Station RFID OsiSense® XG

Station compacte Ethernet

Manuel utilisateur

Traduction de la notice originale

EIO000001602.02 12/2020

Mentions légales

La marque Schneider Electric et toutes les marques de commerce de Schneider Electric SE et de ses filiales mentionnées dans ce guide sont la propriété de Schneider Electric SE ou de ses filiales. Toutes les autres marques peuvent être des marques de commerce de leurs propriétaires respectifs. Ce guide et son contenu sont protégés par les lois sur la propriété intellectuelle applicables et sont fournis à titre d'information uniquement. Aucune partie de ce guide ne peut être reproduite ou transmise sous quelque forme ou par quelque moyen que ce soit (électronique, mécanique, photocopie, enregistrement ou autre), à quelque fin que ce soit, sans l'autorisation écrite préalable de Schneider Electric.

Schneider Electric n'accorde aucun droit ni aucune licence d'utilisation commerciale de ce guide ou de son contenu, sauf dans le cadre d'une licence non exclusive et personnelle, pour le consulter tel quel.

Les produits et équipements Schneider Electric doivent être installés, utilisés et entretenus uniquement par le personnel qualifié.

Les normes, spécifications et conceptions sont susceptibles d'être modifiées à tout moment. Les informations contenues dans ce guide peuvent faire l'objet de modifications sans préavis.

Dans la mesure permise par la loi applicable, Schneider Electric et ses filiales déclinent toute responsabilité en cas d'erreurs ou d'omissions dans le contenu informatif du présent document ou pour toute conséquence résultant de l'utilisation des informations qu'il contient.

En tant que membre d'un groupe d'entreprises responsables et inclusives, nous actualisons nos communications qui contiennent une terminologie non inclusive. Cependant, tant que nous n'aurons pas terminé ce processus, notre contenu pourra toujours contenir des termes standardisés du secteur qui pourraient être jugés inappropriés par nos clients.

Table des matières

Consignes de sécurité	5
A propos de ce document	6
Cybersécurité	8
Informations générales	9
Présentation du système	9
Principe des échanges	11
Présentation de la gamme OsiSense XG	12
Vue système	
Informations concernant la cybersécurité	15
Caractéristiques techniques et description physique	16
Caractéristiques de la Station compacte	16
Caractéristiques des étiquettes	18
Description de la Station compacte	21
Raccordement de la Station compacte OsiSense XG	22
Accessoires de câblage	
Exemple de câblage des stations compactes	24
Installation du système	25
Précautions d'installation	25
Configuration de l'adresse IP	29
Principes de fonctionnement	34
Mode de fonctionnement de la lecture/écriture	
Zones mémoire	37
Zone mémoire système de la Station compacte	37
Zone mémoire de commande/d'instructions de la Station compacte	38
Prise en charge de la communication EtherNet/IP	45
Modèle objet	
A propos du modèle d'objet	45
Objet d'assemblage (ID de classe 4)	46
Objet Modbus (ID de classe 0x44)	47
Unity Pro : exemple d'application EtherNet/IP	49
Présentation	49
Création d'un projet	49
Configuration du module de communication EtherNet/IP	
BMXNOC0401	50
Configuration de la Station compacte Ethernet	51
Exemple d'application de lecture	
RSLogix : exemple d'application EtherNet/IP	56
Configuration d'une Station compacte sur un réseau EtherNet/IP	
avec un automate ControlLogix	56
Lecture de l'assemblage 102 (état général) ou 103 (table de lecture)	
à l'aide d'un message explicite	
Requête de lecture/écriture avec l'objet Modbus	
Prise en charge des communications TCP/IP Modbus	
Commandes Modbus prises en charge par la Station compacte	
Description des requêtes Modbus	
Exemple d'application Modbus TCP/IP	71

Diagnostics	73
Voyants de diagnostic de la Station compacte	73
Questions fréquentes	75
FAQ	75
Glossaire	79
Index	95

Consignes de sécurité Station compacte Ethernet

Consignes de sécurité

Informations importantes

Lisez attentivement ces instructions et examinez le matériel pour vous familiariser avec l'appareil avant de tenter de l'installer, de le faire fonctionner, de le réparer ou d'assurer sa maintenance. Les messages spéciaux suivants que vous trouverez dans cette documentation ou sur l'appareil ont pour but de vous mettre en garde contre des risques potentiels ou d'attirer votre attention sur des informations qui clarifient ou simplifient une procédure.

La présence de ce symbole sur une étiquette "Danger" ou "Avertissement" signale un risque d'électrocution qui provoquera des blessures physiques en cas de non-respect des consignes de sécurité.

Ce symbole est le symbole d'alerte de sécurité. Il vous avertit d'un risque de blessures corporelles. Respectez scrupuleusement les consignes de sécurité associées à ce symbole pour éviter de vous blesser ou de mettre votre vie en danger.

A DANGER

DANGER signale un risque qui, en cas de non-respect des consignes de sécurité, **provoque** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** la mort ou des blessures graves.

A ATTENTION

ATTENTION signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** des blessures légères ou moyennement graves.

AVIS

AVIS indique des pratiques n'entraînant pas de risques corporels.

Remarque Importante

L'installation, l'utilisation, la réparation et la maintenance des équipements électriques doivent être assurées par du personnel qualifié uniquement. Schneider Electric décline toute responsabilité quant aux conséquences de l'utilisation de ce matériel.

Une personne qualifiée est une personne disposant de compétences et de connaissances dans le domaine de la construction, du fonctionnement et de l'installation des équipements électriques, et ayant suivi une formation en sécurité leur permettant d'identifier et d'éviter les risques encourus.

A propos de ce document

Objet du document

Ce guide décrit comment utiliser la Station compacte OsiSense XG et les accessoires associés.

Note de validité

Ce document est applicable à la Station compacte OsiSense XG, XGCS850C201.

Les caractéristiques techniques des équipements décrits dans ce manuel sont également fournies en ligne. Pour accéder à ces informations en ligne :

Etape	Action
1	Accédez à la page d'accueil de Telemecanique Sensors www.tesensors.com.
2	Dans la zone Recherche , entrez la référence d'un produit ou le nom d'une gamme de produits.
	N'insérez aucun espace dans le numéro de modèle ou la gamme de produits.
	 Pour obtenir des informations sur un ensemble de modules similaires, utilisez des astérisques (*).
3	Si vous avez saisi un numéro de modèle, accédez aux résultats de recherche Fiches techniques de produit et cliquez sur le numéro de modèle qui vous intéresse.
	Si vous avez saisi une gamme de produits, accédez aux résultats de recherche Gammes de produits et cliquez sur la gamme de produits qui vous intéresse.
4	Si plusieurs numéros de modèle apparaissent, accédez aux résultats de recherche Produits et cliquez sur le numéro de modèle qui vous intéresse.
5	Selon la taille de l'écran, vous serez peut-être amené à faire défiler la page pour afficher la fiche technique.
6	Pour enregistrer ou imprimer une fiche technique au format PDF, cliquez sur Télécharger la fiche technique du produit XGCS850C201.

Les caractéristiques présentées dans ce manuel devraient être identiques à celles fournies en ligne. Toutefois, en application de notre politique d'amélioration continue, nous pouvons être amenés à réviser le contenu du document afin de le rendre plus clair et plus précis. Si vous constatez une différence entre le manuel et les informations fournies en ligne, utilisez ces dernières en priorité.

Informations relatives à l'appareil

AATTENTION

FONCTIONNEMENT INATTENDU DE L'EQUIPEMENT

- La mise en œuvre de ce produit nécessite une certaine expertise en matière de conception et de programmation de systèmes de commande. Seules les personnes possédant cette expertise peuvent être autorisées à programmer, installer, modifier et mettre en œuvre ce produit.
- Respectez toutes les réglementations et normes de sécurité locales et nationales.
- Lisez les recommandations relatives à la cybersécurité détaillées au chapitre Informations concernant la cybersécurité, page 15.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Documents à consulter

Titre de la documentation	Référence
XGST2020 Terminal XG - Guide de démarrage rapide	HRB34094
Terminal portable XGST2020 - Guide du logiciel	EIO0000002166 (ENG),
	EIO0000002167 (FRE)

Vous pouvez télécharger ces publications ainsi que d'autres informations techniques sur notre site Web : www.tesensors.com.

Code QR

Un code QR incluant l'adresse Web de Telemecanique Sensors figure sur la Station compacte Ethernet. Les fiches techniques et les documents sont disponibles sur ce site Web.

http://www.gr.tesensors.com/XG0001

Commentaires utilisateur

Vos commentaires sur ce document sont les bienvenus. Vous pouvez nous contacter depuis la page de support technique du site Web TeSensors.

Cybersécurité

Les machines, les contrôleurs et les appareils associés sont généralement intégrés aux réseaux. Des personnes non autorisées et des logiciels malveillants peuvent accéder aux machines ainsi qu'à d'autres dispositifs sur le réseau/bus de terrain de la machine et sur les réseaux connectés si l'accès aux réseaux et aux logiciels n'est pas suffisamment sécurisé.

AAVERTISSEMENT

ACCÈS NON AUTORISÉ À LA MACHINE VIA DES LOGICIELS ET DES RÉSEAUX

- Dans le cadre de l'analyse des risques, il faut prendre en compte l'ensemble des dangers résultant de l'accès et de l'exploitation du réseau/bus de terrain et mettre en œuvre un plan de cybersécurité approprié.
- S'assurer que l'infrastructure matérielle et logicielle dans laquelle est intégrée la machine, de même que l'ensemble des mesures et règles organisationnelles concernant l'accès à l'infrastructure, tiennent compte des conclusions de l'analyse des risques et des dangers et respectent les bonnes pratiques et les normes en matière de sécurité informatique et de cybersécurité (série ISO/CEI 27000, ISO/CEI 15408, CEI 62351, ISA/CEI 62443, Critères communs pour l'évaluation de la sécurité des technologies de l'information, cadre de cybersécurité NIST et Information Security Forum : normes relatives aux bonnes pratiques en matière de sécurité de l'information par exemple).
- Vérifiez l'efficacité de vos systèmes de sécurité informatique et de cybersécurité à l'aide de méthodes appropriées et éprouvées.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Consultez le document Schneider Electric Cybersecurity Best Practices (https://www.se.com/ww/en/download/document/CS-Best-Practices-2019-340/ pour plus d'informations.

Informations générales Station compacte Ethernet

Informations générales

Objectif de ce chapitre

Ce chapitre présente la Station compacte OsiSense XG et la gamme associée d'équipements.

Présentation du système

Présentation de la Station compacte

La Station compacte est une station RFID qui offre les avantages suivants :

- 2 ports Ethernet
- · Connexion de 32 stations compactes au maximum
- Compatibilité avec la plupart des étiquettes 13,56 MHz disponibles sur le marché

Présentation de la technologie RFID

La technologie RFID utilise les ondes radio pour identifier et localiser des objets.

Un système RFID comprend trois composants :

- un lecteur (station de lecture/écriture),
- · une antenne radio,
- une étiquette électronique.

Fonctionnement d'un système RFID

L'étiquette est fixée sur ou dans l'objet à localiser ou à identifier. Il n'y a aucun contact avec le lecteur. Cela signifie que l'étiquette peut être placée à l'intérieur d'objets (boîtes, sacs, etc.) et que le lecteur peut être positionné dernière un écran de protection, tant que les matériaux ne sont pas métalliques.

Lorsqu'une étiquette entre dans le champ magnétique généré par le lecteur, elle détecte le signal et un échange de données (lecture ou écriture) se produit entre sa mémoire et le lecteur.

Présentation de l'offre OsiSense XG

OsiSense XG est un système RFID qui offre les fonctionnalités suivantes :

- · Traçabilité et suivi d'objets
- Flexibilité des systèmes de production
- Différents types de contrôle d'accès

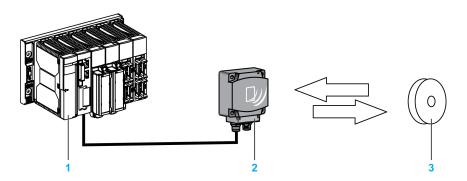
Un système ouvert :

- Système compatible avec les étiquettes conformes aux normes ISO 14443 et ISO 15693
- Protocoles Modbus TCP/IP et EtherNet/IP

Un système simple :

- Aucune programmation de station
- Format des données conforme aux normes d'automate (registres à 16 bits)

- Configuration automatique des paramètres de communication (vitesse, format, etc.)
- Câblage rapide à l'aide de connecteurs M12
- Gamme complète de câbles et d'accessoires de montage
- · Possibilité d'utiliser des supports métalliques


Système intégré :

- Lecteur, antenne radio et fonctionnalité de réseau dans un même équipement
- · Le lecteur RFID industriel le plus compact du marché

Principe des échanges

Présentation

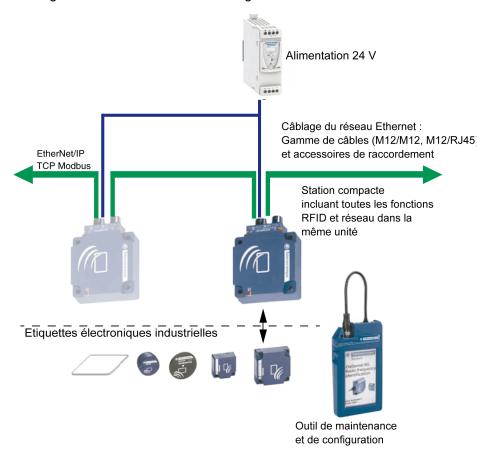
La Station compacte OsiSense XG permet d'échanger des informations entre l'étiquette et l'automate, comme indiqué ci-après :

- 1 Automate
- 2 Station compacte
- 3 Etiquette

Phases du processus

Le tableau suivant décrit les différentes phases d'échange :

Pha-	Echanges			
se	Automate	Station compacte	Station compacte	Etiquette
1			Recherche d'une étiquette da dialogue	ans la zone de
2			Réponse positive	
3	Envoi d'une cor	nmande de lecture/écriture		
4			Exécution de la commande (a vérifications)	avec
5	Renvoi d'un con	npte rendu		


NOTE:

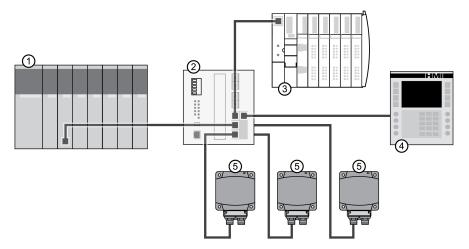
- Si la phase 3 est effectuée en l'absence d'étiquette, un message d'erreur est renvoyé à l'automate.
- Si la phase 4 renvoie une erreur détectée, elle est automatiquement relancée (jusqu'à 3 fois). Si une erreur est toujours détectée à la fin de la phase 4, un compte rendu d'erreur est renvoyé en phase 5.

Présentation de la gamme OsiSense XG

Présentation

Cette figure montre une illustration de la gamme OsiSense XG.

Vue système

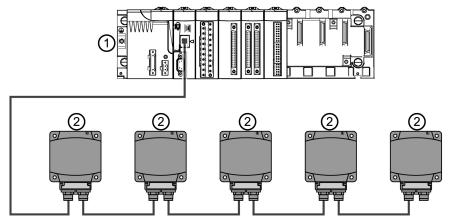

Description

La Station compacte OsiSense XG peut s'utiliser avec un scrutateur conforme au protocole, dans une architecture de système de commande. Le commutateur Ethernet non administré à 2 ports, intégré à la Station compacte, permet d'utiliser la topologie de réseau qui répond aux besoins de votre application. Ces topologies comprennent les éléments suivants :

- la topologie en étoile
- chaînage
- anneau (chaînage avec bouclage)
- · combinaison d'étoile et de chaînage

Étoile

La topologie en étoile permet de connecter des équipements réseau supplémentaires. Effectuer la maintenance sur un seul module (en retirant le câble réseau, ou en mettant le module sous tension, par exemple) n'affecte pas les autres modules.


- 1 Automate Quantum
- 2 Commutateur Ethernet
- 3 Îlot Advantys STB
- 4 Equipement IHM Magelis
- 5 OsiSense XG Station compacte

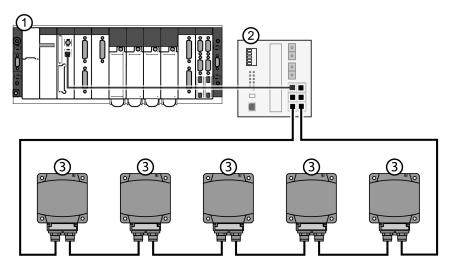
Chaînage

Vous pouvez créer une topologie en boucle de chaînage, en utilisant les ports de commutation intégrés pour raccorder jusqu'à 32 stations compactes OsiSense XG.

NOTE: Lorsque vous prenez en compte la topologie à chaînage, notez que :

- effectuer la maintenance sur un module quelconque non physiquement situé à la fin du chaînage (en retirant le câble réseau, ou en mettant le module sous tension, par exemple) affecte des modules figurant jusqu'au bas de la chaîne du modèle administré.
- Le commutateur Ethernet intégré à 2 ports, situé dans chaque module, ne nécessite aucun autre commutateur Ethernet.

- 1 Automate M340
- 2 OsiSense XG Station compacte


Anneau

Vous pouvez créer une topologie en anneau, en utilisant un commutateur avec un protocole de gestion de la redondance (par exemple ConneXium TCSESM043F23F0).

Vous pouvez raccorder jusqu'à 32 stations compactes OsiSense XG.

NOTE: Si vous envisagez une topologie en anneau, notez les points suivants :

 Si un segment du réseau devient hors service ou est rompu, toutes les stations compactes restent opérationnelles.

- 1 Automate Premium
- 2 Commutateur Ethernet avec fonction de rétrobouclage
- 3 OsiSense XG Station compacte

Ce tableau montre les commutateurs ConneXium avec fonction de redondance, compatibles avec les stations compactes :

Référence	Description
TCSESB083F23F0	Commutateur administré de base à 8 ports 8TX
TCSESB083F2CU0	Commutateur administré de base à 8 ports 6TX – 2FX multimode
TCSESB093F2CU0	Commutateur administré de base à 9 ports 6TX – 3FX multimode
TCSESM043F1CS0	Commutateur administré à 4 ports 3TX – 1FX monomode
TCSESM043F1CU0	Commutateur administré à 4 ports 3TX – 1FX multimode
TCSESM043F23F0	Commutateur administré à 4 ports 4TX
TCSESM043F2CS0	Commutateur administré à 4 ports 2TX – 2FX monomode
TCSESM043F2CU0	Commutateur administré à 4 ports 2TX – 2FX multimode
TCSESM083F1CS0	Commutateur administré à 8 ports 7TX – 1FX monomode
TCSESM083F1CU0	Commutateur administré à 8 ports 7TX – 1FX multimode
TCSESM083F23F0	Commutateur administré à 8 ports 8TX
TCSESM083F2CS0	Commutateur administré à 8 ports 6TX – 2FX monomode
TCSESM083F2CU0	Commutateur administré à 8 ports 6TX – 2FX multimode
TCSESM103F23G0	Commutateur administré à 10 ports 8TX/2TX-GBIT
TCSESM103F2LG0	Commutateur administré à 10 ports 8TX/2SFP-GBIT
TCSESM163F23F0	Commutateur administré à 16 ports 16TX
TCSESM163F2CU0	Commutateur administré à 16 ports 14TX – 2FX multimode
TCSESM163F2CS0	Commutateur administré à 16 ports 14TX – 2FX monomode

Référence	Description
TCSESM243F2CU0	Commutateur administré à 24 ports 22TX – 2FX multimode
TCSESM083F23F1	Commutateur administré étendu à 8 ports 8TX
TCSESM063F2CS1	Commutateur administré étendu à 8 ports 6TX – 2FX monomode
TCSESM063F2CU1	Commutateur administré étendu à 8 ports 6TX – 2FX multimode

Informations concernant la cybersécurité

La station RFID XGCS850C201 doit être isolée du réseau. L'architecture réseau recommandée consiste à placer la station derrière un automate ou un équipement externe. Pour connaître les différentes topologies de réseau proposées, reportezvous au chapitre Vue d'ensemble du système.

Schneider Electric recommande également une approche de défense en profondeur de la cybersécurité. Aucune approche, à elle seule, ne peut garantir la cybersécurité. L'approche de défense en profondeur définit des couches sur le réseau avec des fonctions de sécurité, des équipements et des processus.

Pour le produit XGCS850C201, Schneider Electric recommande les meilleures pratiques suivantes :

Partitionnement du réseau :

Installez les équipements derrière des pare-feu capables d'effectuer une inspection approfondie des paquets (par exemple, le pare-feu Tofino) avec des ensembles de règles limitant l'accès aux fonctions et protocoles approuvés ainsi qu'aux équipements et points de terminaison nécessitant un accès. Pour plus d'informations, reportez-vous au document suivant : https://www.se.com/ww/en/download/document/STN%20v2/.

· Trafic IP anormal:

Détectez et bloquez le trafic IP anormal et les paquets mal formés (utilisez par exemple le pare-feu Tofino).

· Adressage IP:

Il est recommandé d'utiliser une plage d'adresses IP privées qui autorise uniquement la communication entre le concentrateur et l'automate.

· Contrôles d'accès :

Installez des contrôles physiques et logiques afin qu'aucun personnel ni équipement non autorisé ne puisse accéder à vos systèmes, composants, appareils et réseaux.

Pour plus d'informations sur la protection de votre installation et pour obtenir de l'aide, contactez le support Schneider Electric local.

Caractéristiques techniques et description physique

Objectif de ce chapitre

Ce chapitre présente les caractéristiques et la description physique de la Station compacte OsiSense XG.

Caractéristiques de la Station compacte

Caractéristiques

Le tableau indique les caractéristiques techniques de la Station compacte :

Caractéristique		Description			
Température	Fonctionnement	−25 à +70 °C (−13 à +158 °F)			
	Stockage	–40 à +85 °C (–40 à +185 °F)			
Indice de protection	1	IP65 conformément à la norme IEC60529			
Résistance aux vibr	ations	2 mm (0,078 po) de 5 à 29,5 Hz / 7 g (7 gn) de 29,5 à 150 Hz			
EN 60068.2.27		30 g (30 gn) / 11 ms			
EN 60068.2.6					
Résistance aux cho	cs mécaniques	IK02 conformément à la norme EN 50102			
Normes/Certificatio	ns	UL 508, CE, EN 300330, EN 301489-01/03			
Immunité aux pertu	rbations	mmunité aux décharges électrostatiques, champs électromagnétiques rayonnés, transitoires lectriques rapides, surtensions électriques, perturbations conduites et induites par les hamps radioélectriques, et champs magnétiques à la fréquence du réseau, conformément à a norme IEC61000/EN55022			
Dimensions de l'uni	té	80 x 93 x 40 mm (3,15 x 3,66 x 1,57 po)			
Fréquence RFID		13,56 MHz			
Type d'étiquette ass	sociée	Étiquettes ISO 15693 et ISO 14443 standardisées			
		Détection automatique du type d'étiquette			
Distance de détection	on nominale	20 à 100 mm (0,78 à 3,94 po) selon l'étiquette associée			
Alimentation		24 V CC PELV			
		Raccordement à une prise mâle M8 4 broches			
Limites de tension o	d'alimentation	19,2 à 29 V, ondulation comprise			
Puissance consomi	mée	< 150 mA			
Communication	Interface	2 ports Ethernet 10 BASE-T/100 BASE-TX			
Raccordement		2 prises femelles M12 D pour le bouclage			
Affichage	•	- DEL bicolore pour la communication RFID			
		- DEL quadricolore pour la communication Ethernet			
Couple de serrage pour les vis de montage		< 3,6 Nm (31,9 lbf-in)			

AVERTISSEMENT DESTINE AUX UTILISATEURS AUX ETATS-UNIS ET AU CANADA

AVERTISSEMENT DESTINE AUX UTILISATEURS AUX ETATS-UNIS

Déclaration de la Federal Communication Commission sur les interférences 47 CFR Section 15.105(b)

Cet équipement a été testé et jugé conforme aux limites d'un appareil numérique de Classe B, selon la section 15 des règles de la FCC. Ces limites visent à assurer une protection raisonnable contre les interférences nocives dans une installation résidentielle. Cet équipement génère, utilise et peut émettre des radiofréquences qui, en cas d'installation ou d'utilisation non conforme aux instructions, peuvent perturber les communications radio. Cependant, l'absence d'interférences dans une installation particulière ne peut être garantie.

Si cet appareil cause des interférences nuisibles à la réception des signaux de radio ou de télévision, ce qui peut être déterminé en allumant et en éteignant l'appareil, l'utilisateur est invité à essayer de corriger ces interférences par l'un des moyens suivants :

- · Réorienter ou déplacer l'antenne de réception.
- Augmenter la distance entre l'équipement et le récepteur.
- Connectez l'équipement à une sortie d'un circuit autre que celui auquel le récepteur est connecté.
- Demander de l'aide au fabricant ou à un technicien radio/TV expérimenté.

Cet appareil est conforme à la partie 15 des règles de la FCC. Son fonctionnement est soumis aux conditions suivantes :

- 1. Cet appareil ne doit pas causer d'interférences nuisibles.
- 2. Cet appareil doit accepter toutes les interférences reçues, y compris celles à l'origine d'un fonctionnement indésirable.

MODIFICATION NON AUTORISEE INTERDITE

47 CFR Section 15.21

ATTENTION : il est interdit de modifier, altérer ou changer cet appareil, de quelque manière que ce soit, sans l'autorisation écrite et signée de SCHNEIDER ELECTRIC. Toute modification non autorisée annule l'autorisation d'utilisation de l'appareil délivrée par la FCC, ainsi que la garantie de SCHNEIDER ELECTRIC.

WARNING TO USERS IN THE CANADA / ATTENTION POUR LES UTILISATEURS AU CANADA

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. this device may not cause interference, and
- 2. this device must accept any interference received, including interference that may cause undesired operation of the device.

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- 1. l'appareil ne doit pas produire de brouillage, et
- 2. l'utilisateur du dispositif doit être prêt à accepter tout brouillage radioélectrique reçu, même si ce brouillage est susceptible de compromettre le fonctionnement du dispositif.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Références:

Référence	XGCS850C201
ID FCC	Y7HXGCS85
Info IC	7002C-XGCS85

Caractéristiques des étiquettes

Caractéristiques des étiquettes

Ce tableau fournit les caractéristiques techniques des étiquettes dotées de mémoire EEPROM :

Туре	XGHB	XGHB	XGHB	XGHB	XGHB	ХСНВ	XGHB
d'étiquette	123345	444345	320345	221346	211345	520246	90E340
Température de	−25 à +70 °C -25 à						-25 à +50 °C
fonctionnement :	(–13 à +158 °F)		(-13 à +185°F)	(-13 à +122°F)			
Température de	-40 à +85 °C					-40 à +90 °C	-40 à +55 °C
stockage	(-40 à +185 °F)					(-40 à +194 °F)	(-40 à +131°F)
Indice de protection	IP68		IP65	IP68		IP68	IP65
Normes prises en charge	ISO 15693	ISO 14443	ISO 15693				•
Résistance aux vibrations	2 mm (0,078 po)	de 5 à 29,5 Hz	/ 7 g (7 gn) de 29,5	5 à 150 Hz			
EN 60068.2.27	30 g (30 gn) / 11	ms					
EN 60068.2.6							
Résistance aux chocs mécaniques	IK02 conforméme	ent à la norme E	EN 50102				
Dimensions	Ø 12 x 8 mm (0,47 x 0,31 po)	40x40x15m- m (1,57 x 1,57- x 0,59 po)	Ø 30 x 3 mm (1,18 x 0,12 po)	26x26x13m- m (1,02x1,02x- 0,51 po)	Ø 18 mm (0,70 po)	Ø 50 x 3 mm (1,97 x 0,12 po)	58 x 85,5 x 1 mm (2,28 x 3,34 x- 0,039 po)
Matériaux du boîtier	PBT		PC	PBT	•	PPA	PVC
Méthode de montage	Collage	Vis ou clip	Vis	Vis ou clip	Trou fileté	Vis	-
Couple de serrage pour les vis de montage	- < 1 Nm (8,85 lbf-in)						-
Capacité mémoire (octets)	304	3 408	112	256	256	112	256
Type de mémoire	EEPROM			l	•		
Type de fonctionnement	Lecture/écriture						
Distance de détection nominale (lecture/écriture)	20 mm (0,78 po)	48 mm (1,89 po)	65 mm (2,56 po)	55 mm (2,16 po)	20 mm (0,78 po)	100 mm (3,94 po)	100 mm (3,94 po)
Nombre de cycles de lecture	Illimité						
Nombre de cycles d'écriture	100 000 sur la plage de température						
Nombre de cycles d'écriture à 30 °C (86 °F)	2,5 millions de cycles types						

Type d'étiquette	XGHB	XGHB	XGHB	XGHB	ХСНВ	ХСНВ	хднв
	123345	444345	320345	221346	211345	520246	90E340
Temps de lecture/écriture	Temps de lecture/écriture, page 20						
Durée de rétention	10 ans						

Ce tableau fournit les caractéristiques techniques des étiquettes dotées de la mémoire FeRAM :

Type d'étiquette	XGHB320246	XGH440245	XGH440845	XGHB441645	XGHB443245				
Température de	−25 à +70 °C	–25 à +70 °C							
fonctionnement :	(–13 à +158 °F)	(–13 à +158 °F)							
Température de	-40 à +85 °C	40 à +85 °C							
stockage	(-40 à +185 °F)	-40 à +185 °F)							
Indice de protection	IP65	IP68							
Normes prises en charge	ISO 15693		ISO 14443						
Résistance aux vibrations	2 mm (0,078 po) de 5	5 à 29,5 Hz / 7 g (7 gn) (de 29,5 à 150 Hz						
EN 60068.2.27	30 g (30 gn) / 11 ms								
EN 60068.2.6									
Résistance aux chocs mécaniques	IK02 conformément à	IK02 conformément à la norme EN 50102							
Dimensions	Ø 30 x 3 mm (1,18 x 0,12 po)								
Matériaux du boîtier	PC	PBT							
Méthode de montage	Vis	Vis ou clip							
Couple de serrage pour les vis de montage	< 1 Nm (8,85 lbf-in)								
Capacité mémoire (octets)	2 000	2 000	8 192	16 384	32 768				
Type de mémoire	FeRAM								
Type de fonctionnement	Lecture/écriture								
Distance de détection nominale (lecture/ écriture)	65 mm (2,56 po)	65 mm (2,56 po) 39 mm (1,53 po)							
Nombre de cycles de lecture	Illimité	Illimité							
Nombre de cycles d'écriture	10 ¹⁰ sur la plage de t	10 ¹⁰ sur la plage de température							
Temps de lecture/ écriture	Temps de lecture/écr	Temps de lecture/écriture, page 20							
Durée de rétention	10 ans	10 ans							

Zone mémoire d'étiquette

Ces étiquettes sont prises en charge conformément au tableau ci-dessous et accessibles en lecture/écriture.

La Station compacte peut lire n'importe quelle étiquette dans la plage XGHB (détection automatique du type d'étiquette).

Référence d'étiquette	Taille de la mémoire	Plage d'adresses	
	(octets)	Déc	Hex
XGHB320345	112	0 à 55	0 à 37
XGHB520246	112	0 à 55	0 à 37
XGHB90E340	256	0 à 127	0 à 7F
XGHB211345	256	0 à 127	0 à 7F
XGHB221346	256	0 à 127	0 à 7F
XGHB123345	304	0 à 151	0 à 97
XGHB440245	2000	0 à 999	0 à 3E7
XGHB320246	2000	0 à 999	0 à 3E7
XGHB444345	3408	0 à 1703	0 à 6A7
XGHB440845	8192	0 à 4095	0 à FFF
XGHB441645	16384	0 à 8191	0 à 1FFF
XGHB443245	32768	0 à 16383	0 à 3FFF

NOTE: si une adresse demandée est hors de la plage d'adresses de l'étiquette, un code d'erreur détectée est généré.

Temps de lecture/écriture et vitesse maximum des étiquettes

Ce tableau indique le calcul du temps de lecture/écriture en statique et la vitesse maximum des étiquettes en dynamique :

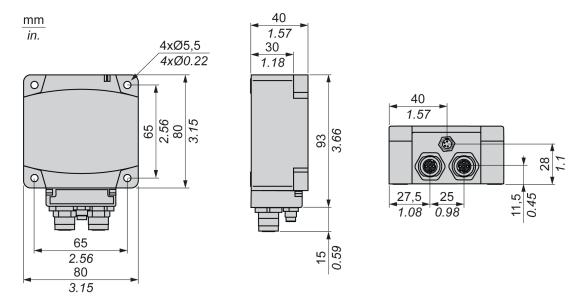
Référence	Statique		Dynamique		
d'étiquette	Calcul du temps d'accès (ms)		Vitesse maximum des étiquettes (m/s)		
	Temps de lecture	Temps d'écriture	Lecture d'un identifiant	Lecture d'un registre*	Lecture ou écriture de 10 registres*
XGHB320345	12 + 0,825 x N	12 + 5,6 x N	5,8	2,7	0,9
XGHB520246	12 + 0,825 x N	12 + 5,6 x N	7,1	4,0	0,8
XGHB90E340	12 + 0,825 x N	20 + 11,8 x N	7,1	4,0	0,8
XGHB211345	12 + 0,825 x N	19 + 4,1 x N	3,2	1,1	0,6
XGHB221346	12 + 0,825 x N	20 + 11,8 x N	4,2	2,6	0,5
XGHB123345	12 + 0,825 x N	20 + 11,8 x N	3	0,9	0,4
XGHB440245	7 + 2 x N	7 + 2,4 x N	3,5	2,5	1
XGHB320246	7 + 2 x N	7 + 2,4 x N	3,5	2,5	1
XGHB444345	9,25 + 0,375 x N	13 + 0,8 x N	4,8	2,7	1,8
XGHB440845	6 + 0,25 x N	6 + 0,25 x N	3,8	3,0	2,6
XGHB441645	6 + 0,25 x N	6 + 0,25 x N	3,8	3,0	2,6
XGHB443245	6 + 0,25 x N	6 + 0,25 x N	3,8	3,0	2,6

N : nombre de registres de 16 bits

^{* :} avec la fonction de « lecture/écriture automatique »

Description de la Station compacte

Présentation de la Station compacte


Cette figure présente la Station compacte :

Nb	Description
1	TAG : Voyant d'étiquette électronique
2	COM : Voyant de communication
3	NS : Voyant d'état du réseau
4	LK/SP : Voyant du port de communication Ethernet N° 1
5	Connecteur M12 - Port Ethernet N° 1
6	Connecteur M8 - Alimentation 24 Vcc
7	Connecteur M12 - Port Ethernet N° 2
8	LK/SP : Voyant du port de communication Ethernet n° 2
9	MS : Voyant d'état du module Ethernet

Dimensions

La figure ci-après indique les dimensions de la Station compacte :

Raccordement de la Station compacte OsiSense XG

Présentation

La Station compacte est équipée des connecteurs suivants :

- un connecteur mâle M8 pour l'alimentation
- deux connecteurs femelles M12 codés D pour la communication Ethernet

Câblage d'alimentation

Le tableau suivant décrit les broches du connecteur M8 :

Connecteur M8	Broche	corrigé	XZCP0941L• Couleur des fils
	1	+24 V	Marron
4 2	2	Non connectée	Blanc
	3	0 V	Bleu
3 1	4	Non connecté	Noir

NOTE: Utilisez une alimentation TBTP et un fusible de protection (1 A). L'alimentation utilisée doit être de classe II conformément à la norme VDE 0106 (par exemple, la gamme Phaseo ABL 7/8 de Schneider Electric). Le signal 0 V doit être relié à la terre pour augmenter la compatibilité électromagnétique.

Câblage des communications

Le tableau suivant décrit les broches des connecteurs M12 et la correspondance avec le connecteur RJ45 des câbles de communication, page 23 :

Connecteur M12	Broche du M12	corrigé	Description	Broche du RJ45	Connecteur RJ45
1	1	TD+	Transmission de données +	1	
	2	RD+	Réception de données +	2	
4 0 0 2	3	TD-	Transmission de données –	3	
	4	RD-	Réception de données –	6	
	-	-	Non connectée	4	
3	-	-	Non connecté	6	
	-	-	Non connectée	7	
	-	-	Non connectée	8	

Accessoires de câblage

Présentation

Cette gamme d'accessoires se compose de câbles d'alimentation, de câbles de communication et d'accessoires de connexion Ethernet.

Câbles d'alimentation

Le tableau suivant présente la gamme de câbles d'alimentation :

Description	Longueur	Référence
Connecteur M8 précâblé	2 m (6,56 pi)	XZCP0941L2
	5 m (16,4 pi)	XZCP0941L5
	10 m (32,8 pi)	XZCP0941L10

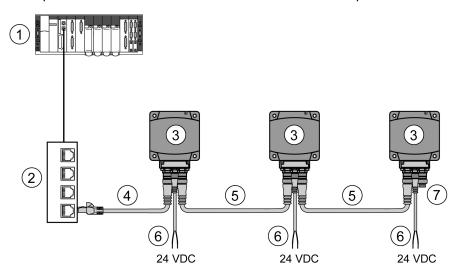
Câbles de communication

Le tableau suivant présente la gamme de câbles de communication :

Description	Embouts	Longueur	Référence
Câbles de connexion en	1 connecteur IP67, M12, 4 broches et 1 connecteur RJ45	1 m (3,28 pi)	XGSZ12E4501
cuivre, droits	Connected R343	3 m (9,84 ft)	XGSZ12E4503
		10 m (32,8 pi)	XGSZ12E4510
	2 connecteurs IP67, M12, 4 broches	1 m (3,28 pi)	XGSZ12E1201
		3 m (9,84 ft)	XGSZ12E1203
		10 m (32,8 pi)	XGSZ12E1210
		25 m (82 pi)	XGSZ12E1225
Câbles de connexion en	1 connecteur IP67, M12, 4 broches coudé et 1 connecteur RJ45	3 m (9,84 ft)	XGSZ22E4503
cuivre, coudés	Connecteur No+3	10 m (32,8 pi)	XGSZ22E4510
Câble Ethernet en cuivre (2 paires torsadées 24 AWG blindées)	Connecteurs à installer	300 m (984,2 pi)*	TCSECN300R2
Connecteur RJ45	Conforme à la norme EIA/TIA-568-D	-	TCSEK3MDS
Connecteur M12	Conforme à la norme CEI 60176-2-101	-	TCSEK1MDRS

* La longueur maximale des câbles de connexion Ethernet de ce type est de 80 m (262,5 pi).

Accessoires de connexion Ethernet


Le tableau suivant présente la gamme des accessoires de connexion Ethernet :

Description	Référence
Commutateur Ethernet M12 ConneXium IP67	TCSESU051F0
Commutateur Ethernet ConneXium avec fonction de bouclage	TCSESB••••••
	TCSESM******
Adaptateur M12 femelle / RJ45	TCSESAAF11F13F00
Embout de connecteur M12 pour Station compacte	ASI67FACC1

Exemple de câblage des stations compactes

Schéma de raccordement

Exemple de réseau Ethernet TCP/IP avec des stations compactes :

- 1 Automate
- 2 Commutateur Ethernet
- 3 Station compacte
- 4 Câble Ethernet XGSZ12E45 ••
- 5 Câble Ethernet XGSZ12E12 ••
- 6 Câble d'alimentation XZCP0941L.
- **7** Embout de connecteur M12 ASI67FACC1 (2 embouts fournis avec la Station compacte)

La longueur maximum de chaque segment est de 80 m (262,5 pi).

Dans cet exemple, la longueur maximum du bus est de 320 m (1050 pi) :

- 80 m (262,5 pi) entre l'automate et le commutateur Ethernet,
- 3 x 80 m (787,4 pi) entre chaque Station compacte.

NOTE: il est possible de relier jusqu'à 32 stations compactes.

Installation du système

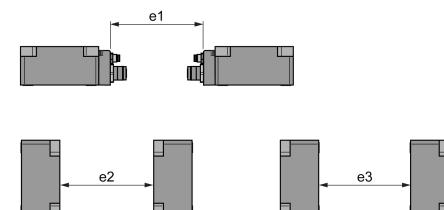
Objectif de ce chapitre

Ce chapitre décrit la procédure d'installation de la Station compacte OsiSense XG.

Précautions d'installation

Distances entre des stations compactes

Lorsque deux stations compactes sont trop proches, il y a un risque de perturbation mutuelle.


AVIS

COMPORTEMENT IMPREVU

Suivez les précautions d'installation fournies dans ce chapitre sur les distances entre deux stations compactes.

Le non-respect de ces instructions peut provoquer des dommages matériels.

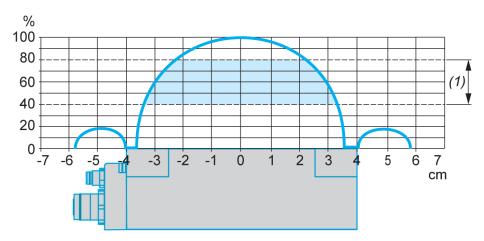
Les distances entre deux stations compactes identiques dépendent de l'étiquette utilisée :

Distances minimum en mm (pouces):

Référence d'étiquette	Distances minimum en mm (pouces)			
	e1	e2	e3	
XGHB90E340	430 (16,93)	750 (29,53)	280 (11,02)	
XGHB520246				
XGHB221346	280 (11,02)	530 (20,86)	260 (10,24)	
XGHB320•••	310 (12,20)	540 (21,25)	240 (9,45)	
XGHB211345	200 (7,87)	370 (14,57)	170 (6,69)	
XGHB123345				
XGHB44••••	310 (12,20)	400 (15,75)	160 (6,29)	

Positionnement angulaire

L'angle entre la Station compacte et l'étiquette modifie la distance de détection, conformément au graphique ci-dessous :



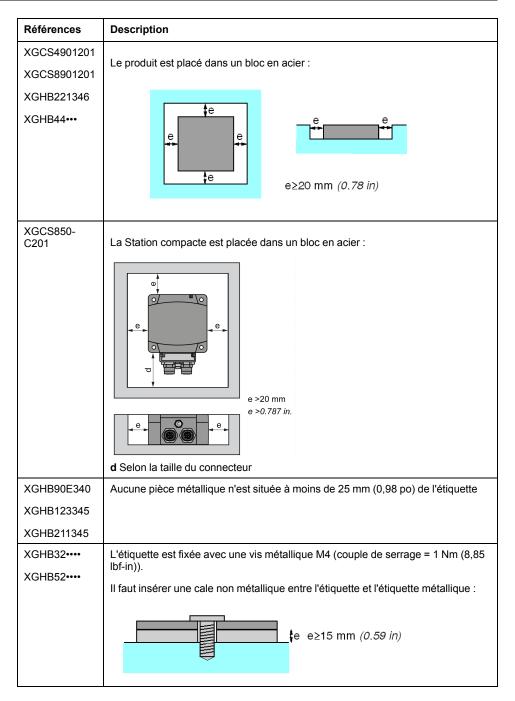
K = facteur de correction à appliquer à la distance de détection nominale.

Distance de détection = distance de détection nominale x K.

Zones de détection

Les zones de dialogue de la Station compacte sont circulaires. Il n'y a aucune direction recommandée pour le déplacement de l'étiquette. Le schéma suivant montre les zones de dialogue de la Station compacte :

(1) Zone de mouvement consultée : entre 0,4 et 0,8 de la distance de détection nominale.


NOTE: Distance de détection nominale (Pn)

La distance de détection conventionnelle ne prend pas en compte les dispersions (fabrication, température, tension, assemblage dans du métal).

Montage dans du métal

La présence de métal à proximité des étiquettes et de la Station compacte affecte la distance de détection (distance de lecture/écriture).

Ce tableau montre les assemblages minimum autorisés dans un bloc en métal :

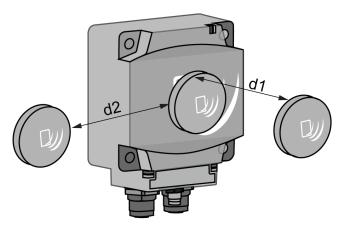
Ce tableau montre l'effet sur la distance de détection nominale lorsque la Station compacte et l'étiquette sont assemblées dans du métal conformément aux scénarios les plus défavorables indiqués ci-dessus :

Référence	Taille de mémoire (octets)	Dimensions	Distance de détection réduite en cas de présence de métal	Distance de détection nominale
XGHB90E340	256	Badge de 85 x 58 x 0,8 mm (3,35 x 2,28 x 0,03 po)	80 mm (3,15 po)	100 mm (3,94 po)
XGHB520246	112	Ø 50 x 3 mm (1,97 x 0,12 po)		
XGHB221346	256	26 x 26 x 13 mm (1,02 x 1,02 x 0,51 po)	33 mm (1,29 po)	55 mm (2,16 po)
XGHB320345 XGHB320246	112 2 000	Ø 30 x 3 mm (1,18 x 0,12 po)	56 mm (2,20 po)	65 mm (2,56 po)

Référence	Taille de mémoire (octets)	Dimensions	Distance de détection réduite en cas de présence de métal	Distance de détection nominale
XGHB211345	256	Ø 18 x 12 mm	15 mm	20 mm
		(0,70 x 0,47 po)	(0,59 po)	(0,78 po)
XGHB123345	304	Ø 12 x 8 mm		
		(0,47 x 0,31 po)		
XGHB444345	3 408	40 x 40 x 15 mm	34 mm	48 mm
		(1,57 x 1,57 x 0,59 po)	(1,33 po)	(1,89 po)
XGHB440245	2 000	40 x 40 x 15 mm	45 mm	65 mm
		(1,57 x 1,57 x 0,59 po)	(1,77 po)	(2,56 po)
XGHB440845	8 192	40 x 40 x 15 mm	28 mm	39 mm
XGHB441645	16 384	(1,57 x 1,57 x 0,59 po)	(1,10 po)	(1,53 po)
XGHB443245	32 768			

Distances entre les étiquettes

AVIS


COMPORTEMENT IMPREVU

Suivez les précautions d'installation fournies dans ce chapitre sur les distances entre deux étiquettes.

Le non-respect de ces instructions peut provoquer des dommages matériels.

NOTE: Lorsque deux étiquettes sont trop proches, cela peut déclencher des erreurs de dialogue.

Cette figure montre la distance minimum entre deux étiquettes identiques :

Distances minimum entre deux étiquettes identiques en fonction de leur positionnement :

Référence d'étiquette	Distances minimum en mm (pouces)		
	d1	d2	
XGHB90E340	140 (5,51)	110 (4,33)	
XGHB520246			
XGHB221346	50 (1,97)	120 (4,72)	
XGHB320345	60 (2,36)	190 (7,48)	
XGHB440245			

Référence d'étiquette	Distances minimum en mm (pouces)	
	d1	d2
XGHB320246		
XGHB211345	20 (0,79)	120 (4,72)
XGHB123345		
XGHB444345	40 (1,57)	70 (2,75)
XGHB440845	10 (0,39)	60 (2,36)
XGHB441645		
XGHB443245		

Perturbations électromagnétiques

AVIS

COMPORTEMENT IMPREVU

Ne positionnez pas la Station compacte à moins de 300 mm (12 po) d'un équipement générateur de perturbations électromagnétiques (moteur électrique, vanne électromagnétique...).

Le non-respect de ces instructions peut provoquer des dommages matériels.

NOTE: les perturbations électromagnétiques peuvent bloquer le dialogue entre la Station compacte et une étiquette.

Configuration de l'adresse IP

Présentation

Adresse IP : chaque équipement connecté à un réseau Ethernet doit avoir une adresse IP unique. Cette adresse permet une identification univoque.

Masque de sous-réseau : le masque de sous-réseau définit une plage d'adresses IP accessible depuis un équipement.

Ce tableau décrit les masques de sous-réseau IP standard :

Classe de réseau	Bits d'hôte	Masque de sous-réseau
Α	24	255.0.0.0
В	16	255.255.0.0
С	8	255.255.255.0

Ce tableau fournit un exemple de plages d'adresses accessibles, en fonction de la classe du réseau :

Classe de réseau	Adresses	Plages d'adresses accessibles
В	IP: 192.168.0.1	IP: 192.168.xxx.xxx
	Masque : 255.255.0.0	
С	IP: 192.168.0.1	IP: 192.168.0.xxx
	Masque : 255.255.255.0	

NOTE: xxx représente une valeur possible comprise entre 0 et 255.

Configuration de l'adresse

L'adresse par défaut, définie en usine, est 192.168.0.10.

L'adresse IP est configurée à l'aide de paramètres avec :

- · Terminal portable XGST2020,
- IP Recovery Tool.

AVIS

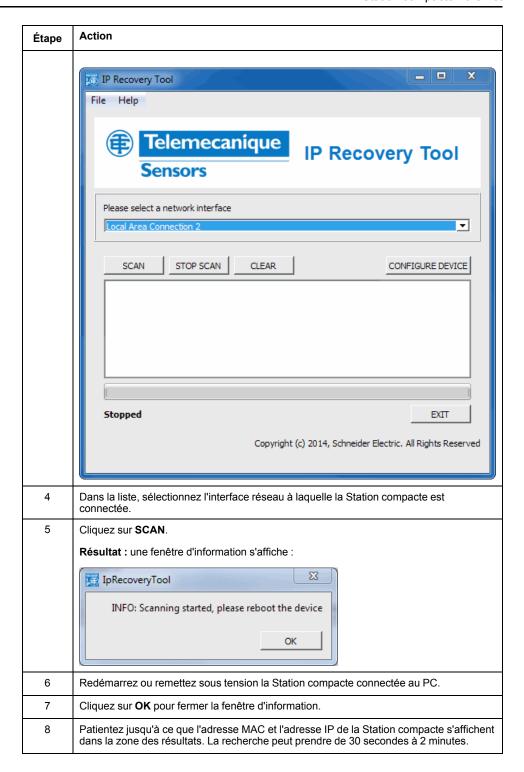
DETERIORATION INVOLONTAIRE DE L'EQUIPEMENT

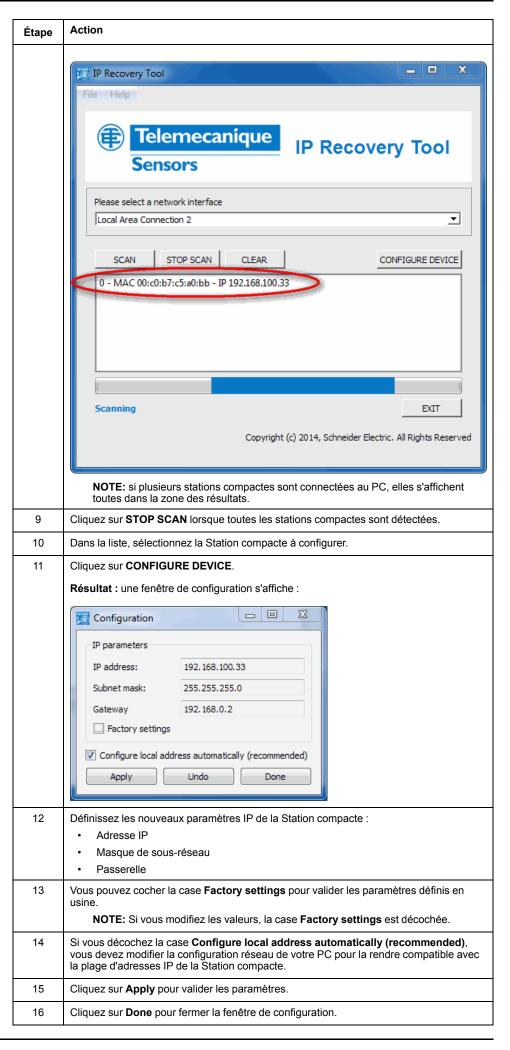
- N'utilisez pas l'adresse IP configurée en usine.
- Définissez une autre adresse IP pour utiliser l'équipement.

Le non-respect de ces instructions peut provoquer des dommages matériels.

NOTE: plusieurs stations compactes ayant une adresse IP identique sur le même réseau génèrent une condition d'adresse IP dupliquée (Voyants de diagnostic de la station compacte, page 73).

Configuration de l'adresse IP avec le terminal portable XGST2020


Vous pouvez configurer les paramètres IP de la Station compacte avec le terminal portable XGST2020. Pour plus d'informations, consultez la documentation de l'équipement, page 7.


NOTE: l'adresse IP de la Station compacte doit être connue. Si tel n'est pas le cas, utilisez IP Recovery Tool (voir ci-dessous).

Configuration de l'adresse IP avec IP Recovery Tool

Pour récupérer et configurer l'adresse IP d'une Station compacte, procédez comme suit :

Étape	Action
1	Téléchargez et installez le logiciel, page 7 IP Recovery Tool sur votre PC.
2	Connectez une Station compacte à votre PC avec un câble Ethernet M12/RJ45 (XGSZ12E4501).
3	Démarrez le logiciel IP Recovery Tool.

Étape	Action
17	Cliquez sur EXIT pour fermer le logiciel IP Recovery Tool.
18	Redémarrez la Station compacte pour appliquer les nouveaux paramètres IP.

Principes de fonctionnement

Objectif de ce chapitre

Ce chapitre décrit le principe de fonctionnement du système, basé sur des zones de mémoire.

Mode de fonctionnement de la lecture/écriture

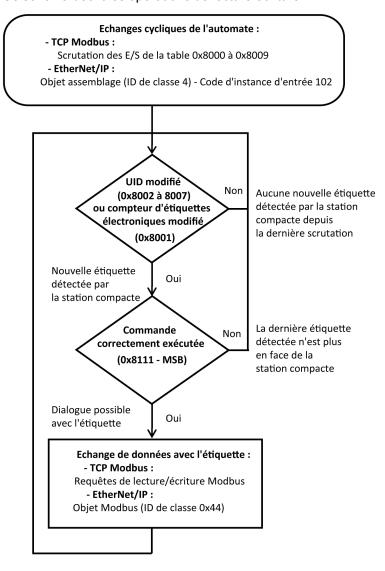
Présentation

Pour les opérations de lecture/écriture, deux modes de fonctionnement sont disponibles :

- Lecture/écriture statique : applications où l'étiquette est arrêtée en face de la Station compacte.
- Lecture/écriture dynamique : applications où l'étiquette ne s'arrête pas en face de la Station compacte.

Lecture/écriture statique

Le contrôleur doit scruter de manière cyclique l'état de la Station compacte avant d'envoyer des requêtes de lecture ou d'écriture adressées à la mémoire interne de l'étiquette.


Un tableau de registres de maintien dans la zone mémoire système de la Station compacte est dédié à cette fonction :

- Registre d'état : un bit de ce registre est mis à 1 lorsque la Station compacte détecte une étiquette.
- Compteur d'étiquettes : ce registre est incrémenté chaque fois que la Station compacte détecte une nouvelle étiquette.
- Identifiant : un groupe de 8 registres dans lequel est stocké l'identifiant de la dernière étiquette détectée par la Station compacte.

La combinaison de ces informations indique l'état exact du système :

- Arrivée d'une étiquette en face de la Station compacte.
- Etiquette nouvelle ou identique à la précédente.
- Opérations de lecture/écriture dans l'étiquette possibles ou non.

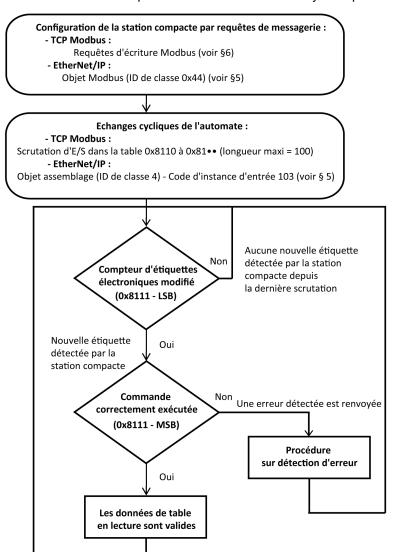
Ce schéma décrit les opérations de lecture/écriture :

Lecture/écriture dynamique :

La Station compacte peut être configurée pour exécuter automatiquement des commandes de lecture/écriture chaque fois qu'une nouvelle étiquette est détectée. Les résultats des dernières commandes sont accessibles en permanence dans la mémoire système de la Station compacte (Table de lecture, page 41). La synchronisation entre le programme de l'application automate et la présence d'une étiquette n'est plus nécessaire.

Tout d'abord, le contrôleur doit envoyer les requêtes d'écriture à la Station compacte pour configurer et activer les commandes de lecture/écriture automatique, page 38.

Ensuite, le contrôleur doit scruter de manière cyclique la table de lecture de la station compacte :

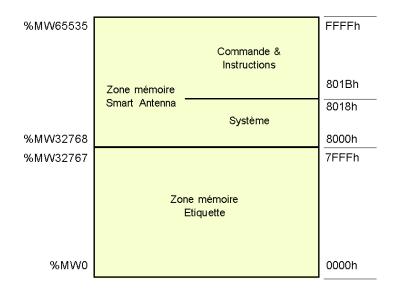

- Premier registre : état, un bit de ce registre est mis à 1 lorsque la Station compacte détecte une étiquette.
- Deuxième registre : compteur d'étiquettes et code d'erreur détectée.
- Troisième au nième registre : résultats des commandes de lecture.

La combinaison de ces informations indique l'état exact du système :

- Arrivée d'une étiquette en face de la Station compacte.
- Etiquette nouvelle ou identique à la précédente.
- Données lues de la dernière étiquette détectée par la Station compacte.

Toutes les données sont remplacées à l'arrivée de l'étiquette suivante.

Ce schéma décrit les opérations de lecture/écriture dynamique :


Zones mémoire

Présentation

La mémoire d'adressage est divisée en deux zones :

- La zone mémoire de l'étiquette, page 19
- La zone mémoire de la Station compacte :
 - zone système, page 37,
 - zones de commande/d'instructions, page 38.

Définition des zones d'adresses des registres de maintien utilisés :

Zone mémoire système de la Station compacte

Description de la zone

Composition de la zone système :

Registre	Description	Accès 1	Protégé
8000h	Famille d'étiquettes présente / indicateurs du système d'étiquette	L	Non
8001h	Compteur d'étiquettes	L/E	Non
8002 à 8009h	Identifiant	L	Non

1	L = Lecture, E = Ecriture
---	---------------------------

Les modifications apportées aux valeurs dans cette zone sont prises en compte immédiatement par la Station compacte.

Registre 8000h

Etat:

MSB (octet de poids fort)		LSB (octet de poids faible)	
Famille d'étiquettes présente		Indicateur du système d'étiquette	
Indique la famille d'étiquettes si elle est présente. Réinitialisé si elle n'est plus présente.		Mis à jour en temps réel.	
Bit		Bit	
8	15693	0 (LSB)	Etiquette présente
9	Icode	1	Phase initiale de définition de paramètres après le démarrage
Α	14443A	2	Réservé
В	14443B	3	Réservé
С	Interne	4	Réservés
D Réservés		5	Badge de configuration présent
Е	E Réservé		Réservé
F (MSB)	Réservés	7	Réservé

Registre 8001h

Compteur d'étiquettes :

MSB	LSB
Incrémenté à chaque nouvelle étiquette. RAZ à ch possible pour prédéfinir une valeur dans le compte	

Registres 8002h à 8009h

Identifiant:

MSB	LSB
Mis à jour à chaque nouvelle étiquette et valide si	une étiquette est présente.

Chaque étiquette a son propre code (identifiant). Ce code est distribué en 16 octets.

Zone mémoire de commande/d'instructions de la Station compacte

Description générale

Cette zone peut activer les commandes ou modes de fonctionnement, et comprend les éléments suivants :

Registre	Table	Description	Accès *	Protégé
801Bh	Commande	Active les opérations telles que l'initialisation, la lecture ou l'écriture automatique, le mode Veille, etc.	L/E	Non
801C à 80AFh	Réservé	Réservé	-	-
80B0 à 80FF	Bloc d'instructions	Définit les paramètres jusqu'à 10 instructions exécutées de manière séquentielle.	L/E	Non
8100 à 810Fh	Réservé	Réservé	-	-
8110 à 817Fh	Table de lecture	Stocke les résultats des opérations de lecture d'étiquette et surveille l'exécution des instructions.	L	Non
8190 à 81E6h	Table d'écriture	Stocke les données à enregistrer dans les étiquettes.	L/E	Non
81E7 à FFFFh	Réservé	Réservé	-	-

* L = Lecture, E = Ecriture

Registre 801Bh: commande

Ce registre exécute les commandes suivantes :

Réinitialiser :

- Réinitialisation des réglages usine par défaut
- Lancement de la séquence d'initialisation
- Remise à zéro de la zone mémoire de commande/d'instructions
- Mode Veille désactivé

Initialisation :

- Réinitialisation de la Station compacte
- Lancement de la séguence d'initialisation
- Remise à zéro de la zone mémoire de commande/d'instructions
- Mode Veille désactivé

Mode Veille :

- Activation/désactivation du mode Veille
- Activation de l'émission du champ électromagnétique de la Station compacte uniquement en cas de réception d'une requête de lecture ou d'écriture. Ce mode réduit la consommation de la Station compacte et protège contre les interférences lorsque la Station compacte est à proximité d'une autre.

· Exécution du bloc d'instructions :

- Définit l'occurrence d'exécution du bloc d'instructions dans la Station compacte
- Commande d'exécution unique : bloc d'instructions exécuté une fois après la détection de la première étiquette
- Commande d'exécution automatique : bloc d'instructions exécuté à chaque détection d'une étiquette jusqu'à la prochaine réinitialisation ou à la prochaine mise hors tension de la Station compacte

NOTE: pour pouvoir utiliser les commandes d'exécution du bloc d'instructions, le mode Veille doit être désactivé. En effet, ce mode ne peut pas détecter la présence d'une étiquette dans la zone de dialogue.

Commande	Registre d'activa- tion	Registre de désactiva- tion de la commande	Commentaire
Réinitialisa- tion	4040h	-	Après l'exécution de la commande, le registre 801Bh reprend automatiquement sa valeur par défaut.
Initialisation	2020h	-	
Mode Veille	1010h	1000h	Après le redémarrage de la Station compacte, le mode Veille est désactivé.
Exécution du bloc d'instructions	0101h	0100h	Exécution unique lorsqu'une étiquette est présente en face de la Station compacte.
u irisii uctions	0202h	0200h	Exécution effectuée à chaque présentation d'une nouvelle étiquette en face de la Station compacte.

NOTE: Après le redémarrage de la Station compacte, le registre 801Bh reprend automatiquement sa valeur par défaut.

Registres 80B0 à 80FFh : bloc d'instructions

Le bloc d'instructions prédéfinit jusqu'à 10 instructions. Les instructions sont exécutées (par ordre croissant) lorsqu'une étiquette est détectée par la Station compacte.

Chaque instruction comprend 8 registres de 16 bits définissant les paramètres qui lui sont associés. Le nombre de registres utilisés pour définir les paramètres des différentes instructions varie. Les registres inutilisés doivent être définis à 0000h.

Le premier registre de chaque instruction est divisé en deux parties :

- L'octet de poids fort définit le type d'instruction à exécuter.
- L'octet de poids faible définit le nombre de registres traités par l'instruction.

La sortie des données saisies ou des instructions est stockée dans deux tables :

- Une table d'écriture contenant les données à écrire dans une instruction d'écriture
- · Une table de lecture contenant :
 - Informations de diagnostic associées à l'exécution du bloc d'instructions
 - Données lues dans une instruction de lecture

Instruction de lecture (C1)

Structure de l'instruction :

Regist	re	Champ d'instruction	Туре	Valeur	Commentaire
1er	MSB	Code d'instruction	Octet	C1h	C1 : Copie interne
	LSB	Nombre de registres	Octet	01 à 40h	Nombre de registres à lire
2e		Adresse	Mot	0000 à FFFFh	Adresse du premier registre à lire sur la Station compacte ou l'étiquette
Réserv	ڎ		Mot	0000h	-
Réserv	ڎ		Mot	0000h	-
Inutilise	é		Mot	0000h	Registres système à mettre à 0
			Mot	0000h	
			Mot	0000h	
			Mot	0000h	

Instruction d'écriture (C0)

Structure de l'instruction :

Regist	re	Champ d'instruction	Туре	Valeur	Commentaire
1er	MSB	Code d'instruction	Octet	C0h	C0 : Copie externe
	LSB	Nombre de registres	Octet	01 à 40h	Nombre de registres à écrire
2e		Adresse	Mot	0000 à FFFFh	Adresse de destination du premier registre à écrire à partir de la Station compacte ou l'étiquette
Réserv	ڎ		Mot	0000h	-
Réserv	ڎ		Mot	0000h	-
Inutilise	é		Mot	0000h	Registres système à mettre à 0
			Mot	0000h	
			Mot	0000h	

Registre	Champ d'instruction	Туре	Valeur	Commentaire
		Mot	0000h	

Instruction de copie (CD)

Structure de l'instruction :

Regis	tre	Champ d'instruction	Туре	Valeur	Commentaire
1er	MSB	Code d'instruction	Octet	CDh	C0 : C opie de d onnées
	LSB	Nombre de registres	Octet	01 à FFh	Nombre de registres à écrire
2e		Données	Mot	0000 à FFFFh	Valeur à copier
3e		Adresse	Mot	0000 à 7FFFh	Adresse de la première zone mémoire à écrire
4e		Itération	Mot	0001 à 1FFFh	Nombre d'itérations à exécuter
Inutilis	sé		Mot	0000h	Registres système à mettre à 0
			Mot	0000h	
			Mot	0000h	
			Mot	0000h	

Registres 8110 à 8174h : table de lecture

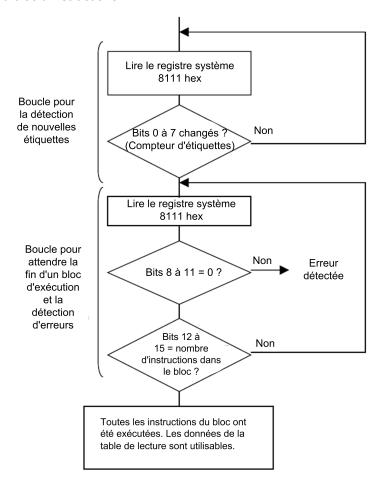
La table de lecture stocke le résultat consécutif dans une instruction de lecture (C1) et la vérification de l'exécution du bloc d'instructions (2 registres). La lecture de cette vérification permet de surveiller l'état d'avancement de la séquence d'instructions.

Structure de la table de lecture :

Regis-	Description					
tre	MSB		LSB			
	Quartet PF	Quartet Pf				
8110h	Etat de la Station d	ompacte : image du re	egistre 8000h, page 37			
8111h	N° d'instruction	Code d'erreur détectée	Compteur d'étiquettes : image du registre 8001h, page 38.			
8112h	Données lues com	me 1, 1re instruction of	le lecture			
8113h	Données lues com	Données lues comme 2, 1re instruction de lecture				
	Données lues com	Données lues comme N, 1re instruction de lecture				
	Données lues comme 1, 2e instruction de lecture					
	Données lues comme 2, 2e instruction de lecture					
	Données lues com	me N, 2e instruction d	e lecture			
	Données lues com	me 1, nième instructio	n de lecture			
	Données lues comme 2, nième instruction de lecture					
	Données lues comme N, nième instruction de lecture					
8174h						

NOTE: toutes les instructions de lecture ne doivent pas dépasser la capacité de la table (100 registres).

Description du registre 8111h:


Bit	Signification	Description	
15 à 12	N° d'instruction	Numéro de la dernière instruction exécutée sans erreur détectée, par exemple « Erreur détectée dans la 3e instruction du bloc, donc n° d'instruction = 2h »	
11 à 8	Codes d'erreur détectée	Codes d'erreur détectée Modbus: 1h: code de fonction inconnu ou format de requête incorrect 2h: adresse incorrecte, zone interdite ou protégée, ou adresse absente de la zone mémoire de l'étiquette 3h: données incorrectes. Aucune donnée ou données incompatibles, en excès ou insuffisantes dans la trame 4h: défaut d'exécution détecté (lecture, écriture ou absence d'étiquette)	
7 à 0	Compteur d'étiquettes	Image du registre 8001h, page 38.	

NOTE: Par exemple, si le registre 8111h a la valeur 2409h, cela signifie :

- · 2h : erreur détectée dans la 3e instruction du bloc
- 4h: défaut d'exécution détecté (lecture, écriture ou absence d'étiquette)
- 09h: 9 étiquettes détectées (depuis la dernière RAZ du compteur)

Surveillance de l'exécution du bloc d'instructions

La lecture du registre système 8111h de la Station compacte contrôle l'exécution du bloc d'instructions :

Registres 8190 à 81E6h : table d'écriture

La table d'écriture stocke les données à écrire dans une instruction d'écriture.

Structure de la table d'écriture :

Regis- tre	Description
8190h	Données à écrire comme 1, 1re instruction écrite
8191h	Données à écrire comme 2, 1re instruction écrite
	Données à écrire comme N, 1re instruction écrite
	Données à écrire comme 1, 2e instruction écrite
	Données à écrire comme 2, 2e instruction écrite
	Données à écrire comme N, 2e instruction écrite
	Données à écrire comme 1, nième instruction écrite
	Données à écrire comme 2, nième instruction écrite
	Données à écrire comme N, nième instruction écrite
81E6h	

Exemple d'application

Dans l'exemple suivant, vous définissez un bloc contenant trois instructions :

- une instruction de lecture de trois registres à l'adresse 0001h;
- une instruction d'écriture de deux registres à l'adresse 0010h ;
- une instruction de lecture de quatre registres à l'adresse 0020h.

Définition du bloc d'instructions :

Adresse	Valeur		N° d'instruction
	MSB	LSB	
80B0h	C1h	03h	1
80B1h	0001h		
80B2 à 80B7h	0000h		
80B8h	C0h	02h	2
80B9h	0010h		
80BA à 80BFh	0000h		
80C0h	C1h	04h	3
80C1h	0020h		
80C2 à 80C7h	0000h		

Définition de la table d'écriture (données à écrire dans une instruction d'écriture) :

Adresse	Valeur	Instruction associée
8190h	Par exemple, FEFEh	2
8191h	Par exemple, 0A0Bh	

Définition des paramètres pour activer les commandes de chaque mouvement d'étiquette :

Adresse	Valeur	Instruction associée
801Bh	0202h	Exécution du bloc d'instructions à chaque nouvelle étiquette

Données reçues dans la table de lecture après l'exécution du bloc d'instructions :

Adresse	Valeur		Instruction associée
	MSB	LSB	
8110h	Etat de la Station comp	acte	-
8111h	30h	01h	Composition : • 30h (MSB) = 3 instructions exécutées sans erreur détectée • 01h (LSB) = 1re étiquette détectée par la Station compacte
8112h	Contenu du registre 0001h		Résultat de l'instruction numéro 1 (lecture de trois registres)
8113h	Contenu du registre 0002h		
8114h	Contenu du registre 0003h		
8115h	Contenu du registre 0020h		Résultat de l'instruction numéro 3 (lecture de quatre registres)
8116h	Contenu du registre 0021h		
8117h	Contenu du registre 0022h		
8118h	Contenu du registre 0023h		

Exemple de données reçues dans la table de lecture après l'exécution du bloc d'instructions contenant des erreurs détectées :

Adresse	Valeur		Instruction associée
	MSB	LSB	
8110h	Etat de la Station comp	acte	-
8111h	14h	01h	14h (MSB) = exécution du bloc d'instructions interrompue à cause d'une erreur détectée avec l'étiquette dans l'instruction numéro 2 (instruction numéro 1 exécutée correctement et instruction numéro 3 non exécutée) 01h (LSB) = 1re étiquette détectée par la Station compacte
8112h	Contenu du registre 0001h		Résultat de l'instruction numéro 1 (lecture de trois registres)
8113h	Contenu du registre 0002h		
8114h	Contenu du registre 0003h		

Définition d'un bloc d'instructions pouvant supprimer les 50 premiers registres dans chaque étiquette à présenter en face de la Station compacte :

Adresse	Valeur	Instruction associée
80B0h	CD0Ah	CD : Copie de données / 0Ah = 10 registres supprimés par itération
80B1h	0000h	Remplissage avec la valeur 000h
Adresse	0000h	Adresse de la première zone mémoire à écrire = 0000h
Itération	0005h	Nombre d'itérations à exécuter = 5

Prise en charge de la communication EtherNet/IP

Présentation

Ce chapitre décrit comment accéder à une Station compacte à partir d'autres équipements sur un réseau de bus de terrain EtherNet/IP.

Modèle objet

Présentation

Cette section décrit le modèle objet du module d'interface réseau (NIM) EtherNet/IP. Pour plus d'informations sur le modèle objet d'un équipement EtherNet/IP particulier, reportez-vous aux spécifications ODVA.

A propos du modèle d'objet

Présentation

Un nœud EtherNet/IP est modélisé comme un ensemble d'objets. Chaque objet fournit une représentation abstraite d'un composant particulier d'un produit.

Un modèle d'objet définit :

- le format des données d'E/S de l'équipement ;
- les paramètres configurables de l'équipement.

Les informations ci-dessus sont transmises aux autres fournisseurs grâce au fichier EDS de l'équipement.

Ce chapitre décrit les objets mis en œuvre de la Station compacte :

- · Attributs de classe pris en charge
- Services de classe pris en charge
- · Attributs d'instance pris en charge
- · Services d'instance pris en charge

Pour plus d'informations, consultez le chapitre 5 de [28] The CIP Networks Library Volume 2 EtherNet/IP Adaptation of CIP.

Adressage d'attributs d'objet

Objets : les objets fournissent des services et mettent en œuvre des comportements.

Attributs: les attributs (caractéristiques d'objet) d'objets particuliers sont adressés avec des valeurs entières qui correspondent à cette hiérarchie :

- ID MAC (ID de nœud)
- ID de classe
- ID d'instance
- ID de l'attribut

Objets pris en charge

Ce tableau répertorie les objets EtherNet/IP pris en charge par la Station compacte :

Classe d'objets	ID de classe	ID d'instance	Messages	Description
Objet d'identité	1	1	Explicite	Cet objet renvoie le type d'équipement, l'ID de fournisseur, le numéro de série, etc.
Objet de routeur de messages	2	1	Explicite	Cet objet renvoie des informations sur l'implémentation du routeur de message.
Objet d'assemblage, page 46	4	0x96, 0x66, 0x67 (150, 102, 103)	E/S implicites ou explicites	Cet objet fournit un ensemble d'autres attributs d'objet.
Objet de gestion de raccordement	6	0x01(1)	Explicite	Cet objet permet de transmettre des messages explicites.
Objet de port	0xF4 (244)	1	Explicite	Cet objet renvoie des informations sur le port Ethernet.
Objet d'interface TCP/ IP	0xF5 (245)	1	Explicite	Cet objet définit le nombre d'options de configuration d'adresse IP pour l'équipement.
Objet de liaison Ethernet	0xF6 (246)	1	Explicite	Cet objet suit les informations de configuration et de diagnostic du port Ethernet.
Objet Modbus, page 47	0x44 (68)	1	Explicite	Cet objet convertit les messages EtherNet/IP en requêtes Modbus (codes de fonction 0x3 et 0x10).

Objet d'assemblage (ID de classe 4)

Présentation

L'objet d'assemblage regroupe différents attributs (données) de différents objets d'application dans un même attribut qui peut être déplacé avec un seul message. Ce message fournit les données d'E/S et l'état de la Station compacte. Les objets d'assemblage permettent de relier des données d'entrée ou de sortie, telles qu'elles sont définies du point de vue du réseau. (Une *entrée* produit des données sur le réseau, tandis qu'une *sortie* consomme des données du réseau.) Pour l'objet d'assemblage de la Station compacte :

- · L'ID de classe est 4.
- Les codes d'instance sont 150 pour l'instance de sortie, 102 et 103 pour les instances d'entrée.

Attributs de classe (instance 0)

L'objet d'assemblage prend en charge les attributs de classe suivants :

ID de l'attribut	Nom	Accès	Description
0x01	Révision	L	Cet attribut renvoie la révision de l'objet CIP (0x02).
0x02	Val. max. d'instances	L	Cet attribut renvoie la valeur maximum du numéro d'instance (102).
0x03	Nombre d'instances	L	Cet attribut renvoie le nombre d'instances de classe. La valeur est égale à 2.
0x06	Attribut de classe max.	L	Cet attribut renvoie la valeur numérique de l'attribut de classe le plus élevé (7).
0x07	Attribut d'instance max.	L	Cet attribut renvoie la valeur numérique de l'attribut d'instance le plus élevé (4).

Services de classe

L'objet d'assemblage prend en charge les services de classe suivants :

Code de service	Nom	Description
0x0E	Obtenir un attribut	Ce service renvoie la valeur de l'attribut spécifié.

Codes d'instance

La Station compacte fournit trois instances de la classe d'objets d'assemblage :

ID d'instance	Accès	Taille (octets)	Description
150	L/E	2	Compteur d'étiquettes (registre 8001h, page 38)
102	L	20	Etat général (registres 8000 à 8009h, zone mémoire système de la station compacte, page 37)
103	L	200	Lecture de table de 100 registres (registres 8110 à 814Fh : table de lecture, page 41)

NOTE: Seul un assemblage d'entrée (102 ou 103) est utilisable à la fois.

Attributs d'instance

L'objet d'assemblage prend en charge ces attributs d'instance :

ID de l'attribut	Nom	Accès	Description
1	Nombre de membres	L	Cet attribut renvoie le nombre de membres dans l'instance.
2	Liste de membres	L	Cet attribut est un regroupement dans lequel chaque structure représente un membre. Il comprend les éléments suivants :
			Taille des données de membre : un mot contenant la taille des données de membre (en bits)
			Taille du chemin de membre : un mot contenant la taille en octets de EPATH subséquent :
			0 : espace inutilisé entre les membres
			0x09 : membres réels
			Chemin de membre : EPATH représentant le membre (par exemple, « 20 04 24 65 30 28 01 » est le membre 1 de l'instance 101.)
3	Données d'instance	L/E	Cet attribut renvoie les données d'instance sous la forme d'un tableau d'octets. Accès en :
			Lecture (seule) : assemblages de données d'entrée
			Lecture/écriture : assemblages de données de sortie
4	Taille des données d'instance	L	Cet attribut renvoie un registre représentant les données d'instance en octets. (La taille dépend des modèles d'E/S configurés sur le bus.)

Services d'instance

L'objet d'assemblage prend en charge ces services d'instance :

Code de service	Nom	Description
0x0E	Obtenir un attribut	Ce service renvoie la valeur de l'attribut spécifié.
0x010	Définir un attribut	Ce service modifie la valeur d'attribut d'instance d'un objet d'assemblage.
0x018	Obtenir un membre	Ce service lit un membre d'une instance d'objet d'assemblage.
0x019	Définir un membre	Ce service modifie un membre d'une instance d'objet d'assemblage.

Objet Modbus (ID de classe 0x44)

Présentation

L'objet Modbus est associé à l'ID de classe (propre au fournisseur) 68 (0x44). Il s'agit d'un objet d'application qui fournit les requêtes de lecture/écriture des zones de mémoire de la Station compacte. Pour l'objet Modbus de la Station compacte :

- le code de classe est 0x44 (68),
- la seule instance prise en charge est 1.

Services d'instance

L'objet Modbus prend en charge les services d'instance suivants :

Code de service	Nom	Description
0x4E	Lecture de registres de maintien	Ce service envoie une requête pour lire les registres indiqués (123 mots maximum).
0x50	Ecriture de registres de sortie	Ce service envoie une requête pour écrire les registres indiqués (123 mots maximum).

Description du code de service 0x4E

Le tableau ci-après décrit les paramètres de la requête de lecture de registres de sortie :

Nom	Type de données	Description	Sémantique des valeurs
Adresse de début	UINT	Décalage dans la table pour le début de la lecture ¹	Base zéro
Quantité de registres de sortie	UINT	Nombre de registres de maintien à lire ¹ (123 maximum)	-

¹Le paramètre de la requête est au format petit-boutiste. Le protocole Modbus est au format gros-boutiste. Il peut être nécessaire de permuter des octets en fonction de l'implémentation du sous-système Modbus.

Le tableau ci-après décrit les paramètres de la réponse de lecture de registres de sortie :

Nom	Type de données	Description	Sémantique des valeurs
Valeurs des registres de sortie	Tableau de mots de 16 bits1	Valeurs de registre de maintien lues ²	-

¹Les données sont renvoyées sous la forme d'entités de 16 bits pour chaque registre. Le type de données réel des valeurs est inconnu.

²Les données de la réponse sont au format petit-boutiste. Le protocole Modbus est au format grand-boutiste. Il peut être nécessaire de permuter des octets en fonction de l'implémentation du sous-système Modbus.

Description du code de service 0x5E

Le tableau ci-après décrit les paramètres de la requête d'écriture de registres de sortie :

Nom	Type de données	Description	Sémantique des valeurs
Adresse de début	UINT	Décalage dans la table pour le début de l'écriture ¹	Base zéro
Quantité de sorties	UINT	Nombre de registres de sortie à écrire ¹ (123 maximum)	-
Valeurs de sortie	Tableau de mots de 16 bits	Valeurs des registres de sortie	-

¹Le paramètre de la requête est au format petit-boutiste. Le protocole Modbus est au format grand-boutiste. Il peut être nécessaire de permuter des octets en fonction de l'implémentation du sous-système Modbus.

Le tableau ci-après décrit les paramètres de la réponse d'écriture de registres de sortie :

Nom	Type de données	Description	Sémantique des valeurs
Adresse de début	UINT	Décalage dans la table où l'écriture a commencé ¹	Base zéro
Quantité de sorties	UINT	Nombre de sorties forcées ¹	-

¹Les paramètres de la réponse sont au format petit-boutiste. Le protocole Modbus est au format grand-boutiste. Il peut être nécessaire de permuter des octets en fonction de l'implémentation du sous-système Modbus.

Unity Pro: exemple d'application EtherNet/IP

Présentation

Cet exemple décrit la configuration d'une Station compacte sur un réseau EtherNet/IP pour communiquer avec un automate Modicon M340 sur Unity Pro.

Présentation

Présentation

Cet exemple décrit la configuration d'une Station compacte sur un réseau EtherNet/IP pour communiquer avec un automate Modicon M340 sur Unity Pro.

Pour configurer la Station compacte, procédez comme suit :

- Créez la plate-forme d'automatisation Modicon M340 requise sur Unity Pro.
- Configurez la Station compacte.
- 1 exemple de commande

NOTE: cet exemple n'explique pas comment installer le matériel. Pour ce faire, consultez le document fourni avec le contrôleur.

Configuration matérielle requise

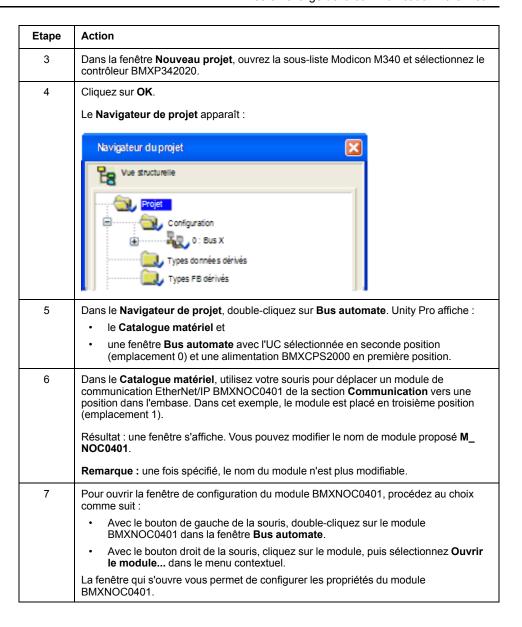
Le matériel requis pour cet exemple est le suivant :

- Une plate-forme d'automatisation Modicon M340
- Un module Ethernet BMXNOC0401
- Station compacte

Configuration logicielle requise

Le logiciel requis pour cet exemple est le suivant :

• Unity Pro (version 7.0 minimum)


Le fichier EDS (XGCS850_V21.eds) est disponible sur le site www.tesensors.com ou sur la clé USB fournie avec la Station compacte.

Création d'un projet

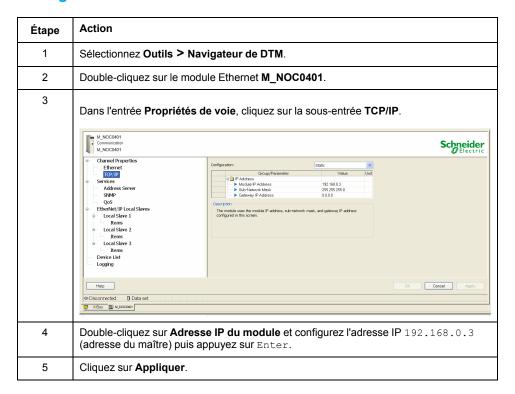
Procédure

Utilisez Unity Pro pour créer un projet :

Etape	Action
1	Démarrez Unity Pro.
2	Dans le menu principal de Unity Pro, sélectionnez Fichier > Nouveau
	La fenêtre Nouveau projet qui apparaît présente la liste des types de contrôleur Schneider-Electric.

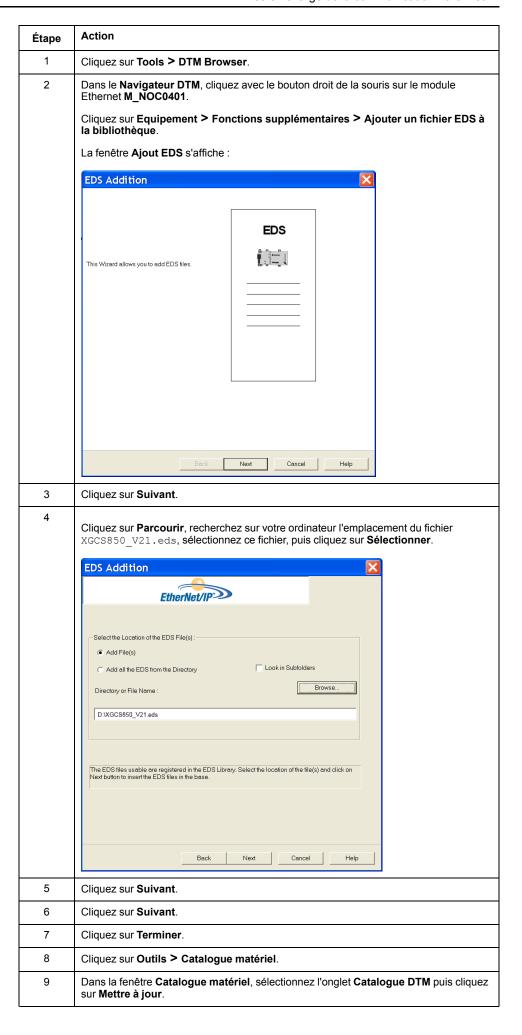
Configuration du module de communication EtherNet/IP BMXNOC0401

Définition des adresses mémoire d'entrée et de sortie et du nom du module


La page Configuration se présente comme suit :

Dans la page **Configuration**, procédez comme suit pour définir les adresses et les tailles des entrées et des sorties :

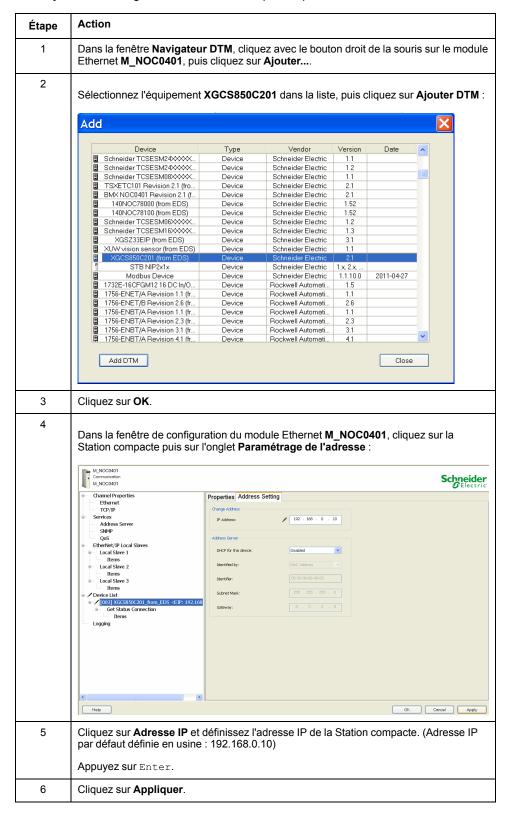
Étape	Action			
1	Dans les champs Zone d'entrée et Zone de sortie , indiquez la taille et la position de début des entrées et des sorties. Ces valeurs sont modifiables ultérieurement. Dans cet exemple, les valeurs saisies sont les suivantes :			
	Dans la Zone d'entrée :			
	 Dans le champ Indice %MW, entrez l'adresse de début des entrées. Dans cet exemple : 0. 			
	 Dans le champ Taille max., entrez le nombre maximum de mots de 16 bits dédiés aux entrées. Dans cet exemple : 110. 			
	Dans la Zone de sortie :			
	 Dans le champ Indice %MW, entrez l'adresse de début des sorties. Dans cet exemple : 110. 			
	 Dans le champ Taille max., entrez le nombre maximum de mots de 16 bits dédiés aux sorties. Dans cet exemple : 20. 			
	Remarques :			
	 Les entrées et les sorties peuvent se trouver à n'importe quelle adresse disponible, mais pas nécessairement dans des zones adjacentes. Seule condition: les espaces alloués aux entrées et aux sorties ne doivent pas se superposer. 			
	 La plage %MW définie pour les entrées et les sorties doit être disponible dans l'UC. Pour plus d'informations, consultez la rubrique Ecran de configuration du processeur dans l'aide d'Unity Pro. 			
2	Dans Unity Pro, sélectionnez Edition > Valider (ou cliquez sur le bouton Valider pour enregistrer les paramètres d'adresse et de taille des entrées et des sorties.			
3	Dans la zone Réseau de connectivité EIP , cliquez sur le bouton Mise à jour de l'application :			

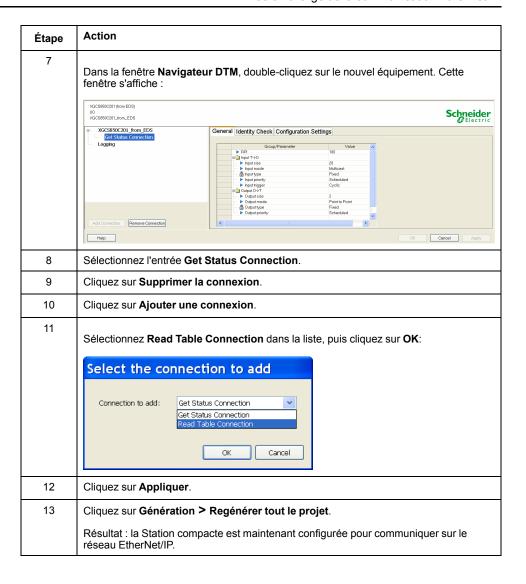

Configuration de l'adresse du module BMXNOC0401

Configuration de la Station compacte Ethernet

Ajout du fichier EDS de la Station compacte Ethernet

Si vous n'avez pas encore ajouté le fichier EDS de la Station compacte, procédez comme suit :




Ajout et configuration d'une Station compacte Ethernet

Pour communiquer sur le réseau EtherNet/IP, la Station compacte utilise l'une des deux connexions suivantes :

- la connexion Get Status Connection (créée automatiquement);
- la connexion Read Table Connection.

Pour ajouter et configurer une Station compacte, procédez comme suit :

Exemple d'application de lecture

Présentation

Cet exemple décrit la mise en œuvre de l'objet Modbus, page 47 pour lire 123 registres dans la zone mémoire de l'étiquette à l'aide de la fonction **DATA_EXCH**. Pour plus d'informations sur le message explicite, consultez l'aide en ligne de Unity Pro.

Exemple

```
(* EtherNET/IP Explicit Message Example : Read Modbus Object *)
IF START and not TableGest[0].0 THEN
            (*TableRecep:=0;*)
                                                       (* RAZ Reception table *)
(* TIMEOUT BASE 100ms *)
           MOVE_INT_ARINT(0, TableRecep);
           TableGest[2]:= 5;
           TableGest[3]:= 10;
                                                        (* Length of data ToSend parameter, in Bytes *)
           DataToSend[0]:= 16#024E;
                                                        (* CIP request service information *)
                                                        (* CIP request service information *)
(* CIP request instance information *)
(* address of the first word to be read*)
(* Number of word to be read*)
           DataToSend[1]:= 16#4420;
DataToSend[2]:= 16#0124;
DataToSend[3]:= 16#0001;
           DataToSend[4]:= 16#007B;
           DATA_EXCH (ADR := ADDM('0.1.0{192.168.0.10}UNC.CIP'),
                  TYP := 16#01,
                  EMIS := DataToSend,
GEST := TableGest,
                  RECP => TableRecep);
End_IF;
```

START est une variable booléenne qui lance la commande de lecture.

Description de la requête CIP

La variable **DataToSend** identifie le type de message explicite et la requête CIP :

Variable	Description	Valeur (hexa)
DataToSend [0]	Informations sur le service de la requête CIP : Octet de poids fort = taille de la requête en registres : 16#02 (2 décimal) Octet de poids faible = code du service : 16#4E (78 décimal)	16#024E
DataToSend [1]	Informations sur la classe de la requête CIP : Octet de poids fort = classe : 16#44 (68 décimal) Octet de poids faible = segment de classe : 16#20 (32 décimal)	16#4420
DataToSend [2]	Informations sur l'instance de la requête CIP : Octet de poids fort = instance : 16#01 (1 décimal) Octet de poids faible = segment d'instance : 16#24 (36 décimal)	16#0124
DataToSend [3]	Registre de départ (par exemple, %MW01): Octet de poids fort = 16#00 (0 décimal) Octet de poids faible = 16#01 (1 décimal)	16#0001
DataToSend [4]	Nombre de registres à lire : Octet de poids fort = 16#00 (0 décimal) Octet de poids faible = 16#7B (123 décimal)	16#007B

La variable **TableGest** identifie la table de gestion de la communication :

Variable	Description	Valeur (hexa)
TableGest [0]	Données gérées par le système : Octet de poids fort = numéro de l'échange Octet de poids faible = bit d'activité	-
TableGest [1]	Données gérées par le système : Octet de poids fort = rapport d'opération Octet de poids faible = rapport de communication	-
TableGest [2]	Timeout (base de 100 ms)	16#0005
TableGest [3]	Longueur des données à envoyer (en octets)	16#000A

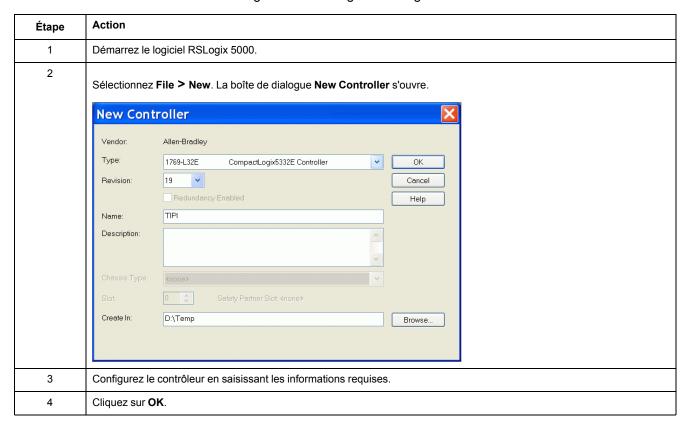
La variable **TableRecep** est la table de réception :

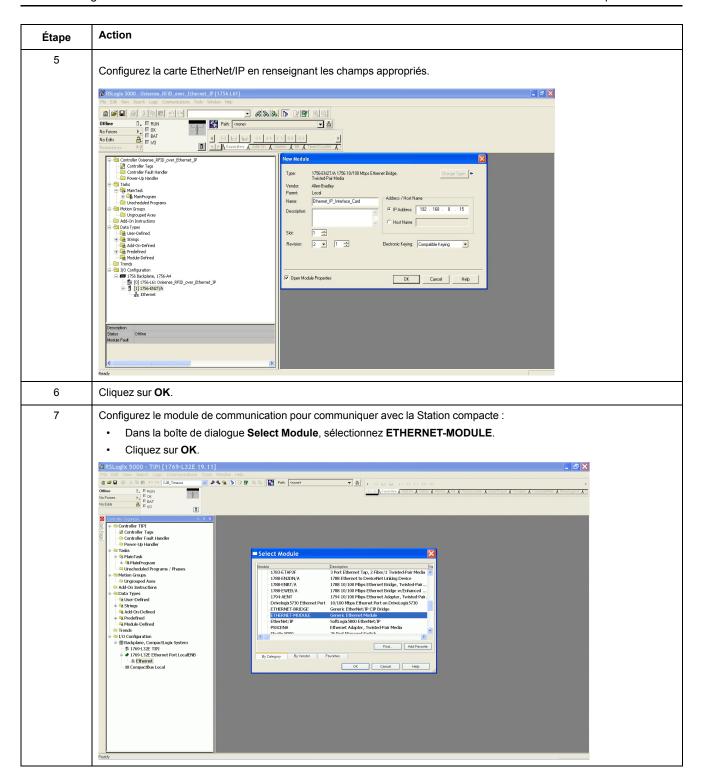
Variable	Description
TableRecep[0]	Données reçues (valeur des 123 registres lus)
TableRecep [122]	

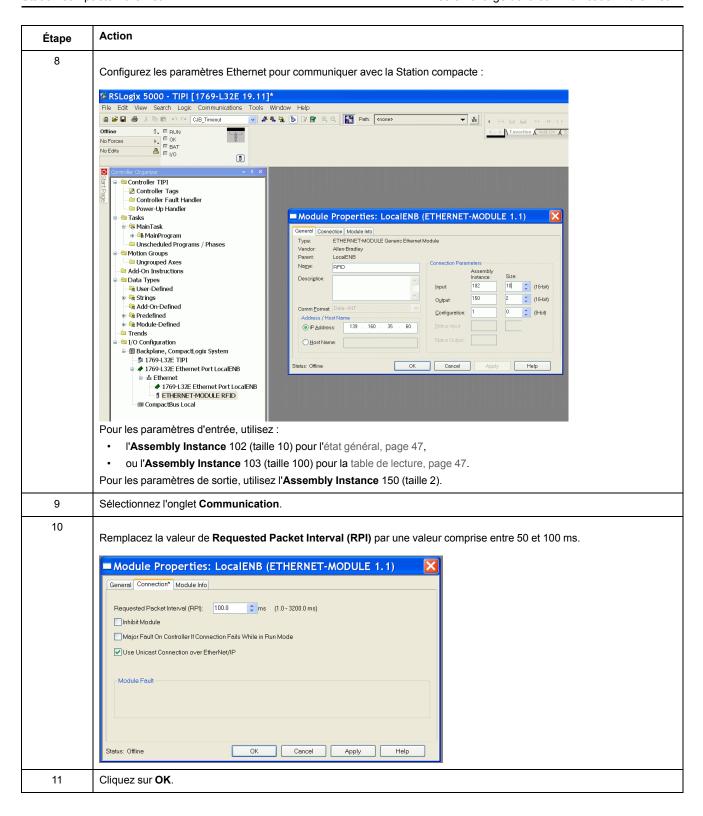
RSLogix: exemple d'application EtherNet/IP

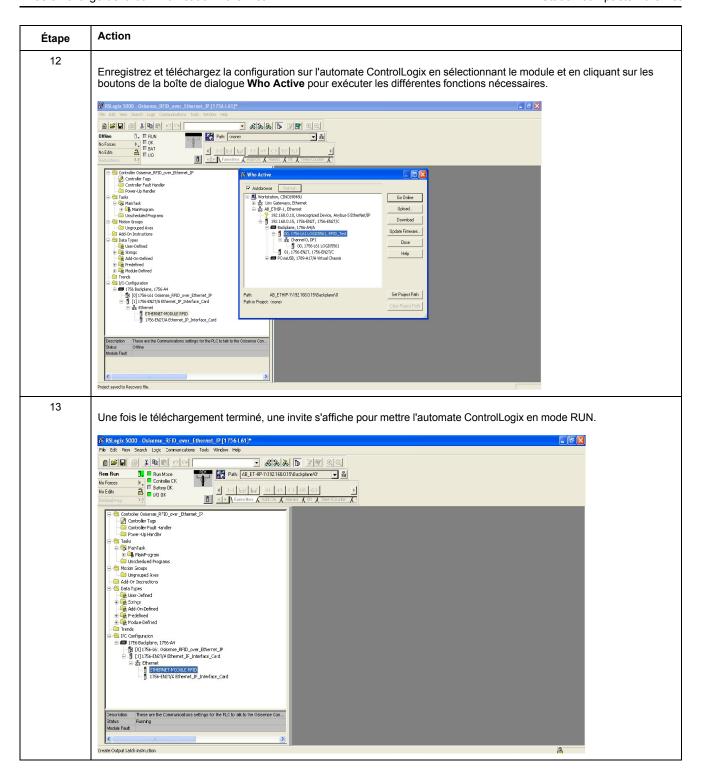
Présentation

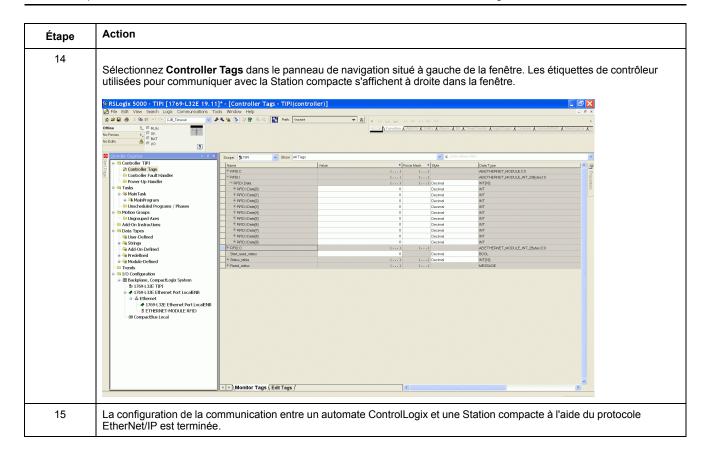
Cet exemple décrit la configuration d'une Station compacte sur un réseau EtherNet/IP pour communiquer avec un automate Allen Bradley.

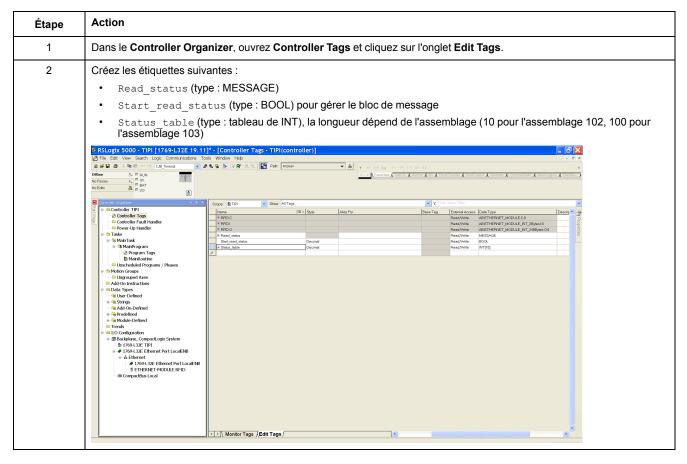

Configuration d'une Station compacte sur un réseau EtherNet/IP avec un automate ControlLogix

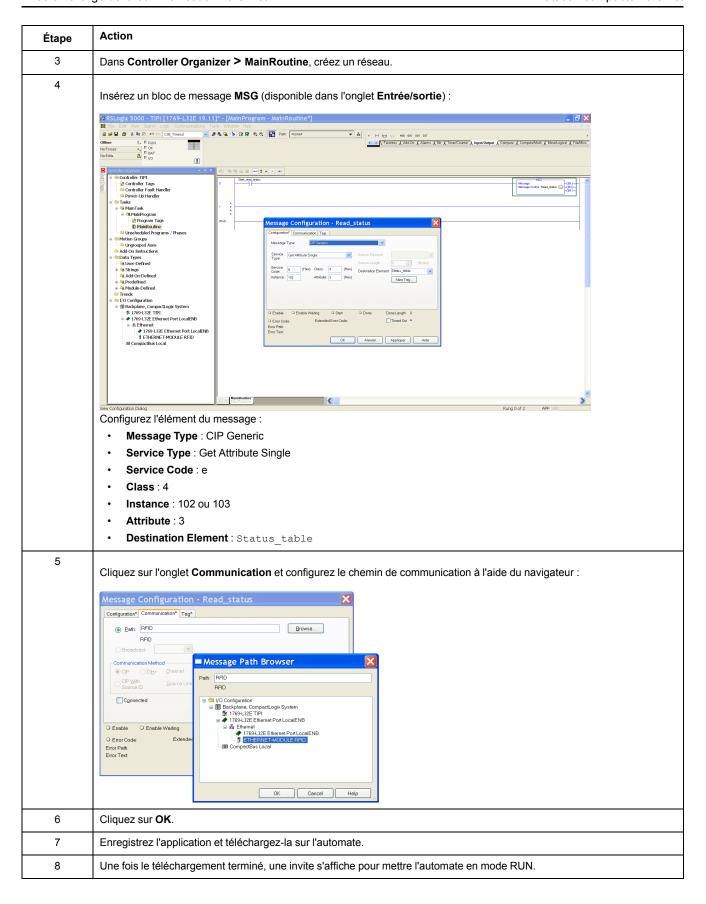

Présentation

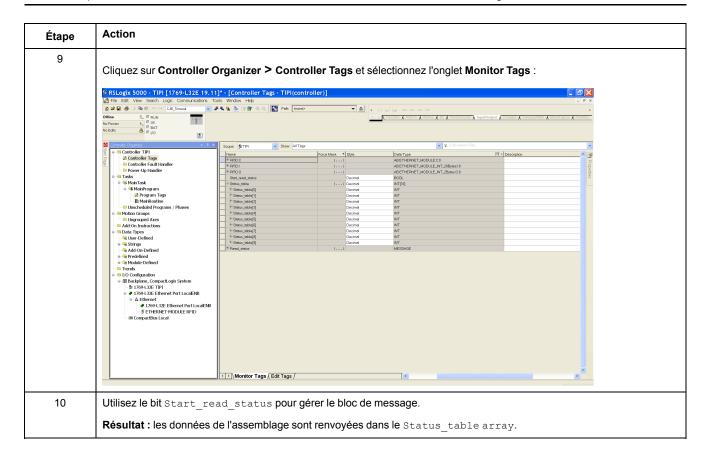

Cette section montre comment configurer une Station compacte sur un réseau EtherNet/IP pour communiquer avec un automate Allen Bradley ControlLogix via un câble Ethernet.


Configuration d'un automate ControlLogix


Ce tableau détaille la procédure permettant de programmer l'automate ControlLogix à l'aide du logiciel RSLogix 5000 :



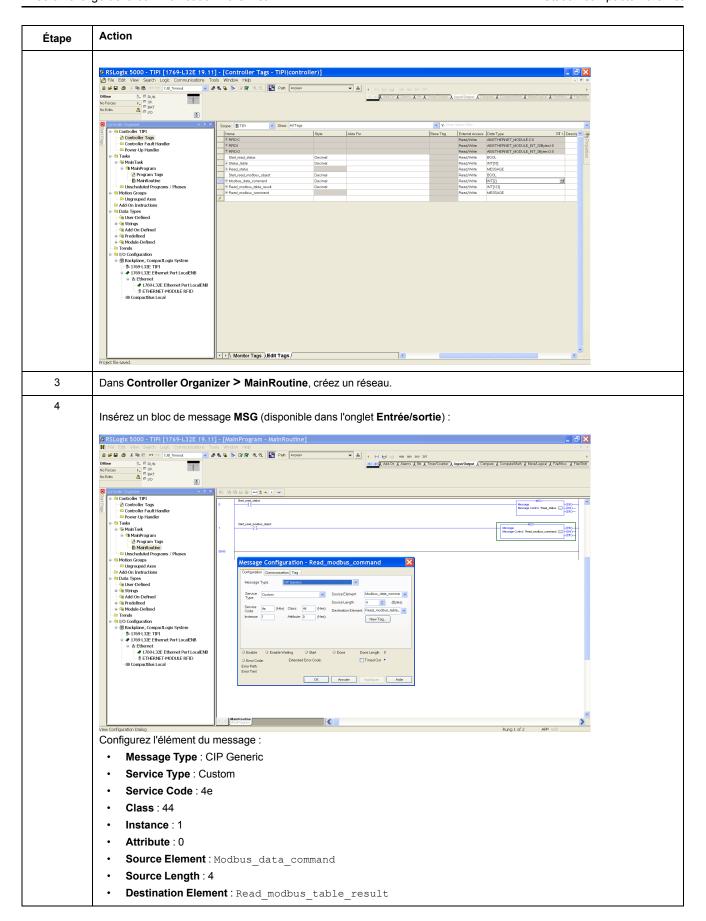


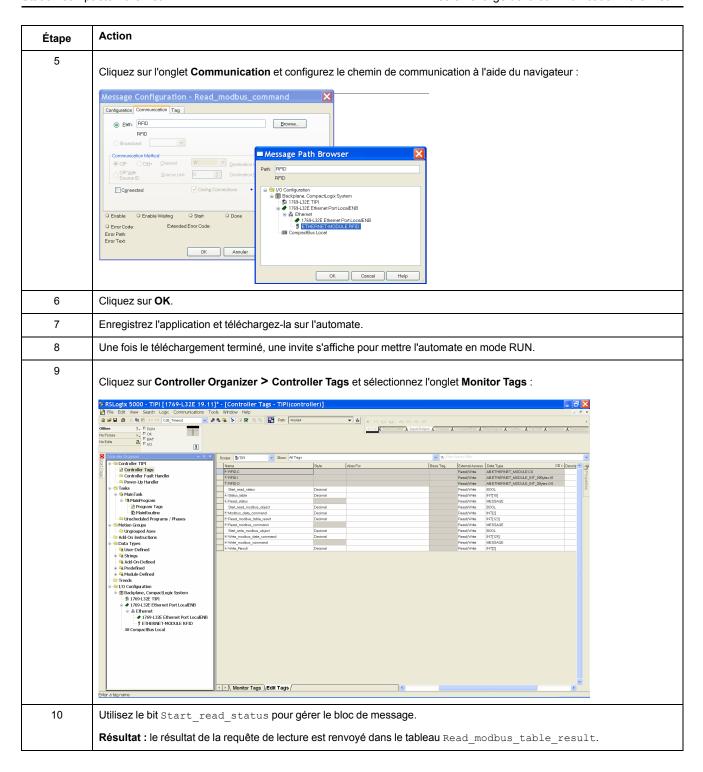

Lecture de l'assemblage 102 (état général) ou 103 (table de lecture) à l'aide d'un message explicite

Procédure

Ce tableau détaille la procédure nécessaire pour lire l'assemblage 102 ou 103 avec un message explicite :

Requête de lecture/écriture avec l'objet Modbus

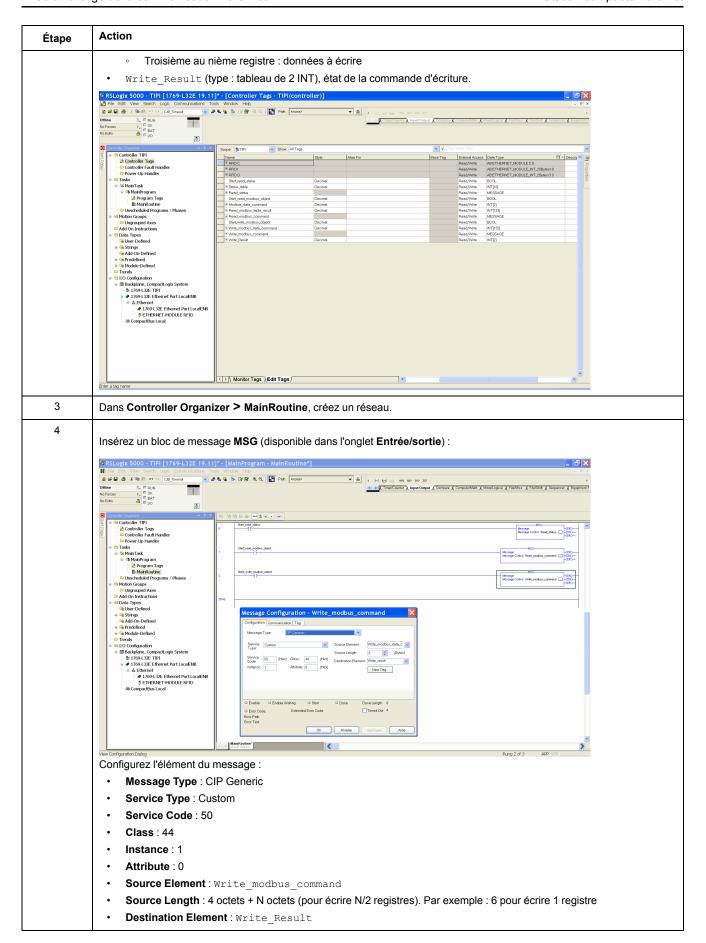

Présentation

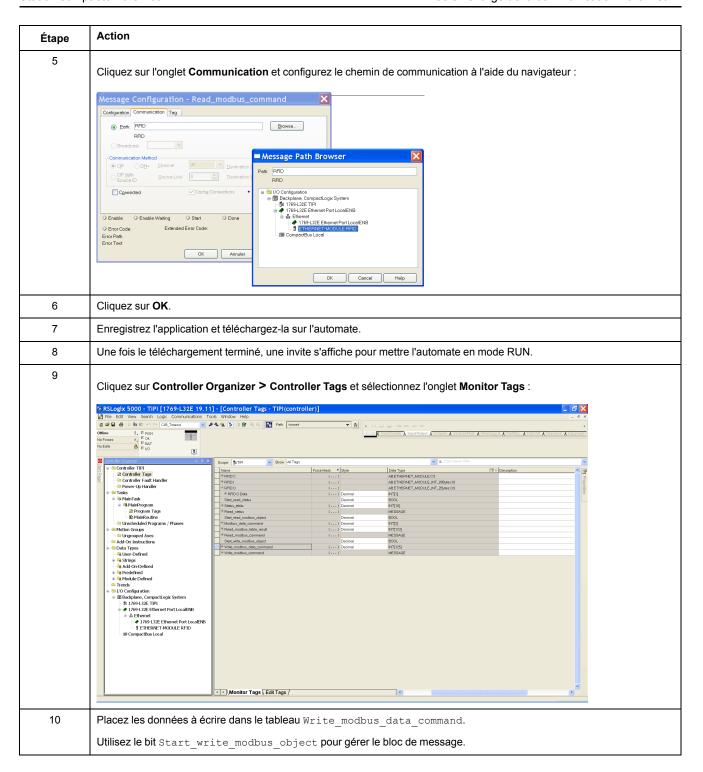

Ces commandes explicites Modbus doivent être utilisées pour gérer l'étiquette et les zones mémoire, page 37 de la Station compacte.

Requête de lecture avec l'objet Modbus et un message explicite

Ce tableau explique comment utiliser l'objet Modbus, page 47 pour lire avec un message explicite :

Étape	Action						
1	Dans le Controller Organizer, ouvrez Controller Tags et cliquez sur l'onglet Edit Tags.						
2	Créez les étiquettes nécessaires :						
	Read_modbus_command (type: MESSAGE)						
	Start_read_modbus_object (type: BOOL) pour gérer le bloc de message						
	Modbus_data_command (type : tableau de 2 INT), données de la commande Modbus de lecture :						
	Premier registre : adresse de début						
	Deuxième registre : nombre de registres à lire						
	Read_modbus_table_result (type: tableau de INT), la longueur dépend du nombre de registre à lire (123 registres maximum.)						





Requête d'écriture avec l'objet Modbus et un message explicite

Ce tableau explique comment utiliser l'objet ${\sf Modbus},$ page 47 pour écrire avec un message explicite :

Étape	Action						
1	Dans le Controller Organizer, ouvrez Controller Tags et cliquez sur l'onglet Edit Tags.						
2	Créez les étiquettes nécessaires : • Write_modbus_command (type : MESSAGE) • Start_write_modbus_object (type : BOOL) pour gérer le bloc de message • Write_Modbus_data_command (type : tableau de N INT), données de la commande Modbus d'écriture (la longueur dépend du nombre de registres à écrire) : • Premier registre : adresse de début • Deuxième registre : nombre de registres à écrire						

Prise en charge des communications TCP/IP Modbus

Présentation

Ce chapitre décrit comment accéder à une Station compacte à partir d'autres équipements sur un réseau de bus de terrain Modbus TCP/IP.

Commandes Modbus prises en charge par la Station compacte

Présentation

Les automates Modicon utilisent le protocole Modbus. Le protocole Modbus définit la structure du message que les automates comprennent et utilisent, quel que soit le type de réseau. Le protocole Modbus décrit le processus suivi par un contrôleur pour accéder à un autre équipement, comment cet équipement répond et comment les erreurs détectées sont signalées.

La Station compacte est un serveur sur un système Modbus TCP.

Elle peut être connectée à un système avec des clients Modbus TCP :

- Automate (blocs fonction ou scrutateur d'E/S)
- IHM
- SCADA
- Ordinateur

L'identifiant de la Station compacte sur Modbus TCP est fixé à 1, la Station compacte est adressée par son adresse IP.

Trame des données de message Modbus

Les messages Modbus sont intégrés dans la structure de la trame ou du paquet du réseau. Un réseau Modbus sur TCP/IP utilise les formats de données Ethernet II et IEEE 802.3. Pour les communications avec la Station compacte, les messages Modbus peuvent être intégrés dans l'un ou l'autre type de trame. Le format par défaut est Ethernet II.

Structures des messages Modbus

Le protocole Modbus utilise des mots de 16 bits (registres de maintien). Un message Modbus débute par un en-tête. Un message Modbus utilise un code de fonction Modbus, page 67 comme premier octet.

Voici une description de la structure d'un en-tête de message Modbus :

Identifiant d'invocation	Type de protocole	Longueur de commande	ID cible	Message Modbus
Champ à deux octets qui associe une requête à	Champ à deux octets	Champ à deux octets	1 octet	Champ de n octets
une réponse	La valeur de Modbus est toujours 0.	La valeur est la taille du reste du message.		Le premier octet est le code de fonction Modbus.

Liste des commandes prises en charge

Ce tableau répertorie les commandes Modbus prises en charge par la Station compacte :

Code de fonction Modbus	Sous-fonction ou sous-index	Commande
03h	-	Lecture de n registres de maintien (1 ≤ n ≤ 123)
06h	-	Ecriture d'un registre
08h	16 h	Obtention/suppression des statistiques Ethernet
0Bh	-	Lecture de compteurs d'événements
10 h	-	Ecriture de n registres (1 ≤ n ≤ 123)
2Bh	0Eh	ID

Description des requêtes Modbus

Lecture de n registres

Cette fonction permet de lire des tables de registres.

Requête de lecture :

N° esclave	Code fonction	Adresse du 1er registre				Vérification
01h	3h	Hi	Lo	Hi	Lo	
1 octet	1 octet	2 00	etets	ets 2 octets		2 octets (mode RTU)

N° esclave : 01hCode fonction : 3h

 Adresse du premier registre : correspond à l'adresse du premier registre à lire dans l'étiquette ou la Station compacte (selon l'adresse)

• Nombre de registres : 1 ≤ N ≤ 123

Réponse:

N° esclave	Code fonction	Nombre d'octets lus	1	ur du er stre	der	ur du nier stre	Vérification
01h	3h ou 4h		Ha- ut	Lo	Hi	Lo	
1 octet	1 octet	1 octet	2 00	tets	2 00	tets	2 octets (mode RTU)

N° esclave: 01h

· Code fonction : identique à la requête de lecture

Nombre d'octets lus : 2 à 246

Valeur des registres lus : 0000h à FFFFh

• Si aucune étiquette n'est présente, la Station compacte envoie un rapport d'erreur détectée (messages d'erreur, page 70).

Ecriture d'un registre

Requête d'écriture :

N° esclave	Code fonction	Adresse du registre				Contrôle
01h	6h	Hi	Lo	Hi	Lo	
1 octet	1 octet	2 octets		2 octets 2 octets		2 octets (mode RTU)

N° esclave : 01hCode fonction : 6h

• Adresse du registre : même champ d'adresse que pour la requête de lecture

Valeurs de registre : 0000h à FFFFh

Réponse :

N° esclave	Code fonction	Adresse du registre				Contrôle
01h	6h	Hi	Lo	Hi	Lo	
1 octet	1 octet	2 00	tets	2 octets		2 octets (mode RTU)

La réponse est un écho de la requête, indiquant que la valeur contenue dans la requête a été prise en compte par la Station compacte.

Ecriture de n registres

Requête d'écriture :

N° esclave	Code fonction	Adresse du 1er registre	Nombre de registres	Nombre d'octets	Valeur du 1er registre	Valeur du dernier registre	Vérification
01h	10h	Hi Lo	Hi Lo		Hi Lo	Hi Lo	
1 octet	1 octet	2 octets	2 octets	1 octet	2 octets	2 octets	2 octets (mode RTU)

N° esclave : 01hCode fonction : 10h

• Nombre de registres : 1 ≤ N ≤ 123

• Nombre d'octets : deux fois le nombre de registres

• Valeurs de registre : 0000h à FFFFh

Réponse:

N° esclave	Code fonction	Adresse du 1er registre écrit				Vérification
01h	10h	Hi	Lo	Hi	Lo	
1 octet	1 octet	2 octets		2 octets 2 octets		2 octets (mode RTU)

N° esclave: 01h

Code fonction : identique à la requête

Adresse du premier registre écrit : identique à la requête

Nombre de registres écrits : identique à la requête

Requête d'identification

 $\textbf{Fonction 2Bh}: cette \ fonction \ permet \ d'identifier \ la \ Station \ compacte.$

Requête de lecture :

N° esclave	Code fonction	MEI *	Lecture du code d'identification de l'équipement	ID d'objet
01h	2Bh	0Eh	01h, 02h, 03h	00h

^{*:} MEI = Modbus Encapsulated Interface

Réponse :

Index	Nom et description d'objet	Description	Type de données
0 (0000h)	Nom du fabricant	TELEMECANIQUE	Chaîne ASCII
1 (0001h)	Code de produit		
2 (0002h)	Numéro de version	Vx.y (par exemple : V3.6)	

Messages de détection d'erreurs

Si une anomalie est détectée dans un message (ou durant son exécution) par le Station compacte auquel il est destiné, le Station compacte renvoie un message de détection d'erreur au système maître.

Syntaxe:

N° esclave	Code fonction	Code d'erreur détectée	Vérification
1 octet	1 octet	1 octet	2 octets (mode RTU)

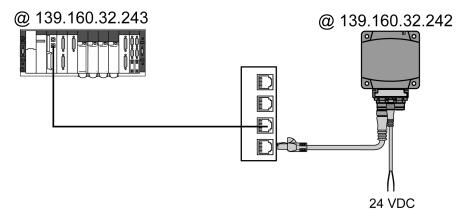
- N° esclave : 01h
- Code fonction: identique au code fonction et au bit de poids fort (MSB) de l'octet défini sur 1

Exemples:

 Code de fonction du message d'erreur détectée après une requête de lecture :

$$83h = (80 + 03) \text{ ou } 84h = (80 + 04)$$

Code de fonction du message d'erreur détectée après une requête d'écriture :
 90h = (80 + 10)

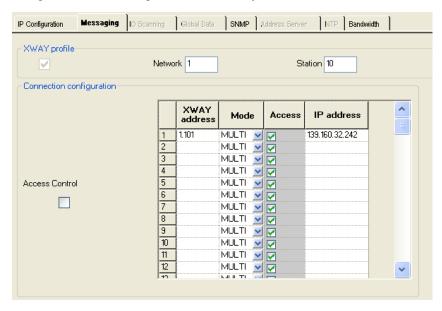

Code d'erreur détectée :

- 1h : code fonction inconnu ou format de requête incorrect
- 2h : adresse incorrecte, zone interdite/protégée ou adresse hors de la zone mémoire d'étiquette
- 3h: données incorrectes, en excès ou insuffisantes dans la trame, quantité = 0 ou données incompatibles
- 4h : erreur détectée d'exécution (en mode lecture ou écriture, ou étiquette manquante)

Exemple d'application Modbus TCP/IP

Exemple d'application

Une Station compacte et un automate Premium sont connectés à un réseau Modbus TCP/IP.

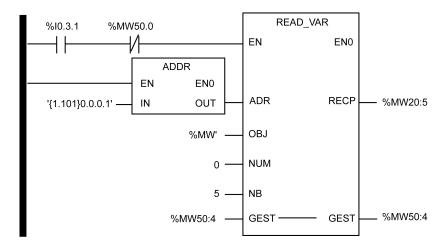


Configuration de l'automate avec Unity Pro XL

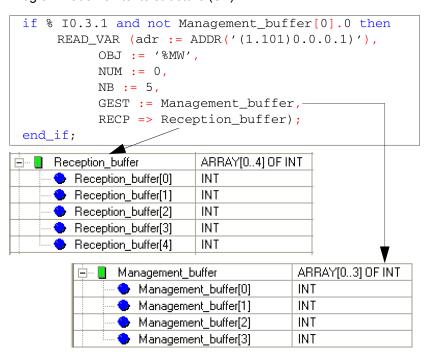
Pour permettre la communication entre ces deux équipements, la configuration matérielle de l'automate doit être spécifiée :

- une adresse XWAY pour la Station compacte,
- · l'adresse IP de la Station compacte.

La figure décrit la configuration dans Unity Pro :



Exemple de programme dans Unity Pro


Exemple de programme : lecture de 5 registres dans l'étiquette en commençant au registre %MW0 de l'étiquette.

NOTE: l'adresse Modbus de la Station compacte est 1 (adresse fixe).

Programmation en schéma à contacts

Programmation en texte structuré (ST)

NOTE: la fonction ADDR est structurée comme suit : '(adresse XWAY)Rack. Module.Voie.Adresse Modbus)'.

Station compacte Ethernet

Diagnostics

Objet de ce chapitre

Ce chapitre décrit comment diagnostiquer un problème détecté à l'aide des voyants de la Station compacte.

Voyants de diagnostic de la Station compacte

Présentation

Les 6 voyants bicolores affichent tous les états de fonctionnement de la Station compacte :

Description des voyants

Le tableau décrit l'état des voyants :

Voy- ant	Nom	Etat du voyant	Description	Etat de la Station compacte
1	TAG	Vert fixe	Présence d'étiquette	Etiquette détectée, dialogue OK
		1 clignotement	Aucune étiquette détectée	Attente d'une étiquette
		Rouge clignotant	Erreur détectée RFID	Erreurs détectées dans le dialogue avec l'étiquette
2	СОМ	Clignotements verts	Requêtes reçues d'un client	ОК
		Clignotements rouges	Erreur détectée dans les requêtes reçues d'un client	Code d'erreur détectée renvoyé au client (aucune étiquette/paramètres incorrects)
3	NS (état du	Eteint	Aucune alimentation ou aucune adresse IP	Attente d'une adresse IP (fixe ou DHCP).
	réseau)	Vert clignotant	Aucune connexion	Aucune connexion CIP n'est établie et la connexion de propriétaire exclusif à un client n'a pas dépassé son délai de timeout.
		Vert	Connecté	Au moins une connexion CIP est établie et une connexion de propriétaire exclusif à un client n'a pas dépassé son délai de timeout.
		Rouge clignotant	Timeout de raccordement	Une connexion de propriétaire exclusif au client a dépassé son délai de timeout.
		Rouge continu	IP en double	La Station compacte a détecté que son adresse IP est déjà utilisée.

Voy- ant	Nom	Etat du voyant	Description	Etat de la Station compacte	
		Rouge/vert clignotant	Auto-test	La Station compacte effectue son auto-test de mise sous tension.	
4	Activité de liaison (ports 1 et 2)	Vert fixe	Liaison Ethernet présente à 100 Mbits/s	OK	
5		Vert clignotant	Trafic à 100 Mbits/s	ок	
		Jaune	Liaison Ethernet présente à 10 Mbits/s	ОК	
		Jaune clignotant	Trafic à 10 Mbits/s	ОК	
6	MS (état du module Ethernet)	Vert	Le module Ethernet de la Station compacte est opérationnel.	ОК	
		Vert clignotant	Veille	La Station compacte est en attente de configuration du réseau.	
		Rouge clignotant	Défaut détecté mineur	La Station compacte a détecté un défaut mineur récupérable.	
				NOTE: Une configuration incorrecte ou incohérente est considérée comme un défaut détecté mineur.	
		Rouge	Défaut détecté majeur	La Station compacte a détecté un défaut majeur irrécupérable sur son module Ethernet.	
		Rouge/vert clignotant	Auto-test	La Station compacte effectue son auto-test de mise sous tension.	

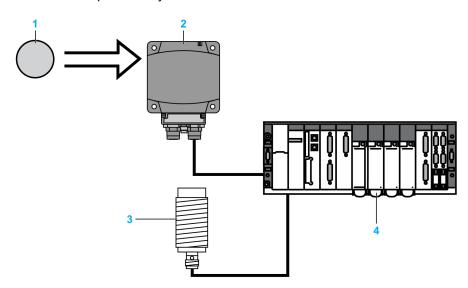
Questions fréquentes Station compacte Ethernet

Questions fréquentes

Objet de ce chapitre

Ce chapitre contient la liste des questions fréquentes concernant la Station compacte.

FAQ


Erreurs détectées pendant la lecture/l'écriture d'étiquettes

Comment éviter de faire des erreurs lors de la lecture/l'écriture d'une étiquette ?

Pour éviter de faire des erreurs lors de la lecture/écriture d'une étiquette, il faut vérifier la présence de l'étiquette avant l'émission de la requête.

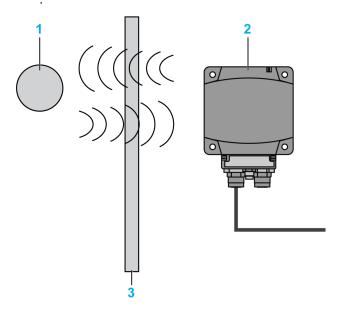
1: Utiliser un capteur:

Synchronisez les requêtes de lecture/écriture avec un capteur indiquant la présence de l'étiquette au système de contrôle :

- 1 Etiquette
- 2 Station compacte
- 3 Capteur de présence d'étiquette
- 4 Automate

Si des erreurs détectées (positionnement incorrect de l'étiquette ou erreur détectée de transmission) sont en cours de traitement, répétez la requête avant de passer en mode Repli (abandon de la requête et génération d'une alarme).

2 : Lire le registre STATUS de la station compacte :


Avant de générer une requête de lecture/écriture d'étiquette, vérifiez que cette dernière est présente à l'aide d'une requête de lecture du registre STATUS de la Station compacte (bit 0 du registre STATUS = 1 si l'étiquette est présente).

Protection de la Station compacte

Comment protéger la station compacte contre les chocs ?

Pour protéger le système contre les chocs, vous pouvez :

- intégrer la Station compacte dans du métal,, page 26
- intégrer l'étiquette dans du métal, page 26.
- Protégez la Station compacte en profitant de sa capacité à fonctionner à travers des matériaux non métalliques, conformément au schéma ci-dessous

- 1 Etiquette
- 2 Station compacte
- 3 Ecran non métallique

NOTE: protection thermique

Évitez d'exposer les étiquettes à des sources thermiques rayonnantes, comme des sécheurs à infrarouge.

Longueur maximale du câble

Quelle longueur maximum le câble de raccordement de la station compacte peut-il avoir ?

80 m (262,5 pi) entre chaque Station compacte.

Terminaison de fin de ligne

Comment faut-il insérer la terminaison de fin de ligne?

Aucune terminaison de fin de ligne n'est nécessaire sur le réseau Ethernet.

Erreur détectée de communication

Comment faut-il traiter les interruptions de communication entre l'automate et la station compacte ?

Le risque de détection d'une erreur de communication est permanent pendant la lecture ou l'écriture d'une étiquette (perturbations, CEM/IEM, étiquette à la limite de la zone de dialogue...).

Il faut intégrer la gestion du risque dans le programme de l'automate :

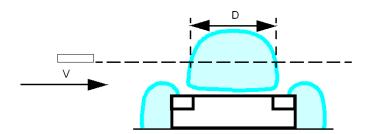
- Traitez les codes d'erreur détectée de la Station compacte (requête de lecture/écriture rejetée car aucune étiquette n'est détectée en face de la Station compacte,...).
- Traitez le timeout lorsque la Station compacte ne répond pas, avec un message du type « Le message ne s'affiche pas après une perturbation ».

• En présence d'une erreur détectée, répétez la requête (jusqu'à 3 fois) avant de quitter le programme et d'émettre une alarme d'automate.

Nombre maximum de cycles d'écriture d'une étiquette

Combien d'écritures les étiquettes XGHB autorisent-elles ?

Le nombre maximum d'écritures dépend de la température de stockage de l'étiquette : plus la température est élevée, plus ce nombre diminue.


Si l'étiquette est exposée en permanence à la température de stockage définie, le nombre minimum d'écritures est de 100 000.

Si l'étiquette est exposée en permanence à une température inférieure à 30 °C (86 °F) (cas de figure le plus fréquent), le nombre maximum d'écritures est de **2,5 millions**.

NOTE: dans le cas où des écritures fréquentes sont requises, sélectionnez une étiquette dotée de mémoire FeRAM (10¹⁰ cycles d'écriture).

Données lisibles d'une étiquette mobile

Quelle quantité de données est-il possible d'échanger dans une étiquette mobile ?

Lorsque l'étiquette continue de bouger en face de la Station compacte, il faut :

Étape	Action
1	Déterminer la vitesse V de l'étiquette.
2	Déterminer le nombre de registres à échanger.
4	Se reporter à la vitesse maximum dans les caractéristiques de l'étiquette, page 20.

AVIS

COMPORTEMENT IMPREVU DE L'EQUIPEMENT

N'émettez aucune requête d'écriture lorsque l'étiquette sort de la zone de détection de la Station compacte (Zone de détection, page 26).

Le non-respect de ces instructions peut provoquer des dommages matériels.

NOTE: Cela risquerait de générer une erreur d'écriture ou l'écriture de données incorrectes.

Utilisation d'étiquettes tierces

Quelle est la distance de dialogue entre une station compacte et une étiquette achetée auprès d'un fournisseur tiers ?

Les distances de lecture ne sont pas normalisées. Chaque étiquette possède ses propres caractéristiques et peut ne pas autoriser une certaine distance de dialogue.

Il convient de faire des tests pour déterminer la distance de dialogue appropriée.

Compatibilité de la Station compacte avec d'autres étiquettes 13,56 MHz

Mon étiquette 13,56 MHz est-elle compatible avec la station compacte?

Envoyez une étiquette à votre agence Schneider pour qu'elle vérifie sa compatibilité.

Précautions contre les perturbations de CEM/IEM

Quelles sont les précautions à prendre concernant la CEM/IEM?

Pour éviter les perturbations de CEM/IEM, il faut :

- Vérifier que la Station compacte se trouve au moins à 30 cm (11,81 po) d'une source de CEM/IEM (moteur, vanne électromagnétique, etc.)
- Utiliser les câbles prévus à cet effet (conçus pour protéger contre les perturbations de CEM/IEM).

Influence du métal

Quelle est l'influence du métal sur les distances de lecture de la station compacte et de l'étiquette ?

La présence de métal à proximité d'une étiquette RFID modifie les distances de lecture.

Certaines étiquettes de la gamme de Station compacte sont conçues pour atténuer ce phénomène (XGHB44•••• et XGHB221346). D'autres références n'autorisent pas la fixation sur un support métallique.

Glossaire

100Base-TX:

Adaptée de la norme IEEE 802.3 (Ethernet), la norme 100Base-T exige un câble à paire torsadée d'une longueur de segment maximale de 100 m (326 pi.) terminé par un connecteur RJ-45. Un réseau 100Base-T est un réseau capable de transmettre des données à une vitesse maximale de 100 Mbits/s. On utilise aussi l'appellation « Fast Ethernet » pour 100Base-T, car cette norme est 10 fois plus rapide que la norme 10Base-T.

10Base-T:

Adaptée de la norme IEEE 802.3 (Ethernet), la norme 10Base-T exige un câble à paire torsadée d'une longueur de segment maximale de 100 m (326 pi.) terminé par un connecteur RJ-45. Un réseau 10Base-T est un réseau capable de transmettre des données à une vitesse maximale de 10 Mbits/s.

Δ

Adresse MAC:

Acronyme de *Media Access Control*. Nombre de 48 bits, unique sur un réseau, programmé sur chaque carte réseau ou équipement lors de la fabrication.

ARRAY:

Un ARRAY est un tableau d'éléments de même type. La syntaxe est la suivante : ARRAY [<liimits>] OF <Type>

Exemple 1: ARRAY [1..2] OF BOOL est un tableau à une dimension composé de deux éléments de type BOOL.

Exemple 2: ARRAY [1..10, 1..20] OF INT est un tableau à deux dimensions composé de 10×20 éléments de type INT.

ASCII:

Acronyme de « American Standard Code for Information Interchange ». Le protocole ASCII est un protocole de communication représentant les caractères alphanumériques (lettres, chiffres, ainsi que certains caractères graphiques et de contrôle).

Automate:

Automate programmable industriel. Il automatise un processus, par opposition à un système de contrôle à relais. Les automates sont de vrais ordinateurs conçus pour survivre dans les conditions difficiles de l'environnement industriel. Les automates programmables sont des ordinateurs conçus pour résister aux conditions parfois difficiles de l'environnement industriel.

B

Bloc fonction:

Elément effectuant une fonction d'automatisation spécifique, comme un contrôle de vitesse. Il contient des données de configuration et un jeu de paramètres de fonctionnement.

BOOL:

Le type booléen est le type de données de base en informatique. La variable BOOL peut prendre l'une de ces valeurs : 0 (FALSE) ou 1 (TRUE). Un bit extrait d'un mot est de type BOOL, par exemple : MW10.4 est le cinquième bit d'un mot mémoire numéro 10.

BootP:

Acronyme de « Bootstrap Protocol ». Protocole UDP/IP permettant à un nœud Internet d'obtenir ses paramètres IP à partir de son adresse MAC.

BYTE:

Lorsque 8 bits sont regroupés, on parle alors de BYTE (octet). La saisie d'un BYTE s'effectue soit en mode binaire, soit en base 8. Le type BYTE est codé au format 8 bits, compris entre 16#00 et 16#FF (au format hexadécimal).

C

CEI:

Acronyme de *Commission électrotechnique internationale*. Organisme fondé en 1884 et dont le but est de développer la théorie et la pratique de l'ingénierie dans les domaines de l'électricité, de l'électronique et de l'informatique. La spécification EN 61131-2 traite des équipements d'automatisation industrielle.

CEM:

Acronyme de *Compatibilité électromagnétique*. Les équipements conformes aux critères de CEM sont en mesure de fonctionner de manière continue dans les limites électromagnétiques spécifiées d'un système.

Code de fonction:

Jeu d'instructions ordonnant à un ou plusieurs équipements esclaves situés à des adresses spécifiées d'effectuer un type d'action, par exemple lire un ensemble de registres de données et répondre à leur contenu.

Configuration:

Agencement et interconnexion de composants matériels au sein d'un système, comprenant également le matériel et les logiciels qui déterminent les caractéristiques de fonctionnement du système.

CRC:

Acronyme de « Cyclic Redundancy Check », signifiant contrôle de redondance cyclique. Les messages qui mettent en œuvre ce mécanisme de recherche d'erreurs ont un champ CRC qui est calculé par l'émetteur en fonction du contenu du message. Les nœuds récepteurs recalculent le champ. Une différence entre les deux codes indique une différence entre le message émis et le message reçu.

D

DHCP:

Acronyme de *Dynamic Host Configuration Protocol*. Protocole TCP/IP autorisant un serveur à affecter à un nœud du réseau, une adresse IP basée sur un nom d'hôte.

Е

EDS:

Acronyme de *Electronic Data Sheet*. L'EDS est un fichier ASCII standardisé qui contient des informations sur une fonctionnalité de communication d'équipements en réseau et le contenu de son dictionnaire d'objets. Le fichier EDS définit également les objets propres au fabricant et à l'équipement.

EEPROM:

Acronyme de *Electrically Erasable Programmable Read-Only Memory*. Type de mémoire non volatile.

Ethernet II:

Format de trame dans lequel l'en-tête spécifie le type de paquet de données. Ethernet II est le format de trame par défaut pour les communications avec des modules NIM.

EtherNet/IP:

EtherNet/IP (protocole Ethernet industriel) convient particulièrement aux applications d'usine, qui nécessitent de contrôler, configurer et surveiller des événements au sein d'un système industriel. Spécifié par ODVA, ce protocole exécute le protocole CIP (Common Industrial Protocol) en plus des protocoles Internet standard, tels que TCP/IP et UDP. Le réseau local de communication autorise ainsi l'interconnexion de tous les niveaux des opérations de fabrication, depuis le bureau jusqu'aux capteurs et actionneurs de son étage.

Ethernet:

Spécification de câblage et de signalisation LAN (Local Area Network, réseau local) utilisée pour raccorder des équipements dans une zone bien définie, comme un immeuble. Ethernet utilise un bus ou une topologie en étoile pour connecter différents nœuds sur un réseau.

F

FeRAM:

Acronyme de *Ferroelectric Random Access Memory*. Mémoire non volatile offrant des performances d'écriture plus rapides et un nombre supérieur de cycles d'écriture.

Н

HTTP:

Acronyme de *HyperText Transfer Protocol*. Protocole utilisé par un serveur Web et un navigateur client pour communiquer l'un avec l'autre.

Identifiant:

Identifiant unique. Numéro d'identification de l'étiquette. Chaque étiquette a son propre identifiant.

IEEE:

Acronyme de *Institute of Electrical and Electronics Engineers, Inc.* Organisme international de normalisation et d'évaluation de la conformité dans tous les domaines technologies ayant trait à l'électricité et à l'électronique.

IHM:

Acronyme de *Interface homme machine*. Interface utilisateur, généralement graphique, pour équipements industriels.

IP (indice):

Acronyme de « Ingress Protection ». Classification d'indices de protection contre la pénétration, conforme à la norme CEI 60529.

IP:

Acronyme de *Internet Protocol*. Branche de la famille de protocoles TCP/IP, qui assure le suivi des adresses Internet des nœuds, achemine les messages sortants et reconnaît les messages entrants.

П

LAN:

Acronyme de *Local Area Network*. Réseau de communication de données à courte distance.

LSB:

Acronyme de *Least Significant Byte*, signifiant octet de poids faible. Partie d'un nombre, d'une adresse ou d'un champ, qui est écrite à l'extrême droite en notation hexadécimale ou binaire conventionnelle.

M

Maître:

Protocole de messagerie de la couche applicative. Modbus assure les communications client/serveur entre des équipements raccordés par différents types de bus ou de réseaux. Il offre de nombreux services spécifiés par des codes de fonction.

Mémoire flash:

Type de mémoire non volatile (rémanente) dont le contenu peut être modifié par écriture. Elle est stockée dans une puce EEPROM spéciale, effaçable et reprogrammable.

Modèle maître/esclave:

Modèle de réseau dans lequel l'équipement maître contrôle les équipements esclaves.

Ce modèle était auparavant appelé maître/esclave.

MSB:

Acronyme de *Most Significant Byte*, signifiant octet de poids fort. Partie d'un nombre, d'une adresse ou d'un champ, qui est écrite à l'extrême gauche en notation hexadécimale ou binaire conventionnelle.

%MW:

Selon la norme CEI, %MW représente un registre de mots mémoire (par exemple, un objet langage de type mot mémoire).

P

PELV:

Acronyme de *Protective Extra Low Voltage*, signifiant très basse tension de protection.

R

Registre:

Ensemble de données encodées dans un format 16 bits (type WORD).

RFID:

Acronyme de *Radio Frequency Identification*. Terme utilisé pour désigner les systèmes d'identification par radiofréquence. Ces plages de fréquences varient entre 50 kHz et 2,5 GHz. La plus utilisée est 13,56 MHz.

Rx:

Terme signifiant réception.

S

SCADA:

Acronyme de *Supervisory Control And Data Acquisition*. Type de système mis en œuvre dans les environnements industriels comprenant des micro-ordinateurs.

Sous-réseau:

Partie d'un réseau, partageant une même adresse avec d'autres parties d'un réseau. Un sous-réseau peut être physiquement et/ou logiquement indépendant du reste du réseau. La partie de l'adresse Internet, appelée numéro de sous-réseau, permet d'identifier le sous-réseau. Il n'en est pas tenu compte lors de l'acheminement IP.

Station compacte:

Lecteur RFID intégrant toutes les fonctions RFID et réseau dans le même équipement.

Т

TCP:

Acronyme de *Transmission Control Protocol*. Protocole de couche de transport, qui assure une transmission des données en duplex intégral. TCP fait partie de la suite de protocoles TCP/IP.

Texte structuré (ST):

Un programme développé en langage littéral structuré (ST) inclut des instructions complexes et des instructions imbriquées (boucles d'itération, exécutions conditionnelles, fonctions). Le langage ST est conforme à la norme CEI 61131-3.

Trame 802.3:

Format de trame spécifié dans la norme IEEE 802.3 (Ethernet), selon lequel l'entête spécifie la longueur des paquets de données.

Tx:

Terme signifiant émission.

U

UDP:

Acronyme de *User Datagram Protocol*. Protocole en mode sans connexion, dans lequel les messages sont acheminés dans un datagramme à un ordinateur de destination. Il est généralement fourni avec le protocole IP (UDP/IP).

W

WORD:

Type codé dans un format de 16 bits.

Index

A	
automate	67
C	
codes de fonction Modbusconfiguration d'adresse IP	67
M	
Modbus sur TCP/IP formats de données	67
P	
protocole Modbus	67
т	
topologietopologie de réseau	12
type de trame	
Ethernet II	

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison

+ 33 (0) 1 41 29 70 00

www.tesensors.com

Les normes, spécifications et conceptions pouvant changer de temps à autre, veuillez demander la confirmation des informations figurant dans cette publication.

© 2020 Schneider Electric. Tous droits réservés.