq.]	1.53E-04	3.88E-06	1.86E-08	5.16E-07	2.65E-08	2.60E-07	1.48E-04	1.74E-08	1.56E-08	9.98E-10	-5.18E-07
EP - marine [kg N eq.]	2.12E-02	6.20E-04	3.14E-06	4.66E-05	1.45E-04	7.35E-06	2.03E-02	2.95E-06	7.81E-06	1.20E-06	-1.69E-04
EP - terrestrial [Mole of N eq.]	2.21E-01	6.66E-03	3.61E-05	4.76E-04	1.59E-03	6.73E-05	2.12E-01	3.39E-05	9.40E-05	1.41E-05	-1.81E-03
POCP [kg NMVOC eq.]	5.67E-02	1.91E-03	7.23E-06	1.25E-04	3.98E-04	1.55E-05	5.42E-02	6.79E-06	2.03E-05	3.14E-06	-5.05E-04
ADPE [kg Sb eq.]	6.44E-05	5.82E-05	3.37E-10	7.27E-09	5.66E-10	3.70E-09	6.15E-06	3.16E-10	4.82E-10	1.19E-11	-2.31E-05
ADPF [MJ]	8.50E+02	1.20E+01	6.92E-02	6.34E-01	2.93E-01	1.22E-01	8.37E+02	6.50E-02	8.17E-02	3.79E-03	-3.18E+00
WDP [m³ world equiv.]	9.11E+00	2.33E-01	6.14E-05	1.01E-02	1.03E-04	6.95E-04	8.86E+00	5.77E-05	5.59E-03	7.24E-04	-3.15E-02

Tableau13 : Résultats des indicateurs d'utilisation des ressources, des catégories de déchets et de flux extrants, par unité fonctionnelle

Indicateur	Acronyme [Unité]	Valeur
Utilisation de l'énergie primaire renouvelable (hors matières premières)	PERE [MJ]	5.04E+02
Utilisation de l'énergie primaire renouvelable (matières premières)	PERM [MJ]	3.39E-01
Utilisation de l'énergie primaire renouvelable TOTALE	PERT [MJ]	5.04E+02
Utilisation de l'énergie primaire non-renouvelable (hors matières premières)	PENRE [MJ]	8.47E+02
Utilisation de l'énergie primaire non-renouvelable (matières premières)	PENRM [MJ]	4.70E-01
Utilisation de l'énergie primaire non-renouvelable TOTALE	PENRT [MJ]	8.47E+02
Utilisation de matière secondaire	SM [kg]	5.42E-02
Utilisation de combustibles secondaires renouvelables	RSF [MJ]	0.00E+00
Utilisation de combustibles secondaires non-renouvelables	NRSF [MJ]	0.00E+00
Utilisation nette d'eau douce	FW [m³]	9.08E+00
Déchets dangereux éliminés	HWD [kg]	7.15E-08
Déchets non dangereux éliminés	NHWD [kg]	7.02E-01
Déchets radioactifs éliminés	RWD [kg]	1.33E-01
Composants destinés à la réutilisation	CRU [kg]	0.00E+00
Matériaux destinés au recyclage	MFR [kg]	5.02E-02
Matériaux destinés à la récupération d'énergie	MER [kg]	1.30E-02
Electricité fournie	EEE [MJ]	5.93E-02
Energie thermique fournie	EET [MJ]	1.29E-01
Carbonne biogénique contenu dans le produit	Biog. C dans le produit [kg]	0.00E+00
Carbonne biogénique contenu dans l'emballage associé	Biog. C dans l'emballage [kg]	8.09E-03

4.3 Résultat par Produit

Les résultats suivants ont été élaborés en tenant compte du cycle de vie complet du produit doté des propriétés techniques décrites au point 1.

Tableau14 : Résultats des principaux indicateurs d'impacts environnementaux par unité de produit

	Total (hors D)	Matières premières & pièces		Fabrica- tion	Distribu- tion	Installa- tion	Usage	Fin de vie			Bénéfices et charges au- delà du cycle de vie
		A1	A2	А3	A4	A5	В6	C2	C3	C4	D
GWP - total [kg CO2 eq.]	2.07E+03	4.30E+01	2.55E-01	1.10E+00	1.17E+00	8.28E-01	2.02E+03	2.39E-01	1.56E+00	1.67E-01	-1.06E+01
GWP - fossil [kg CO2 eq.]	2.05E+03	4.31E+01	2.52E-01	2.37E+00	1.17E+00	5.06E-01	2.00E+03	2.37E-01	1.56E+00	1.67E-01	-1.17E+01
GWP - biogenic [kg CO2 eq.]	1.63E+01	-1.31E-01	5.78E-04	-1.27E+00	1.51E-03	3.20E-01	1.74E+01	5.43E-04	1.43E-03	4.48E-05	1.14E+00
GWP - luluc [kg CO2 eq.]	2.60E-01	2.88E-02	2.37E-03	5.26E-03	2.89E-03	1.37E-03	2.17E-01	2.22E-03	4.90E-05	1.36E-05	-7.14E-03
ODP [kg CFC-11 eq.]	3.71E-08	2.06E-10	3.32E-14	8.36E-12	9.93E-14	9.20E-13	3.69E-08	3.12E-14	3.30E-12	1.35E-13	-2.08E-11
AP [Mole of H+ eq.]	4.50E+00	1.99E-01	4.09E-04	7.45E-03	2.04E-02	8.10E-04	4.27E+00	3.85E-04	1.03E-03	1.41E-04	-6.20E-02
EP - freshwater [kg P eq.]	7.70E-03	1.95E-04	9.34E-07	2.59E-05	1.33E-06	13.30-05	7.46E-03	8.77E-07	7.86E-07	5.02E-08	-2.61E-05
EP - marine [kg N eq.]	1.06E+00	3.12E-02	1.58E-04	2.35E-03	7.29E-03	3.70E-04	1.02E+00	1.48E-04	3.93E-04	6.04E-05	-8.47E-03
EP - terrestrial [Mole of N eq.]	1.11E+01	3.35E-01	1.82E-03	2.40E-02	8.00E-02	3.39E-03	1.07E+01	1.71E-03	4.72E-03	7.10E-04	-9.12E-02
POCP [kg NMVOC eq.]	2.85E+00	9.58E-02	3.64E-04	6.30E-03	2.00E-02	7.78E-04	2.73E+00	3.42E-04	1.02E-03	1.58E-04	-2.54E-02
ADPE [kg Sb eq.]	3.24E-03	2.93E-03	1.69E-08	3.66E-07	2.85E-08	1.86E-07	3.09E-04	1.59E-08	2.42E-08	5.97E-10	-1.16E-03
ADPF [MJ]	4.28E+04	6.03E+02	3.48E+00	3.19E+01	1.48E+01	6.14E+00	4.21E+04	3.27E+00	4.11E+00	1.90E-01	-1.60E+02
WDP [m³ world equiv.]	4.58E+02	1.17E+01	3.09E-03	5.06E-01	5.19E-03	3.50E-02	4.46E+02	2.90E-03	2.81E-01	3.64E-02	-1.58E+00

LEDVANCE GmbH Parkring 1-5 85748, Garching, Allemagne www.ledvance.fr LCA@ledvance.com

Tableau15 : Résultats des indicateurs d'utilisation des ressources, des catégories de déchets et de flux extrants, par unité de produit

Indicateur	Acronyme [Unité]	Valeur
Utilisation de l'énergie primaire renouvelable (hors matières premières)	PERE [MJ]	2.53E+04
Utilisation de l'énergie primaire renouvelable (matières premières)	PERM [MJ]	1.70E+01
Utilisation de l'énergie primaire renouvelable TOTALE	PERT [MJ]	2.53E+04
Utilisation de l'énergie primaire non-renouvelable (hors matières premières)	PENRE [MJ]	4.26E+04
Utilisation de l'énergie primaire non-renouvelable (matières premières)	PENRM [MJ]	2.36E+01
Utilisation de l'énergie primaire non-renouvelable TOTALE	PENRT [MJ]	4.26E+04
Utilisation de matière secondaire	SM [kg]	2.73E+00
Utilisation de combustibles secondaires renouvelables	RSF [MJ]	0.00E+00
Utilisation de combustibles secondaires non-renouvelables	NRSF [MJ]	0.00E+00
Utilisation nette d'eau douce	FW [m³]	4.57E+02
Déchets dangereux éliminés	HWD [kg]	3.60E-06
Déchets non dangereux éliminés	NHWD [kg]	3.53E+01
Déchets radioactifs éliminés	RWD [kg]	6.71E+00
Composants destinés à la réutilisation	CRU [kg]	0.00E+00
Matériaux destinés au recyclage	MFR [kg]	2.52E+00
Matériaux destinés à la récupération d'énergie	MER [kg]	6.52E-01
Electricité fournie	EEE [MJ]	2.98E+00
Energie thermique foumie	EET [MJ]	6.48E+00
Carbonne biogénique contenu dans le produit	Biog. C dans le produit [kg]	0.00E+00
Carbonne biogénique contenu dans l'emballage associé	Biog. C dans l'emballage [kg]	4.07E-01

5 Extrapolation

5.1 Règles d'Extrapolation

Les règles d'extrapolations ont été calculées conformément aux indications du PCR-ed4-EN-2021 09 14 et du PSR-0014-ed2.0-EN-2023 07 18. Les règles définies doivent être appliquées en utilisant les règles d'extrapolation fournies dans les tableaux suivants.

Tableau16 : Paramètres d'extrapolation pour le produit de référence

Paramètres	Valeur pour le produit de référence (HB DALI 155W 4000K 110DEG IP65)
Flux lumineux sortant [lm]	22 000
Poids de la source lumineuse [kg]	0,120
Poids du corps du luminaire [kg]	2,018
Poids de l'alimentation [kg]	1,353
Poids du système de gestion de l'écla [kg]	airage -
Poids de l'emballage [kg]	1,024
Puissance [W]	155
Diamètre [mm]	321
Hauteur [mm]	163

Le calcul des coefficients d'extrapolation au niveau de l'unité fonctionnelle est pris en compte à l'aide de la formule suivante :

Extrapolation coefficent at the product level $\times \frac{\text{Lighting output of reference product (lm)}}{\text{Lighting output of concerned product (lm)}}$

5.2 Coefficient d'extrapolation

Les coefficients d'extrapolation indiqués ici concernent le PRODUIT (unité déclarée) et non l'unité fonctionnelle.

- Le produit concerné ne comportant aucune fonction intégrée de gestion de l'éclairage, le coefficient d'extrapolation pour les composants de la fonction de gestion de l'éclairage est nul. Le driver DALI est considéré comme un équipement de contrôle capable de communiquer avec un système externe de gestion de l'éclairage.
- Le produit concerné étant gradable et fonctionnant avec un driver DALI capable de communiquer avec un système externe de gestion de l'éclairage, son coefficient d'économie d'énergie est de 0,5.

LEDVANCE GmbH Parkring 1-5 85748, Garching, Allemagne www.ledvance.fr LCA@ledvance.com

Tableau17 : Coefficients d'extrapolation calculés par produit

Nom du produit	Flux de sortie utile [lm]	Fabrica- tion	Distribu- tion	Installa- tion	Usage	Fin de vie
HB DALI 155W 4000K 110DEG IP65	22 000	1,00	1,00	1,00	1,00	1,00
HB DALI 155W 4000K 70DEG IP65	22 000	1,03	1,03	1,00	1,00	1,04
HB DALI 190W 4000K 110DEG IP65	27 000	1,06	1,05	1,00	1,23	1,07
HB DALI 190W 4000K 70DEG IP65	27 000	1,09	1,08	1,00	1,23	1,11
HB DALI 210W 4000K 70DEG IP65	30 000	1,09	1,08	1,00	1,35	1,11
HB DALI 93W 4000K 110DEG IP65	13 000	0,86	0,85	1,00	0,60	0,81
HB DALI 93W 4000K 70DEG IP65	13 000	0,87	0,86	1,00	0,60	0,82

Numéro d'enregistrement : LEDV-00021-V01.01-FR- PEP ecopassport®